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ABSTRACT. The smallest known thick generalized octagon has ordéj é&hd can be
constructed from the parabolic subgroups of the Ree grdu2). It is not known
whether this generalized octagon is unique up to isomonphie show that it is unique
up to isomorphism among those having a painthose stabilizer in the automorphism
group both fixes setwise every line arand contains a subgroup that is regular on the
set of 1024 points at maximal distanceitcOur proof uses extensively the classification
of the groups of order dividing®.

1. Introduction

Recall that a point-line geomety = (P, £) consists of a seP of points and a
collection £ of subsets ofP, each of size at least two, calléides. A pointp € P is
incidentwith a line L € L if p is an element of.. Two points incident to the same line
arecollinear. We associate two graphs with every point-line geometrye imbidence
graphof G has as vertices all points and all lines@fwith edges connecting incident
point-line pairs. Thecollinearity graphof G has as vertices all points ¢f, with edges
connecting collinear pairs of points. Itis easy to see tmatricidence graph is connected
if and only if the collinearity graph is connected; if so, thg is connected

The diameterof a connected graph is the maximal distance between vertices and
its girth is the shortest length of a cycle.

Definition 1.1. Forn > 3, ageneralizech-gonis a point-line geometry satisfying the
following properties:

(1) the diameter of the incidence graptof G is n;

(2) the girth ofl" is 2n;

(3) G is regular: every point is incident with the same number1 > 1 of lines
and every line is incident with the same numbef 1 > 1 of points.

This concept was introduced and developed by Tits [13, 14].
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1015. The first author is grateful for supported visits to Y&I(Moscow) and Auckland which enabled
our collaboration.
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We are interested in finite generalizeggons when botls andt are finite. The pair
(s,t) is theorder of G. The generalized-gong isthinif s = 1 = ¢. For everyn there
exists exactly one thin generalizeggon, which can be described as the geometry of all
vertices and edges of the usuagon.

By a famous theorem of Feit and Higman [10], a finite generdlizgon withn > 3
is either thin, or satisfies € {3,4,6,8,12}. Furthermore, ifG is thick (that is, both
s,t > 2), thenn = 12 is impossible. Thus thgonality »n of a thick finite generalized
n-gon is at most eight. This largest gonality= 8, is the only case where the smallest
thick generalizedh-gons are not known up to isomorphism. The smallest thiclefini
generalized quadrangles and hexagons are unique (seda[[12&h

It follows from [10] that the smallest order for which a thiGkite generalized oc-
tagon can exist ig2,4). A generalized octagon of ord¢®2,4) was constructed by
Tits [15] as part of an infinite series of generalized octagatated to the group® 4(q).
The octagon of ordef2,4) is obtained fron?F,(2) by taking for points the maximal
parabolic subgroup&’; for which G /O,(G4) is a Frobenius group of ordéf), and by
taking for lines the maximal paraboli€s, of the other type, with incidence betweéh
andG, defined byO,(G4) C Go; more details are given in Example 1.3.

The uniqueness, or otherwise, of the generalized octagordef (2, 4) remains an
open and very difficult problem. In [8], De Bruyn proved tha¢ texample of Tits is
the only one in which the unique generalized octagon of ofder) embeds. In [3],
it is shown that it is the only one of ordé2, 4) admitting a vertex-transitive group of
automorphisms.

In this paper, we establish its uniqueness under anothamgg®n. Supposg =
(P, L) is a generalized octagon. Since the incidence giaphby definition bipartite
and the gonality of is even, if two vertices of are at the maximal distance, eight, then
these have the same type: both are points or lines. Elemegtatamaximal distance in
' areopposite(cf. [17, p. 5]).

Theorem 1.2. LetG = (P, £) be a generalized octagon of ordér, 4). Assume that it
admits a group) of automorphisms df such that, for some € P,

() @ fixesa and stabilizes setwise every line @n
(i) Q is transitive on the set of points oppositeito

Theng is the generalized octagon related to the Ree griug?2).

Example 1.3. In Table 1, we summarise the defining relations, given in pL326], for
’F,(2) on generators,, . .., us, vy, . . ., vg, 1, andrs.

We denote this group by. Let @) be its subgroup generated by, ..., ug, letU
be its subgroup generated yandu,, let G; be its subgroup generated byandr,
and letG, be its subgroup generated byandrs. Then@ = O,(G1), and the elements
g = uj vy andf = v; generate a Frobenius group of order 20 that is a complemént to
in G.

SinceGG; andG,, are representatives of the two types of maximal parabobgsaups
of T"and both contaird), the construction mentioned above gives the known octafjon o
order(2,4). SinceG; normalisesy, the latter fixes a unique poiatof the generalized
octagon. Itis easily verified th&} satisfies the conditions of Theorem 1.2. Observe that



ON THE UNIQUENESS OF THE GENERALIZED OCTAGON OF ORDE(2,4) 3

ui=us=uz=ui=1|ui=ui=ur=ui=1| vl =0vi=v3=0i=1
vi=vi=vi=0vi=1| [u,us) = [u,us] =1 [ug, uy) = [ug, ug] = 1
UsuUp = U1ULU3 UpgUp = U1U§U4 uUgUy = UU4UUSY
UgU1 = U1U§U4U§U6 Urup = U1U2U§U5U7 usuy = U1U2U§U4U2U6U7U8
r = wviuy! rs = ugUstg ' (rirs)® =1
U1 = U1 iU = Usg rugry = uz
TiugT = Ug TusT1 = Us V2T = Ug
muvsr; = Uy Tv4T1 = Vs TUsT1 = Us
rgu1rg = Uy TgUals = Ug rgugrg = Us
TgUaTg = Uy rgugrg = Us rguirg = Uy
rgU2T's = Ug rgu3rgs = Us TgUaTg = Uy

TABLE 1. Defining relations fofF,(2)

g cyclically permutes the five lines anand f fixes a unique line om and cyclically
permutes the other four.

A motivation for the theorem was Kantor’s construction [bijgeneralized 4-gons
using a group similar t@); we discuss this in Example 3.4.

2. Preliminaries

All graphs in this paper are undirected, and their edges tiiatiact vertices. Through-
out, G = (P, L) is a generalized octagon of ord&, 4), with incidence grapii’ and
collinearity graphA. We mostly work withA, hence our first task is to restate what
is known abou in terms of A. A k-clique of a graph is a set of pairwise adjacent
vertices. Every line inC induces a 3-clique im\. A path of lengthk from a to b is
a sequence = ay, ay,...,a; = b of vertices ofl" such that{a; 1,a;} is an edge for
1 =1,..., k. The path isimplewhenevew; | # a,., fori =1,... k—1. Thedistance
between two subsets of points &fis the minimum among all distances between a point
from one and a point from the second.

The first condition defining a generalizedgon implies that the diameter & is
n/2 = 4. In particular, points are opposite if and only if they aredatance 4 inA.
The second condition implies that the geometric girti\dg n = 8; thegeometric girth
is the shortest length of a cycle satisfying the extra camuithat no three consecutive
vertices lie in the same clique.

Lemma 2.1. For each pointp and line L, there is a unique point i closest tgp in I'.
Dually, there exists a unique line containipglosest tol in I'. Moreover, if two points
are connected by a simple path of length fourtNnthen they are opposite.

Proof: Sincel is bipartite and the gonality is even,p and L cannot be opposite. In
particular, inI" they are connected by a unique shortest path, since thedjiiths 16.
The unique point of. closest tg is the neighbour of. on this path and, symmetrically,
the unique line om closest tal is the neighbour op.

If the two points were connected by a path of length at mostettin A, then this
path, together with the given path, would make a cycle of ggamlength at most 7 in
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A, a contradiction. The final statement follows. O

Corollary 2.2. Every two pointsp and ¢, that are opposite are connected by exactly
5 = t + 1 shortest paths im\, one through each line op and, symmetrically, one
through each line on.

A dual statement also holds for lines that are opposite. We shat theA-distance
between opposite lines is three.

Lemma 2.3. Supposd. and M are lines that are opposite. For eaghe L, the unique
q € M closest top is at distance three from in A. The mapL — M sending every
point of L to its closest point o/ is a bijection fromL onto M. In particular, L and
M are connected by exactyy= s + 1 shortest paths, one through each pointZcind,
symmetrically, one through each point/af.

Proof: Letp € L. By Lemma 2.1,M contains a unique point closest top. Clearly,
the distancel(p, ¢) in A betweerp andgq is less than the diameter, hend@, ¢) < 3.
If d(p,q) < 2, then inT" the pointsp andq are at distance at most four, which implies
that L and M are at distance at most six; a contradiction sihcand M are opposite.
Therefored(p, q) = 3.

Symmetrically,L contains a unique point closest¢pso clearly that point ig. This
establishes the bijection. The last claim is an easy coresegu O

3. Points opposite to a given point

Fixa € P. LetP, = {b € P | d(a,b) = 4}, the set of points opposite to In this
section we study the subgraphafinduced on this set.

Lemma 3.1. |P,| = 2'°.

Proof: This follows from a standard argument for finite generalizegons, which can
be found, for instance, in [17, Lemma 1.5.4]. O

Let X be the subgraph induced d@t). We showed in the above proof that every line
onb € P, has exactly one point it\;(a).

Lemma 3.2. The graph® has valency five. It contains rdeclique and has girth at least
eight.

Proof: Only the last claim requires comment. Sinceontains no 3-clique, every cycle
in ¥ satisfies the condition that no three consecutive vertiogsl@ on the same line of
G. The geometric girth oA\ is eight, so the claim follows. O

Corollary 3.3. Each connected componentiohas at leasti 70 vertices.

Proof: Picking a vertex of X and setting~(b) to be the set of vertices & that are
at distancet from b (in 3, which is not necessarily the same distanceé\y we learn
that|X,(b)| = 5, [X2(0)| = |X1(b)| - 4 = 20, |X3(b)| = [X2(b)| - 4 = 80, and finally,
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1X4(b)] > |23(b)] - 4/5 = 64. The last inequality uses that every vertex frai(b) is
adjacent to at most five verticesihy(b). Thus the connected componentotontaining
b has at least + 5 + 20 + 80 + 64 = 170 vertices. O

Example 3.4. We digress to show how the Tits generalized octagon of d&jd) can be
obtained directly from the grou@ of Example 1.3, by employing Kantor’s generalized
4-gon construction. Consider the following subgroupgof

le) - <u87u77"'7u9—j> for 1 S.] §67
andQ!” for 2 < i < 5 defined byQ!"*" = (Qy“))g, wherek € {1,2,3,4} andg is as
in Example 1.3. These subgroups satisfy the following prisgewithn = 8, s = 2, and
t =4, whereQ((f) =1 and@ff)_1 = Q.

O) Fori<i<t+1landl <j<n-1, Q;’Zl is a subgroup oQ;’) of indext or
s depending on whether — j is even or odd.

(C) Forindices, ..., ik, j1,...,jr € {1,...,5} such that,, # i, for1 <m <
k—1andi; # i, andj, + -+ jp =n — 1,

1 ()" (@)

whereG# := G\ {1}. With this dataQ = (Q@). , we construct a graph(Q) as

J
follows. Its vertices are the+ 2 labelsa and L; for ¢ - 1,...,t+ 1, and all right cosets
of Qg.’) in@Qforl <i<t+1and0 < j <n— 2. Its edges are the paifs, L;}; the
pairs{L;, fo),ﬂ}; and all pairs{Q§’)x, Qﬁﬁily} with Q§-’)x C Qgﬁly for1 <:<t+1,
r,y € Q,and0 < j <n—3.

Now every graph’'(Q) for which Q satisfies (O) and (C) is the incidence graph of a
generalizech-gon of order(s, t). In particular, the above collectio@ of subgroups of
@ gives another construction of the known generaligepbn.

Forn = 3, Conditions (O) and (C) are easily seen to be equivalent toxiseeace of
a translation plane structure gh Forn = 4, the conditions translate to those formulated
by Kantor in [11]. Fom = 6, they have been used in [6].

4. Edge colours

Let 3 be the graph induced b on the set of point$’, opposite to a fixed € P.
We arbitrarily attach colours 1 to 5 to the five lines @nConsider an edgéb, ¢} in ¥
and letL, € L be the line containing andc. Lemma 2.1 shows that there is a unique line
ona closest toL. We colour{b, ¢} with the colour of that line. Thus every edgedhis
given a colour from 1 to 5. Corollary 2.2 implies that the fiveyes on every vertex of
>3 exhibit all five colours. Hence no two edges incident to theesaertex can have the
same colour.

Let G admit an automorphism group that fixesa, stabilizes every line on, and is
transitive on the seP, of opposites ta. Clearly,Q acts onx. Since it stabilizes each of
the five lines onu, it permutes the edges df preserving each colour.
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Lemma 4.1. The group acts regularly onp,.

Proof: In view of assumption (ii) of Theorem 1.2, we need only shbatt), is trivial
for b € P,. Since the five edges &f on b have pairwise different colours), fixes all
neighbours ob in X: that is,Q), = Q). wheneveh andc are adjacent vertices @f. Thus
@, fixes pointwise the connected componggtof > containingb.

Since ), fixes the five edges ohand since lines i have three pointsy), fixes
all points ofI" collinear withb, and the same applies to all vertices>af. Picking an
arbitraryn-pathzy, z1, ..., z, in X, we see that), fixes every point on this path and
furthermore fixes every neighbour of and ofz;. Thus, the assumptions of [16, (3.7)]
are satisfied, and 99, is trivial. O

This, together with Lemma 3.1, determines the ordep of
Corollary 4.2. The group has order2'°,

We next show thak (the subgraph induced an,) is a Cayley graph fo€). We fix
b € P, as our initial vertex and lefb, ¢;} for 1 < ¢ < 5 be the five edges olwhere
{b, ¢;} has the colout. Let «; be the unique element ¢f taking to ¢;.

Lemma 4.3. Eachq; is an involution.

Proof: The action of?) is colour-preserving an{b, ¢;} is the only edge on; of colouri;
hencen; stabilizes the edgf, ¢; }, and so takes; back tob. In particular,b%2 =" =0D.
Henceoa? € Q, = 1. O

Let Cay (G, I) be theCayley digraphof a groupG with subset/. Theverticesof this
digraph are the elements 6fand(z, y) is adirected edgevhenevenz—! € I. Clearly,
Cay(G, I) is an undirected graph if every element/of an involution. In particular, in
view of Lemma 4.3Cay(Q, {a1, ..., as}) is a graph.

Lemma 4.4. The coloured graplx is isomorphic taCay (Q, {a, ..., as}). The mapp
assigning to each € P, the unique element @} takingb to ¢ is an isomorphism.

Proof: Clearly,¢ is a bijection between the vertex sétsand(@. Since both graphs have
valency five, it remains to show thattakes edges to edges. Consider an €dge} in
Y. Let 8 = ¢(d), thatis,b” = d. If i is the colour of{d, e}, theng takes the edgéb, c;}
to {d, e}, which means that’ = e. But¢; = b%, soe = b*¥, that is,¢(e) = .
Thusg(e)o(d) ™ = ;887 = a; € {a,...,as}, which proves thap(d) ande(e) are
adjacent inCay (Q, {a, ..., as5}). O

Lemmas 3.2 and 4.4 together imply the following.

Corollary 4.5. The Cayley graplCay(Q, {«1, ..., as}) has girth at least eight. In par-
ticular, each product of at most seven in which any two consecutive elements are
distinct represents a non-identity elementof

Let Qo = (aq,...,as5). Itis well known thatCay(G, I) is connected if and only
if G = (I). Thus each connected componentCafy(Q, {a1, ..., as5}) is isomorphic
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to Cay(Qo, {c,...,as}). In particular, the size of each connected component
|Qo|, and the number of connected components @ the index@ : Qo). Sinceq is a
2-group, so ig€),. Corollary 3.3 implies the following.

Corollary 4.6. The order ofQ, is 28, 27, or 2'°. The graph® has4, 2, or 1 connected
components, respectively.

Example 4.7. We revisit Example 1.3, defining the following elementg of

ap = Up a1 = U2 Qg = u2u§u4u5u6u$u8
a3 = Uguzusuuguiug Q= Uguiugudugusug a5 = Ug

Thatay, . . ., a5 generate) is a consequence of the following:

Ug = Q1 U3z = Q5305004 Uy = Q301040500 U5 = Q
Ug = (534 (X U7 = pligigiq s ug = Qs
Letb be the image of7; underuvs; as the notation suggests,, . . . , a5 are the elements of

@ movingb to a collinear pointirt.. The Cayley grapl has two connected components,
which are interchanged hy,. This implies that), has ordee?®.

Here is a defining set of relations f@rin terms of these generators. It enables us to
study@ andX: without recourse ta@". We write [z, y] = 'y tay for z,y € Q.

a% = a§:~~~:a§:1,
04(2) = Qplo0y0Qag,
0/110 = Q3QayQa s,
ay’ = agnasaaasoy,
az’ = 305300y,
«@Q _
ay = 304050040109,
@Q _
Qg = (0503(x5(X10y,

2 ..
[, 5]” = 1 wheneveri,j > 0,
[044, 041] = Q5Qo0QyQg,

[Oég, Ckl] = Q50201 030y.

5. Action on neighbours

In this section we examine the action@fon the set\; (a) of points that are adjacent
toain A. Recall that: is on five lines oG, these are labelled by five distinct colours. By
assumption, each of the lines is invariant under the acti@p. @ herefore every element
of ) either fixes the&th line pointwise, or it fixes and interchanges the remaining two
points on the line. Thus the induced actiortpdn A;(a) is a subgroup of the elementary
abelian group of ordet’.

Lemma 5.1. The group induced b§, on A;(a) is elementary abelian of ord&'. The
group induced by) has order2* or 2° and none ofy,, ..., a5 belongs to the Frattini
subgroup of).
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Proof: Fix: € {1,...,5} and recall that the elemeat of @), takesb to its neighbour;

in 2. Let M; be the line containing andc; and letL; be the line or: coloured;. Let
d be the point orL; closest tab and lete be the third point on\/; (other tharb andc;).

If 7 =1, then there is a shortest path frédno a going through)M; and ;. Clearly this
shortest path goes througtandd, which implies that the\-distance betweed ande is

two. This in turn implies that the distance betwekandc; is three; sal is the point on
L; closest toe;. Sinceo; takesb to ¢; and stabilized;, it must fixd. Henceq; fixes L;

pointwise.

Now assumeg # i. We claim that the point of L; closest tob cannot be closest
to ¢;. Indeed, if it is, the distance from bothandc; to d is three. By Lemma 2.1)/;
contains a unique point closestdo This means that closest #ds the third pointe and
that the distance froni to e is two. However, in this case we have a shortest path from
to b via d ande, which means that/; should have the same colour/&as a contradiction.
We proved thatl is not closest t@; on L;, which means that closest tbis the third
point, sayf. The elementy; stabilizesL, and take$ to ¢;. This yields thaty; takesd to
f, that is,a; acting onL; fixesa and switches the other two points.

To summarize, each; fixes all three points of the ling; and switches two points in
each of the other four lines an In the action of) onA;(a), the elements; generate an
elementary abelian group of ord&Y, whose elements switch points in an even number
of lines ona.

Since the Frattini subgroup @ is the smallest normal subgrodp @) such that
Q/P(Q) is an elementary abelighgroup, none oty . . ., a; belongs tod(Q). O

Note that any four of the involutions; generate the group induced &y on A;(a).
In fact, in this action the product of al}; is the identity, and this is the only linear relation
that theo; satisfy.

Corollary 5.2. The Frattini quotient of), is elementary abelian of ord&" or 2°. The
order is 2* if and only if a; - - - a5 (or the product in any other order) belongs to the
Frattini subgroup®(Q).

Proof: By the above, the rank @, /®(Q),) is at least four. On the other hand, sir@g
is generated by five elements, the rank cannot be more than five O

The structure ok reflects the different orders 6§,/ ®(Qo).
Lemma 5.3. The graph is bipartite if and only if|Qq/®(Qy)| = 2°.

Proof: Clearly, X is bipartite if and only if every connected component is bipa
Each connected component®fis isomorphic toCay (Qo, {1, ..., as}). Thus we can
substituteX: by this Cayley graph.

Let G be a group generated by a set of involutidnét is well known thatCay (G, 1)
is bipartite if and only ifG has an index two subgroup that is disjoint from/. Indeed, if
the graph is bipartite, theH is the stabilizer of the (unique, since the graph is conmgcte
partition. Conversely, if such a subgroéipexists, then the two cosets &f are the parts
of the partition.
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If Qo = Qo/®(Qo) has order?®, then the images; of the five involutionsy; form a
basis forQ,. We choosé{ as the full preimage i), of the subgroup i), consisting
of all elements having an even number of nonzero coordinaitbsrespect to the basis
{a;}. Thus, the Cayley graph is bipartite.

If Qo has order?, then it follows from Lemma 5.1 thak(Q,) is the kernel of the
action ofQ)o on A;(a). Note that every index 2 subgroupin (), contains?(Q),). Since
the product of all fiven; (in any order) lies inb((Q),) (see Corollary 5.2), it also lies in
H. But this implies that if four of they; lie outside ofH, then the fifth lies in{. Thus,
no suchH exists inQ,, so the Cayley graph is not bipartite. O

Example 5.4. Consider again the group and elementg and f from Examples 1.3, 3.4,
and 4.7. In their conjugation action én bothg and f leave{ay, ..., a5} invariant and

act on the indices according to the permutationg, 3, 4, 5) and(1, 2, 4, 3), respectively.
Observe tha®(Q) = ®(Qy) has order 32 and equals the commutator subgroups of both

@ andQ).

6. Apartments and factorizations

An apartmentin a generalizedh-gon is a2n-cycle in the corresponding incidence
graphI'. In the collinearity graph), it is a geometrio-cycle. Hence, in our context,
an apartment is a geometiecycle in A. Every such cycle is a union of two shortest
paths connecting two opposite points. We choose a parntiapatmentC' through the
selected pointa andb. It is the union of the two shortest paths betweeandb passing
through the lines om carrying coloursl and5. We say that this apartment has colour
{1,5}. Clearly, for each pair of colours and eacle P, there is a unique apartment
througha and ¢ coloured with that pair of colours. Note that every apartih@na is
“coloured”, and@ permutes these apartments and preserves colour.

We name all components 6f: let it pass froma to pointa; via line A; (labelled
with colour1), froma; to a; via line Ay, froma, to az via As, fromas to b via A4 (hence
the intersection ofi, with P, is an edge of of colour1), from b to b, via line B, (its
intersection withP, has colous), from b, to b, via B, from b,y to b3 via Bs, and finally,
from b5 back toa via B,, which is the line oru marked with colous. This notation is
A-style, because it distinguishes between points and lines.

Itis convenient to also use a more symmetrictyle notation. Lep; = Ay, p; = ay,
p3 = Ag, ps = ag, ps = As, ps = az andp; = A,. Symmetrically, le; = By, ¢2 = by,
q3 = Bs, q4 = bo, g5 = Bs, g5 = b3 andQ7 = By4. Fore, g € {1, ceey 7}, deﬁneUij to be
the stabilizer in) of bothp; andg;, and set’; = Uj;.

Fori € {1,...,7}, the opposite vertices; andg; of C', whether points or lines, are
opposite. By definitiong) fixes the base point, soU; fixes every vertex on the half of
C which is the shortest path betwegnandq; passing througla. HencelU; resembles
what for Moufang generalized polygons i@t subgroup[16]. In Proposition 6.1(i)
we show that it has the same order as a root group. Howeveramet prove (directly,
without use of our main result) that is a root group as this would require that it fix all
vertices ofl" adjacent to a non-end vertex of the root (that is, the shigoeth fromp; to
q; througha).
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We also use @-style notation foil; that distinguishes between points and lines. For
i€ {l,...,4}, let S; be the joint setwise stabilizer i} of A; andB;. ThensS; = Us;_;.
Similarly, fori € {1, 2,3}, we letT; be the stabilizer i) of botha; andb;, soT; = Us;.

Proposition 6.1. The groupsS; (i = 1,2,3,4) andT; (i = 1,2, 3) satisfy the following
properties.
(i) EveryS; has order2, everyT; has order4.
(i) If ¢ < j,thenU;; = U;U;sq - - - Uj. In particular, Q@ = Uiz = S1715:1555T5.5,.
(iif) Every contiguous subproduct in the factorization mfis a subgroup of).
(iv) Each element of) can be uniquely written as; t;sst2s3t3s4, Wheres; € S; and
t; € T;.

Proof: We claim that the vertex-wise stabilizer ¢ of every simple path of length at
least nine inl" is trivial if this path contains. It suffices to consider the case where the
path has length exactly nine. Such a path lies in a uniquerapat inI", which in turn
contains a unique point frorR,. Since the action of) on P, is regular, the stabilizer of
the path is trivial, proving the claim.

Note that/;; stabilizes vertex-wise the pattin I' obtained by combining the shortest
path fromg;, to a and the shortest path fromto p;. This combined path has length
8 + 1 — j. Hence, ifj < i then the claim implies thdtf;; = 1.

Suppose now that< j. Letd; = 4 if i is even (s@; andg; are points), and; = 2
otherwise. We claim thgV;;| = 6;,41 - - - §;. Let N denote the right-side product. Note
that the pathy extends in/NV ways to a simple path of length nine Iy and hencey
is contained in exactlyV apartments, sag, ..., Cy. We claim that the action df;
on the N apartments’;, is regular. Indeed, everg) contains a unique point; from
P,. SinceU;; < @, the stabilizer ofw;, in U, is trivial, and hence also the stabilizer in
Ui; of Cy is trivial. Now pick two apartments}’, andC,. Note that both”}, andCj
pass through; = A, andg¢; = B4. HenceC) andC}, have colour{1,5}. It follows
thatz € @ takingw; to w,, also takes”;, to C,.. This element fixes all vertices in the
intersection ofC;, andC). In particular,z fixesp; andg; and sox € U,;, proving that
U,; acts regularly on théV apartments’;,. This shows thatlU;;| = N. SinceU; = U,
it follows that|U;| = ¢;, which proves (i).

Next considerU;; and U;;,, wherei < ¢, j < j/, ands < j + 1. It follows
from the definition that/;; N Uy = Uy;. BothU;; andU;; are subgroups df;;/, so
Ui;Uyj» C Uyjr. On the other hand,

|Uis| - [Uiryr| _ Uis| - [Uirjr| _ i~ -- 600 - - 0

|UZUZ//|: pr— :5i...6.,:|Ui.,|,
T Uy N Uiy |Uij| Sir -+ 0, ! ’
proving thatU;;U,; = U,;;. Applying this factorization consecutively, with < j,
we find Uij = i,j—lUjj = ... = UiiUi—‘rl,i-i-l s Ujj = UiUi-l—l s Uj. In partiCU|ar,

Q = U7 = U U, - - - Uz, which completes the proof of (ii) and (iii).
Sinced 0y - - - 6y = 212HIF2HI2EL — 910 the number of products;t;sotssstssy
coincides with|()|, so (iv) follows. O

This factorization of)) has consequences far, . . ., as andCay(Q, {aq, ..., as}).
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Lemma 6.2. (l) Sl = <Oé5> andS4 = <Oél>.
(ii) Foreachi € {2,3,4} andx € (U, ---U;)# U (Us_; - - - U7)¥, the distance of in
Cay(Q,{a1,...,a5}) tolis at least8 — i.

Proof: Observeq; takesb to the other point; of the line A, that lies inP,, soa;
stabilizesA,. Since( stabilizesB,, we deduce that; € S,, proving thatS, = (o).
Symmetrically,5; = (as). This implies (i).

As for (i), if z € (U; --- U;)7, thenz fixes the vertex; of I'. Butg; has distanceto
binT', sob” has the same distancedo This implies thati(b, b”) is at mos: in I and so
at most; in A. The path fronb to b* via ¢; does not lie in and: < 4 and the geometric
girth of A is eight, so the distance betweleand)” in X is at leas8 — i. The conclusion
of the statement now follows from Lemma 4.4. The argumentfer (Us_; - - - U;)# is
similar, as such an element fixes ;. O

Lemma 6.3. Suppose that),/®(Q,)| = 2°.

(i) If X is the set of all vertices dfay(Qo, {a1,...,as}) at distance at least six
from the vertex, then X has a subset of size five with all mutual distances in
Cay(Qo, {au,...,as5}) at least two.

(i) Assume thatQ,| > 2°. If X is the set of all vertices dfay(Qo, {1, ..., as})
at distance at least seven from the vertethenX has a subset of size five with
all mutual distances iCay (Q, {a1, . .., a5 }) at least four.

Proof: Instead ofCay(Qo, {a1,...,as5}), we use the isomorphic graph,, the con-
nected component af containingb. Since|Q,/®(Q)| = 2°, this graph is bipartite by
Lemma 5.3.

(i) Assume first thatQ,| = 25. Let X = 354(b), the set of vertices of, at distance
at least six fronb. We need to find a subsgtof X of size five so that all mutual distances
in Z are at least two. Each coloucontributes one vertex, to Z. We describe this for
1 = 1 and then invoke similarity for all other colours.

Let: = 1. If R = Us,, thenR is the setwise stabilizer iy of the line A;. By
Proposition 6.1(ii), (iv),R = S373S5, has ordet 6. Corollary 4.6 implies that) : Q)] <
4, SO|R N Qo| > 4. SinceS; = (a1) < Qo by Lemma 6.2,R N Q, > S, and so
we can select € (RN Qo) \ S4. Lete be the edgdb, b1} = {b,c;} (this edge is
the intersection ofd, with P,) and letf = e*. Sincexz is not in S;, we deduce that
A} # A4. Hence the distance between every vertex @md every vertex orf in A is
at most three; furthermore, the shortest path goes viartee i, A3, andAj. Since the
geometric girth ofA is eight, the distance iR, betweere and f is at least five.

SinceX, is bipartite, f contains a vertex; at distance at least six from Hence
z1 € X. Similarly, construct; for each colour > 2 (notice that Lemma 6.2 holds for
other choices thah and5 with the indices suitably permuted).

Consider two of these verticeg,andz;; since each is connectediiia a path inA
of length three, there is a path of length sixArgoing fromz; via b to z; and this simple
path has no edges from Therefore the distance K, betweer:; andz; is at least two,

proving (i).
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(ii) Assume now thatQ,| = 2'°~? for d € {0, 1}. Let X be the set of vertices df,
at distance at least seven frdmand takeR = Uy, the stabilizer inQ) of the pointas.
Note thatR = T3S, and so|R| = 8. Thus|R N Q| > 237 > 4, since|Q : Q] = 2°.
This again allows us to choosec (RN Q) \ S, As above, let = {b,¢;} andf = ¢”.
Since A7 # Ay andas € A, is stabilized byz, soa; € Ay N A7, the distance im\
between every vertex omand every vertex orf is two and, furthermore, the shortest
path goes via;. Thus the distance betweerand f in X, is at least six.

Sincey is bipartite, we find a vertex; on f such that the distance b, betweerb
andz; is at least seven, sq € X. By similarity, select; for each colout.

If < # j, thenA contains a simple path of length four going fragvia b to z;. Con-
sequently, the distance i\ betweenz; andz; is four, so, by Lemma 2.1, their mutual
distance in% is at least four. O

Recall that thelistancebetween a pair of edges is the minimum of the four distances
between the end vertices of the edges.

Lemma 6.4. Suppose thaltQ,/®(Qy)| = 2* and|Qy| > 2°. Let X be the set of alll
verticesz of Cay(Qo, {a, ..., as}) which are at distance at least six from the vertex
and such that? = 1. Let (X, F) be the subgraph dfay(Qo, {a1, ..., as}) induced on
X. ThenE has asubset = {f,..., fs}, wheref; has colouri, satisfying the following
properties.

() The distance between every pair of edges§'is at least four.
(i) If f; = {x;,y;} thenz; andy; commute withy; in Qo and they do not commute
with o;; whenj # 1.

Proof: Once again we work if, instead ofCay(Qo, {a1,...,a5}). We exploit the
same idea as in Lemma 6.3, except this timeis not bipartite. We provide complete
details only forf; and select all othef; by similarity.

Lete = {b,c1}, wherec; = b1, and setkR = Us; = T35,. Since[Q : Qo] < 2,
|S4] = 2, and|R| = 8, we deduce thak N Q, > S;. Next we select € (RN Q) \ S4,
but we must ensure that = 1 andz commutes withy; (recall{«;) = S, from Lemma
6.2).

SinceR = T35, andR N @y > Sy, we can writeR N Qy = (T3 N Qy)S,. Since
T35 N Qo has index 2 inkR N @, it is a normal subgroup. In particuldr; N @y contains
an involution that is central il N Q,. Choose this element as Clearly,z? = 1 andx
commutes withv;. Also x € T3 and sax ¢ S, in view of Proposition 6.1(iv).

Let f; = e”. Note thatf; = e” = {b,0* }* = {b",b**}. Hence, using the map of
Lemma 4.4, we can take, andy;, as in (ii), to bex anda;z. Clearly, bothz; andy;
are involutions and commute with .

Manifestly, every shortest path between the vertices and f; has length two and
passes througfs. This implies that both vertices ¢i lie in the set of all vertices ot
that are at distance at least six frém

This also implies that = x; does not commute with; for all j # 1. We setz = b”.
Assuming thatra; = ajz, we obtain that? = 6% = b* = 2. Since there is a
path inA of length two connecting andz via a3 and the coloud lines A, and A%, we
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deduce that; = b* andz“/ are connected by a path of length twoAninvolving two
lines of colourl. On the other hand; andc; are connected by an edge of colguin

Yo, S0z = b* andz® = ¢; are also connected i, by an edge of colouy. This gives
a geometric cycle il\ of length six, which is a contradiction. Hengg andca; cannot
commute. The argument fgr= vy, is similar if we setz: = ¥ instead ofbv*. Hencey,

anda; do not commute.

We selectf; similarly fori > 2. It remains to check the distances between different
fi- Taking vertices: on f; andv on f;, we observe as in Lemma 6.3 that there is a simple
path of length four imM\ going fromuw to v via b. Therefore the distance i, between:
andv is at least four. O

Example 6.5. The groupd/;, for 1 < i < 7, defined at the beginning of this section for
the colours{1, 5}, coincide with(ug_;) defined in Example 1.3.

To find easily computable necessary conditions for grapp$order2!® to appear in
the conclusion of Theorem 1.2, we study how factorizatidnid’o= Usg = 1755155575
can be extended to factorizations@f

Lemma 6.6. The groupi? has order2® and is normal inQ, andQ /W = 22,

Proof: The claim about the order &¥ follows from Proposition 6.1. Sincé” has index

2 in each ofS; W andW Sy, it is normal in both and also i§; WS, = (). Recall from
Lemma 6.2 that; = (a5) andSy = («a;). Thus,Q/W has order 4 and is generated by
two involutions, so it is elementary abelian. O

Definition 6.7. Let G be a2-group with a collection of subgrougs,, . . ., H; such that
(1) G = H1Hy ... Hy; (2) |G| = |Hy| - |Hs|- -+ |Hgl|; and (3) for alli < j, the product
H;H;, --- Hjis asubgroup ofs. ThenH,, ..., H; form atight factorizationof G.

The factorizations of) in Proposition 6.1(ii) are tight.

Given two factorization&s = H, - - - H, andG’ = Hj - - - H;, with the same number
k of factors, an isomorphism between the two factorizati@na group isomorphism
Y : G — G’ such that)(H;) = H! for all i. Clearly, for alli < j, the mapy induces an
isomorphism off/; - - - H; onto H - - - H.

Define theleft automorphism group\ut™ (G; Hy, ... Hy) of the factorization to be
the group of automorphisms ¢of normalizing each subproduct subgrotp- - - H; for
i = 1,...,k. Similarly, theright automorphism group\ut™(G; H, ..., Hy) consists
of all automorphisms of7 normalizing each subproduct subgroé- - - H, for i =
1,...,k. Let Aut(G; Hy, ..., Hy) be those automorphisms 6f normalizing each;.
Clearly,Aut(G; Hy, ..., Hy) = Aut™ (G; Hy, ..., Hy) N Autt (G Hy, . . ., Hy,).

Recall thati?" is normal inQQ = S;W Sy with S; = (a5) andS; = («;). Observe
thatUy; = U, --- U, has index 2 i, = U U - - - U;. Henceas € S; = U; normalizes
each subgroup’; - - - U;. Similarly, oy € Sy = U; normalizes each subgroup - - - Us.
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Lemmab6.8. LetL = Aut_(W, T, 52, T, Sg, Tg) andR = Aut+(W, 11, SQ, 15, 53, Tg)
The involutiono; induces an automorphism @f contained in, and, symmetricallyy,
induces an automorphism @f contained inR.

We now investigate restrictions on the element$or i = 2, 3, 4.

Lemma 6.9. For eachi € {2,3,4} there existav; € W\ (T15:T, U 1555735 U ®(Qp))
such tha.TOéZ = Q5W; 0.

Proof: We first showo; € asWa;. Since@ = S;W Sy, eachx € () is one (and only
one) of the following typesr = w, asw, way, Or aswa, for somew € W. Therefore it
suffices to show that; does not belong tol’'S; U S;W. By Lemma 5.1 each; fixes all
three points on the line containingthat is marked with colou#, and moves two points
on each of the other four lines an In particular,a; does not lie inV/ S, = U,7, which
is the pointwise stabilizer iy of the line A; marked with colourl. Similarly, «; is not
contained inS; W = Uyg, Which is the pointwise stabilizer of the ling, of colour5.
Sinceq; = asw;ay for somew,; € W, we deduce that; = oz, is at distance
three tol in Cay(Qo, {c,...,as}). By Lemma 6.2(ii) and Corollary 5.2, respectively,
this ImplleSwZ g 115515 UT555T3 andwi g @(Qo) O

Lemma 6.10. The element = (as;)? = [as, ay] of W satisfies the following:

(i) r = ww™* fori € {2,3,4};

(i) ros =ror =1

(|||) re @(Qo) \ (Tlsg U Sng).
Proof: Recall that eacly; has order 2. Since? = (asw;a1)? = azw;asw;ar, We
deduce thatvsw;aqasw;a; = 1, SOw;aqasw;a a5 = 1. Multiplying both sides on the
right with r = (asa;)? and cancellingv,asasa; establishes (i). Part (i) follows from
the definition ofr. Part (iii) follows from Lemma 6.2(ii), Corollary 5.2, anddtact that
r is at distance four td in Cay(Qo, {a1,...,as}). ]

Lemma 6.11. $(Q) = &(W)[as, W][ay, W].

Proof: Clearly, the right hand side is contained®()), so we only need to establish the
reverse inclusion. Note thaf = ®(W)[as, W][ay, W] is normal inl/ and also invari-
ant undera; anday, since it containsas, W] and [aq, W1, respectively. In particular,
X is normal inQ. Hence we just need to verify that = /X is elementary abelian.
Observe thaty; anda; have order 2, and all nontrivial elementslidf/ X have order 2
sinceX > ®(W). Hence it suffices to show thét is abelian. Clearlyjl’/ X is abelian
and also the images; anda; of a; anda; modulo X centralizell/ X. To show thatys
anda; commute, we prove thate X. By Lemma 6.107 = w;w{®*! = w?[w;, aza].
Since each ofi; anda; centralizelV’/ X, the producty;a, centralizedV/ X . Therefore

T = w?[w;, asa,] = w? = 1, sinceW/X is elementary abelian. 0
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Recall from Corollary 5.2 tha,/®(Q) is isomorphic t@* or 2°. SinceQ/W = 22
and®(Q) = ®(W)|as, Wl[ay, W] < W, we obtain the following result wheh has a
single connected component.

Corollary 6.12. If Q) has order2!°, thenW/®(W)[as, W][ay, W] is isomorphic ta2?
or 23.

This nontrivial condition oV’ cannot be verified without first knowing the automor-
phisms induced by; anda;. Hence we need a weaker form that can be verified directly
from the factorizatiodV = 1755755575. The automorphisms di” induced byas; and
aq are inL and R, respectively. The following is a consequence of Corollag26and
the fact that bothv; anda; are involutions.

Corollary 6.13. If Q has order2'®, thenWW/®(W)[L, W][R, W] is elementary abelian
of rank at mos®8.

Proof: The automorphisms induced hy, and «; lie in L and R, respectively, so
@(W)[Oé{;,W][Oél,W] < (I)(W)[L7 WHR7 W] U

Lemma 6.14. The elements),, w3, w, satisfy the following properties:
(i) |wi| >2;

(||) wia‘“wi, wf”wi lie outsideT; S, U S3T3;

(i) |w; tw,| > 2if i # 7;

(lV) ’QO/(p(QO” = 24%if and Only ifw2w3w4 S (I)(Qo),
(V) w3 # wyws.

Proof: (i) The square ofv; = o,y is at distance at most six 1dn Cay (Qo, {aq, ..., a5}),
which has girth at least eight, $o,| > 4.

(i) w*w; = a;onauaq is at distance four td in Cay(Qo,{a1,...,as}), so does not
belong to7}.5; U S373 by Lemma 6.2.

Claim (jii) follows from the fact thatv; 'w; is conjugate tev;a;.

(iv) Corollary 5.2 implies thatisasazasar € ®(Qo) if and only if [Qy/®(Qo)| = 2°.
The assertion follows fromyw; 'wy = asasasasa; andw? € ®(Qy).

(v) This is immediate from the previous computatiomgeasazasa; = 1 would contra-
dict the girth ofX being at least eight. O

7. The groups of order dividing 2°

Corollary 4.6 states th&, = (a4, ..., as) is a group of ordek™ for 8 < n < 10.
We now prove Theorem 1.2 when the order(@f divides 2? (or, equivalently,X is
disconnected).

Definition 7.1. (G, I) is aninvolution pairif / is a set of involutions which generates a
2-groupG, andCay (G, I) has girth at least eight.

Observe that ifG, I) is an involution pair, then, for every subseof 7, the pair((S), S)
is an involution pair.
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Corollary 4.5 establishes that each(ofy (Q, {1, . . ., a5 }) andCay (Qo, {1, . . ., a5 })
has girth at least eight. Corollary 5.2 implies th@t /®(Q,)| = 2* wherek € {4,5}.
Lemma 5.1 and the observation that the Frattini subgroupysabgroup (hereb(Qy))
is contained in Frattini subgroup of its overgroup (heréy)) show that none of the;
isin®(Qp).

We use these properties to obtain a list of candidate graara3f

Theorem 7.2. Consider a grougy of order2® or 2° that satisfies the following:
(i) |G/®(G)|is 2* or 25;
(i) G has a generating setof size 5 such that, I) is an involution pair.

There arel4 such groups of orde?®, all satisfying|G/®(G)| = 2°. There are421
and 32555 such groups of orde??, satisfying|G/®(G)| = 2* and2®, respectively.

Theorem 7.2 was proved by investigating the relevant gradipsder dividing2?;
these are in theAaLL GRouUPSlibrary [2], distributed withGAP [1] and MAGMA [4].

We can easily determine those grodpsvhich satisfy condition (i) of Theorem 7.2.
The number of such groups is recorded in Table 2.

Order|| |G/®(G)| | Number
28 24 20241
28 2° 28653
29 211 359611
29 2° | 7111878

TABLE 2. Number of groups of orde@® and2? satisfying Theorem 7.2(i)

The algorithm used to determineGf satisfies (ii) is the following.

(1) Determine the set of involutions of G which lie outsided(G).

(2) Construct a listM3 of all G-automorphism class representatives of 3-element
subsets of/.

(3) Construct the list; of all X in M3 such that(X'), X) is an involution pair.

(4) For eachX € L3, choosen, € J to obtainy = X U {ay} of size4; decide
if ((S),95) is an involution pair for everys C Y of cardinality3 or 4. Record
thoseY which satisfy this condition to obtaif,.

(5) For eachX € L4, choosen; € J to obtainyY = X U {as} of size5; decide
if ((S),95) is an involution pair for everys C Y of cardinality3 or 4. Record
thoseY which satisfy this condition to obtaifi;.

(6) Foreach € L5, decide ifCay (G, I) has girth at least eight. If not, théndoes
not satisfy condition (ii) of Theorem 7.2, and we remdvieom the listLs.

(7) Returncs.

We now use additional properties ¢f, to eliminate all but one of the groups of
Theorem 7.2.
Proposition 7.3. Among the groupé&’ appearing in Theorem 7.2,

(i) none of thel4 groups of order2® and none of th&2555 groups of order2? with
|G /®(G)| = 2° satisfies Lemmé.3;
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(ii) precisely two of thel21 groups of order® with |G/®(G)| = 2* satisfy condition
() of Lemma6.4: namely,512#4233888 and 512#384204;
(i) 512#233888 does not satisfy condition (ii) of Lemma 6.4.

Hence(), is uniquely determined asl12+#384204; of course, this is the group of
Example 4.7.

Proposition 7.4. Up to isomorphism, there is a unique generalized octagonradro
(2,4) satisfying the condition of Theorem 1.2 in whighis as in Example.7.

Proof: Assume thayj is a generalized octagon as in the hypothesis. Straighdiow
calculations show that, up to automorphism classe&3othere is, up to ordering of the
indices, a unique 5-tuple, ..., s such that the Cayley grapgbay(Qo, {a1,...,a5})

satisfies the conclusions of Lemma 6.4. Consequently, we s&ynge, without loss of

generality, thaty, ..., a5 are as given in Example 4.7. This means thathe graph
induced byA on the set of point#’, opposite taz, being the disjoint union of two copies
of Cay(Qo, {a1,...,as}), is the same as in the known octagon of or(ert). Let >,

be the component of containing the vertek used to define the involutions. Let >,
be the other connected componentbf

Let P, be the vertex set of,. We first determine thé\-distance on?,. In view
of transitivity of ), on F,, it suffices to find the distances frobrto all other points-.
Clearly, if the distance betweérandc in X is at most, then their distance i\ is the
same. AsY, has diamete6, we may assume thatis atY-distance5 or 6 to b. Now ¢
hasA-distance2, 3, or 4 to b, and the shortest path froato b in A goes viaAs(a).

Suppose that th&-distance betweehandc is 2. This means that andc are both
collinear to a pointl € As(a). Let{b, ¥, d} be the line througlh andd and let{c, ¢, d}
be the line through andd. Since the geometric girth ok is 8, the edgedb, v’} and
{c,d} of ¥ must be at distanc& For every edge of there are exactly four vertices at
distancet from that edge, and on these vertices there is only one eddellows that
there are exactlg-5 = 10 points inF, that are at\-distance2 from b, but not at distance
2in X,

The above observation also implies that evérg As(a) lies on at most two lines
meeting>,. Since this equally applies to, andd lies on a total of four lines meeting,
we conclude thatl lies on exactly two lines meeting, and exactly two lines meeting
¥.;. This allows us to claim that there is a bijection betweeytia) and the collection of
all 4-sets inF, formed by two edges at distanéeWe call sucht-setsdouble edgesThe
stabilizer inQ), of a double edgé has sizel and acts regularly o). We have shown
that the points o, at distance from b can be identified uniquely.

This also gives us some information about points at distanoé, namely, all points
¢ such that either there exists a pointadjacent tob that is at distanc@ from ¢, or
symmetrically, there exists a poidtadjacent ta: that is at distance from b. Clearly,
all such points: can be identified. It is not of this kind and at distan&sto b in A, then
the unique shortest path frobnto ¢ goes via adjacent pointsandd’ of Az(a). Let D
and D’ be the double edges érandc, corresponding td andd’, respectively.

We claim that the stabilizer i, of D U D’ coincides with the stabilizer of the edge
{d,d’'} and has ordeg. In view of the regularity o)), on 7, it suffices to show that
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every membey of ()o mappingb to an element oD U D’ preserves all oD U D’. The
third point, saye, on the line containing andd’ is collinear with a unique point, say
f,in Ay(a). This implies that all four edges d U D’ in X, have the same colour. In
particular,g maps the edgéb, b’} onb in D to an edge of the same colour, which forces
the third point on the line containirtg and(¥’)¢ to bed or d'. Since all points oD U D’
haveA-distance3 to f and4 to a, the elemeny fixes f, and hence alse. This implies
that g stabilizes{d, d’'}, and, because of the bijective correspondence mentiormaeab
alsoD U D'. This settles the claim. Observe that the distance bet&eand D’ in X is

at least.

The claim allows us to identify all pair®, ¢) at distance3. Namely, the set of all
points from P, at > -distance> 5 to D consists of exactly2 points and it is a disjoint
union of three double edgds’. Only one of these set®’ satisfies the property that the
stabilizer inQ, of D U D' is of size8 (it is of size4 for the other two double edges).
Hence we can uniquely identify all points i}, at A-distance3 from b. As the only
remainingA-distance isl, the A-distance between any pair of points frdfnis uniquely
determined (and, hence, as in Example 4.7).

To show that knowledge of), and theA-distance onF, determineA uniquely,
we change our language. The graphbeing distance regular, can be realized by unit
vectors in a Euclidean space (an eigenspace of its adjaceattix) in such a way that all
mutual inner products only depend on the distances of thegponding vertices .
See [5, Proposition 4.4.1] for details. In particularcan be realized by 1755 unit vectors
e, (x € P) in a78-dimensional Euclidean space in such a way thate,) = (—3)",
wherek is the A-distance between andy.

We know all distances on the sBf. This gives us the Gram matrix of sizé2 x 512.
The rank of this matrix is exactl§8. Hence we have found the unique (up to an isometry)
realization of, by unit vectors. If{z,y, z} is a line of A then, by an easy calculation,
the vectore, + e, + e, has length zero. Heneg + ¢, + e, = 0. Since everyl € Az(a)
lies on aline{d, ¢, '}, wherec and¢’ are adjacent vertices &f,, we can now construct
all vectorse,; as—e. — e for all edges{c, ¢'} of 3,. The above inner product formula
provides the complete information about thedistances among the vertices &f(a).
Taking all adjacent vertices i3(a) and repeating the above argument, we construct alll
vectorse, for d € Ay(a), also inAq(a), and finallyAq(a) = {a}.

Hence we have uniquely recovered the system of unit veapresenting the points
in P\ P, whereP, = P, \ I, is the vertex set of};. It remains to recovep;.

To this end, we define theurple graphon Az(a), whose edges are all paifd, d'}
such thatley, eq) = }l and the distance betwedrandd’ in the subgraph of\ induced
on P\ P, is not2. Clearly,{d, d'} is an edge of the purple graph if and only if there is a
(unique) pointe in P; collinear with bothd andd’.

Since the geometric girth ak is 8, the three edges in every 3-clique of the purple
graph must correspond to the same P;,. Everyx € P, is collinear with exactly five
points fromAj(a). It follows that the maximal cliques in the purple graph haize 5
and they bijectively correspond to the points frégtn Furthermore, different maximal
cliques meet trivially or in one point.



ON THE UNIQUENESS OF THE GENERALIZED OCTAGON OF ORDE(2,4) 19

Now that we can identify points @, with maximal cliques of the purple graph, we
can decide if two points of; are adjacent: two points andz’ of P, are adjacent if
and only if the corresponding maximal cliquasand X’ of the purple graph meet in
one pointd (the third point on the line throughandz’) and additionally alA-distances
between points itk \ {d} and points inX"\ {d} are3. Since these distances can be read
off from the known vectors representing pointsig(a), this shows that the collinearity
graphA is unique. O

This establishes Theorem 1.2 in the case whéxg < 2°. We finish this section
with some remarks on the computations. These were perfousied MAGMA. The
SMALL GRoupslibrary provides a function to identify a group of order diirig 28. As
a preprocessing step, we applied (an obvious variatiomefatgorithm used in Theorem
7.2 to determine all involution pairg~, I) where|G| divides 256 and < || < 4. We
record the number of such groups in Table 3. Hence we couttilyetecide in steps (4)—
(5) whether or not(S), S) is an involution pair. The automorphism group dat-group
was computed using the algorithm of [9]. The memory resauused to establish the
result are small, but the time taken is significant: an egBnisapproximately 10 CPU
years running MGMA 2.15. Most of this was used to prove Theorem 7.2.

Order|| #I | Number
20 3 11
27 3 33
27 4 20
28 3 124
28 4 539

TABLE 3. Number of groups of order dividingf arising in involution pairs

8. The groups of order2*°

We now finish the proof of Theorem 1.2 by showing that the aggiom|Q,| = 2'°
leads to a contradiction.

There aret9 487 365 422 groups of ordeR' (see [2]), too many for the methods of
Section 7 to be feasible. Our approach is based on Propo$éitlo namely@ = Qo
admits a tight factorizationy = S;77.5,7555135, with the property that every factdi;
has order two and every fact®y has order four. We call such a factorizatioB424242-
factorization and similarly for subproducts. However, the number ofitiglastorizations
of @) is also prohibitively large. Therefore we focus instead o ‘middle’ of O, the
tight 42424-factorization ofl = Usg = 17155155315 as in Section 6.

Using a standard extension algorithm, all tight 42424dazations of groups of or-
der 256 were constructed usi@fP. These factorizations were also determined directly
by processing each relevant group of order 256 indWA. This led to the following
result.
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Lemma 8.1. Exactly 3090 of the 56092 groups of order256 have at least one tight
42424-factorization.

The 3090 groups have948 859 tight 42424-factorizations, representing all possi-
bilities for W = T15,155573. For each factorization, an algorithm described below
was applied inGAP that produces a list of all 5-tuples corresponding to a geimey
setay,...,as of an overgroup? of W and to an extension df;.5,7,5573 to a tight
2424242-factorizatiory; 17.5,155515.5, satisfying the necessary conditions of Sections
4 and 6 forQ) to be as in the hypotheses of Theorem 1.2.

Let F, be the set of all words of length at mdstn the symbolsy,, . . . , as without
repetitions. A member of;, is 1-balancedif the sum of the occurrences of; over
all j # 5 is even, and-balancedif the sum of the occurrences of; over allj # 1 is
even. Observe thatbalanced ob-balanced words can be evaluated to elementk by
substitutinga; by asw;a; for j = 2, 3,4 and interpretingy; ando; as automorphisms
of W. (Note that Lemma 6.10 is needed here.) For a nonempty lidtelements from
W of length at most 3, we defing,(S) to be the set of all evaluations of words/i as
above withw, (for j € {2,3,4}) the(j — 1)-st element ofS. In our description below,
we call the check thak;(S) does not contain the identity thggrth teston S. This is
justified by Lemma 3.2 or Corollary 4.5. If a tripte,, w3, w, passes this test, then the
girth of Cay(Q, {a4,...,as5}) is at least eight because the productsvpbf length at
most seven that are not tested have an odd numher of of a5 and so are non-trivial.

Similarly, we use Lemma 6.2 to check (using computationg/ionly) that, for a 5-
tuple (as, a1, we, w3, wy), Whereq; is the automorphism di’ induced by;, the distance
conditions inCay (G, {«ay,...,as}) on elements of U, - - - U;)* U (Us_; - - - Uy)*, for
i € {2,3,4}, are satisfied. This check is called ttistance test

Let 1, a group of ordeg?®, have tight factorizatio’; S, 755575. The algorithm to
process the factorization is the following.

(1) Computel = Aut_(W, 11,55, 15, Ss, Tg), R = Aut+(W, Ty, 55,15, Ss, Tg)
and initialize£ as the empty list.

(2) ComputeF’ = &(W) and the subgroufy’ = F[L, W][R,W]of W. If |W/X| >
23, then returnC (in view of Corollary 6.13).

(3) Compute the setg) of all elements o/ \ (715,17, U 15,5573 U F') of order
at least 4 andk = X \ (715 U S5T3). If [W| < 3, then returnC (in view of
Lemmas 6.9 and 6.14). R = (), then returnC (in view of Lemma 6.10(iii)).

(4) Compute the lis€; of conjugacy classes of elemenif order at most two
in L such thatW/(F,[W,z])| > 4, and, similarly,Cr with R instead ofL. If
Cr, = 0 orCg = ) then returnZ (in view of Corollary 6.12).

(5) ComputeA = L N R and compile a list¥s of A-class representatives in the
union of all conjugacy classes ih,.

(6) Compute the uniof’; of all conjugacy classes if.

(7) For each automorphisny € X5:

i. ComputeRs = {r € R | r* =r~'}andWs = {w € W\ F[W,as] |
w™w & 1155 U S3T3}. If Rs = () or [Wjs| < 3, then continue with the next
as (in view of Lemmas 6.10, 6.11, and 6.14).

il. Foreacha; € X;:
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(@) ComputeY” = F[W, as|[W, ay]. If [W/Y| > 23, then continue with
the nexta; (in view of Corollary 6.12).

(b) ComputeR, = {r € RsNY | r =7~} andW, = {w € W5\Y |
w™w & T1.Sy U S3T3}. If Ry = 0 or [Wy| < 3, then continue with
the nexta; (in view of Lemmas 6.10, 6.11, and 6.14).

(c) ReplaceR, by its subset of all such that conjugation by on W
coincides with(asa,)?. If R, is empty, then continue with the next
ay (in view of Lemma 6.10).

(d) Compute the sét/, of all memberso of W, such thatvw®* € R,
and the girth test o8 = {w} is passed. IfW,| < 3, then continue
with the nexta; (in view of Lemma 6.14).

(e) For eachu, € Wh:

I. Computer = wywy** and the seWW; of all w € Wy \ weY
such thatvw®* = r, [w™lw,| > 2, and the girth test o8’ =
{wy,w} is passed. IfW5| < 2 orr ¢ Ry, then continue with
the nextw, (in view of Corollary 4.5 and Lemma 6.14).

lI. For eachws; € Ws:

-i- Compute the setV, of all w € W5\ w3Y such thatw ' w;| >

2, and the girth test of = {w, wy, w3} is passed; ifW/Y| =
8, then also require) € wowsY .

-ii- If W, is empty, then continue with the next; (in view of
Corollary 4.5 or Lemma 6.14).

-iii- For eachw, € Wy, if (a5, a1, we, w3, wy) passes the distance
test, add it to the list.

Return..

The list £ produced by applying the above algorithm to each tight facation is
empty.

Theorem 8.2. None of the3090 groupsWW of order 256 of Lemma 8.1 has a tight 42424-
factorizationWW = T155,7,55T3 that extends to a group), generated by involutions
ay, ..., as, With a tight 2424242-factorizatio@ = S;775,15.5513.S, for which the con-
clusions of Lemmas 4.3, 6.2, 6.9, 6.10, 6.11, 6.14 and Comedl&.5, 5.2, 6.12, 6.13
with Q, = @ are satisfied.

Proof: If a4, ..., as were as stated in the assumptions, thena;, wo, ws, wys), Wherea;
(fori = 1,5) is the automorphism induced &% by conjugation byy; andw; = asa;a4
(for j = 2,3,4), would appear in the output of the algorithm, contradicting that is
the empty list. O

This result implies Theorem 1.2 in caé® = (. Since the cas€), < ) was
resolved in Section 7, this completes the proof of Theorein 1.

We finish with some remarks on the computations. The stepsiiralgorithm are
chosen so as to filter out cases as early as possible. IBARBrimplementation, we per-
formed all group operations i/ (represented as a permutation group) without having
to build @; this was critical to the speed of the computations. The aliwerpretation of
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balanced words in; as elements dfl” is part of this effort. The number of tight factori-
sations for a group of orde@h6 varied from1 to 60322. The most expensive calculations
were those for 256#6823, 256#27519, and 256#27633, with,44®1, and 27125 tight

factorizations respectively. Again, the memory resouregsiired to establish the result
are small, but the time taken is significant: an estimate jp@pmately 15 CPU years

runningGAP 4.6.5.
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