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ABSTRACT. The smallest known thick generalized octagon has order (2,4) and can be
constructed from the parabolic subgroups of the Ree group2F4(2). It is not known
whether this generalized octagon is unique up to isomorphism. We show that it is unique
up to isomorphism among those having a pointa whose stabilizer in the automorphism
group both fixes setwise every line ona and contains a subgroup that is regular on the
set of 1024 points at maximal distance toa. Our proof uses extensively the classification
of the groups of order dividing29.

1. Introduction

Recall that a point-line geometryG = (P,L) consists of a setP of points, and a
collectionL of subsets ofP , each of size at least two, calledlines. A point p ∈ P is
incidentwith a lineL ∈ L if p is an element ofL. Two points incident to the same line
arecollinear. We associate two graphs with every point-line geometry. The incidence
graphof G has as vertices all points and all lines ofG, with edges connecting incident
point-line pairs. Thecollinearity graphof G has as vertices all points ofG, with edges
connecting collinear pairs of points. It is easy to see that the incidence graph is connected
if and only if the collinearity graph is connected; if so, then G is connected.

Thediameterof a connected graphΓ is the maximal distance between vertices and
its girth is the shortest length of a cycle.

Definition 1.1. Forn ≥ 3, ageneralizedn-gon is a point-line geometryG satisfying the
following properties:

(1) the diameter of the incidence graphΓ of G is n;
(2) the girth ofΓ is 2n;
(3) G is regular: every point is incident with the same numbert + 1 > 1 of lines

and every line is incident with the same numbers+ 1 > 1 of points.

This concept was introduced and developed by Tits [13,14].
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We are interested in finite generalizedn-gons when boths andt are finite. The pair
(s, t) is theorder of G. The generalizedn-gonG is thin if s = 1 = t. For everyn there
exists exactly one thin generalizedn-gon, which can be described as the geometry of all
vertices and edges of the usualn-gon.

By a famous theorem of Feit and Higman [10], a finite generalizedn-gon withn ≥ 3
is either thin, or satisfiesn ∈ {3, 4, 6, 8, 12}. Furthermore, ifG is thick (that is, both
s, t ≥ 2), thenn = 12 is impossible. Thus thegonalityn of a thick finite generalized
n-gon is at most eight. This largest gonality,n = 8, is the only case where the smallest
thick generalizedn-gons are not known up to isomorphism. The smallest thick finite
generalized quadrangles and hexagons are unique (see [7] and [12]).

It follows from [10] that the smallest order for which a thickfinite generalized oc-
tagon can exist is(2, 4). A generalized octagon of order(2, 4) was constructed by
Tits [15] as part of an infinite series of generalized octagons related to the groups2F4(q).
The octagon of order(2, 4) is obtained from2F4(2) by taking for points the maximal
parabolic subgroupsG1 for whichG1/O2(G1) is a Frobenius group of order20, and by
taking for lines the maximal parabolicsG2 of the other type, with incidence betweenG1

andG2 defined byO2(G1) ⊆ G2; more details are given in Example 1.3.
The uniqueness, or otherwise, of the generalized octagon oforder(2, 4) remains an

open and very difficult problem. In [8], De Bruyn proved that the example of Tits is
the only one in which the unique generalized octagon of order(2, 1) embeds. In [3],
it is shown that it is the only one of order(2, 4) admitting a vertex-transitive group of
automorphisms.

In this paper, we establish its uniqueness under another assumption. SupposeG =
(P,L) is a generalized octagon. Since the incidence graphΓ is by definition bipartite
and the gonality ofG is even, if two vertices ofΓ are at the maximal distance, eight, then
these have the same type: both are points or lines. Elements of G at maximal distance in
Γ areopposite(cf. [17, p. 5]).

Theorem 1.2. LetG = (P,L) be a generalized octagon of order(2, 4). Assume that it
admits a groupQ of automorphisms ofG such that, for somea ∈ P ,

(i) Q fixesa and stabilizes setwise every line ona;
(ii) Q is transitive on the set of points opposite toa.

ThenG is the generalized octagon related to the Ree group2F4(2).

Example 1.3. In Table 1, we summarise the defining relations, given in [15,p. 326], for
2F4(2) on generatorsu1, . . . , u8, v1, . . . , v8, r1, andr8.

We denote this group byT . Let Q be its subgroup generated byu2, . . . , u8, let U
be its subgroup generated byQ andu1, letG1 be its subgroup generated byU andr1,
and letG2 be its subgroup generated byU andr8. ThenQ = O2(G1), and the elements
g = u−1

1 v1 andf = v1 generate a Frobenius group of order 20 that is a complement toQ
in G1.

SinceG1 andG2 are representatives of the two types of maximal parabolic subgroups
of T and both containQ, the construction mentioned above gives the known octagon of
order(2, 4). SinceG1 normalisesQ, the latter fixes a unique pointa of the generalized
octagon. It is easily verified thatQ satisfies the conditions of Theorem 1.2. Observe that
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u41 = u22 = u43 = u24 = 1 u45 = u26 = u47 = u28 = 1 v41 = v22 = v43 = v24 = 1
v45 = v26 = v47 = v28 = 1 [u1, u2] = [u1, u5] = 1 [u2, u4] = [u2, u6] = 1

u3u1 = u1u2u3 u4u1 = u1u
2
3u4 u8u2 = u2u4u6u8

u6u1 = u1u
2
3u4u

2
5u6 u7u1 = u1u2u

3
3u5u7 u8u1 = u1u2u

2
3u4u

3
5u6u7u8

r1 = u1v
2
1u

−1
1 r8 = u8v8u

−1
8 (r1r8)

8 = 1
r1u1r1 = v1 r1u2r1 = u8 r1u3r1 = u7
r1u4r1 = u6 r1u5r1 = u5 r1v2r1 = v8
r1v3r1 = v7 r1v4r1 = v6 r1v5r1 = v5
r8u1r8 = u7 r8u2r8 = u6 r8u3r8 = u5
r8u4r8 = u4 r8u8r8 = v8 r8v1r8 = v7
r8v2r8 = v6 r8v3r8 = v5 r8v4r8 = v4

TABLE 1. Defining relations for2F4(2)

g cyclically permutes the five lines ona andf fixes a unique line ona and cyclically
permutes the other four.

A motivation for the theorem was Kantor’s construction [11]of generalized 4-gons
using a group similar toQ; we discuss this in Example 3.4.

2. Preliminaries

All graphs in this paper are undirected, and their edges havedistinct vertices. Through-
out, G = (P,L) is a generalized octagon of order(2, 4), with incidence graphΓ and
collinearity graph∆. We mostly work with∆, hence our first task is to restate what
is known aboutG in terms of∆. A k-clique of a graph is a set ofk pairwise adjacent
vertices. Every line inL induces a 3-clique in∆. A path of lengthk from a to b is
a sequencea = a0, a1, . . . , ak = b of vertices ofΓ such that{ai−1, ai} is an edge for
i = 1, . . . , k. The path issimplewheneverai−1 6= ai+1 for i = 1, . . . , k−1. Thedistance
between two subsets of points of∆ is the minimum among all distances between a point
from one and a point from the second.

The first condition defining a generalizedn-gon implies that the diameter of∆ is
n/2 = 4. In particular, points are opposite if and only if they are atdistance 4 in∆.
The second condition implies that the geometric girth of∆ is n = 8; thegeometric girth
is the shortest length of a cycle satisfying the extra condition that no three consecutive
vertices lie in the same clique.

Lemma 2.1. For each pointp and lineL, there is a unique point inL closest top in Γ.
Dually, there exists a unique line containingp closest toL in Γ. Moreover, if two points
are connected by a simple path of length four in∆, then they are opposite.

Proof: SinceΓ is bipartite and the gonality8 is even,p andL cannot be opposite. In
particular, inΓ they are connected by a unique shortest path, since the girthof Γ is 16.
The unique point ofL closest top is the neighbour ofL on this path and, symmetrically,
the unique line onp closest toL is the neighbour ofp.

If the two points were connected by a path of length at most three in∆, then this
path, together with the given path, would make a cycle of geometric length at most 7 in
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∆, a contradiction. The final statement follows. 2

Corollary 2.2. Every two points,p and q, that are opposite are connected by exactly
5 = t + 1 shortest paths in∆, one through each line onp and, symmetrically, one
through each line onq.

A dual statement also holds for lines that are opposite. We show that the∆-distance
between opposite lines is three.

Lemma 2.3. SupposeL andM are lines that are opposite. For eachp ∈ L, the unique
q ∈ M closest top is at distance three fromp in ∆. The mapL → M sending every
point ofL to its closest point onM is a bijection fromL ontoM . In particular,L and
M are connected by exactly3 = s + 1 shortest paths, one through each point ofL and,
symmetrically, one through each point ofM .

Proof: Let p ∈ L. By Lemma 2.1,M contains a unique pointq closest top. Clearly,
the distanced(p, q) in ∆ betweenp andq is less than the diameter, henced(p, q) ≤ 3.
If d(p, q) ≤ 2, then inΓ the pointsp andq are at distance at most four, which implies
thatL andM are at distance at most six; a contradiction sinceL andM are opposite.
Therefored(p, q) = 3.

Symmetrically,L contains a unique point closest toq, so clearly that point isp. This
establishes the bijection. The last claim is an easy consequence. 2

3. Points opposite to a given point

Fix a ∈ P . Let Pa = {b ∈ P | d(a, b) = 4}, the set of points opposite toa. In this
section we study the subgraph of∆ induced on this set.

Lemma 3.1. |Pa| = 210.

Proof: This follows from a standard argument for finite generalized n-gons, which can
be found, for instance, in [17, Lemma 1.5.4]. 2

Let Σ be the subgraph induced onPa. We showed in the above proof that every line
on b ∈ Pa has exactly one point in∆3(a).

Lemma 3.2. The graphΣ has valency five. It contains no3-clique and has girth at least
eight.

Proof: Only the last claim requires comment. SinceΣ contains no 3-clique, every cycle
in Σ satisfies the condition that no three consecutive vertices on it lie on the same line of
G. The geometric girth of∆ is eight, so the claim follows. 2

Corollary 3.3. Each connected component ofΣ has at least170 vertices.

Proof: Picking a vertexb of Σ and settingΣk(b) to be the set of vertices ofΣ that are
at distancek from b (in Σ, which is not necessarily the same distance in∆), we learn
that |Σ1(b)| = 5, |Σ2(b)| = |Σ1(b)| · 4 = 20, |Σ3(b)| = |Σ2(b)| · 4 = 80, and finally,
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|Σ4(b)| ≥ |Σ3(b)| · 4/5 = 64. The last inequality uses that every vertex fromΣ4(b) is
adjacent to at most five vertices inΣ3(b). Thus the connected component ofΣ containing
b has at least1 + 5 + 20 + 80 + 64 = 170 vertices. 2

Example 3.4. We digress to show how the Tits generalized octagon of order(2, 4) can be
obtained directly from the groupQ of Example 1.3, by employing Kantor’s generalized
4-gon construction. Consider the following subgroups ofQ:

Q
(1)
j = 〈u8, u7, . . . , u9−j〉 for 1 ≤ j ≤ 6,

andQ(i)
j for 2 ≤ i ≤ 5 defined byQ(k+1)

j =
(

Q
(k)
j

)g

, wherek ∈ {1, 2, 3, 4} andg is as

in Example 1.3. These subgroups satisfy the following properties withn = 8, s = 2, and
t = 4, whereQ(i)

0 = 1 andQ(i)
n−1 = Q.

(O) For1 ≤ i ≤ t + 1 and1 ≤ j ≤ n− 1, Q(i)
j−1 is a subgroup ofQ(i)

j of indext or
s depending on whethern− j is even or odd.

(C) For indicesi1, . . . , ik, j1, . . . , jk ∈ {1, . . . , 5} such thatim 6= im+1 for 1 ≤ m ≤
k − 1 andi1 6= ik andj1 + · · ·+ jk = n− 1,

1 6∈
(

Q
(i1)
j1

)#

· · ·
(

Q
(ik)
jk

)#

whereG# := G \ {1}. With this dataQ =
(

Q
(i)
j

)

i,j
, we construct a graphΓ(Q) as

follows. Its vertices are thet+ 2 labelsa andLi for i = 1, . . . , t+ 1, and all right cosets
of Q(i)

j in Q for 1 ≤ i ≤ t + 1 and0 ≤ j ≤ n − 2. Its edges are the pairs{a, Li}; the

pairs{Li, Q
(i)
n−2x}; and all pairs{Q(i)

j x,Q
(i)
j+1y} with Q(i)

j x ⊂ Q
(i)
j+1y for 1 ≤ i ≤ t + 1,

x, y ∈ Q, and0 ≤ j ≤ n− 3.
Now every graphΓ(Q) for whichQ satisfies (O) and (C) is the incidence graph of a

generalizedn-gon of order(s, t). In particular, the above collectionQ of subgroups of
Q gives another construction of the known generalized8-gon.

Forn = 3, Conditions (O) and (C) are easily seen to be equivalent to the existence of
a translation plane structure onQ. Forn = 4, the conditions translate to those formulated
by Kantor in [11]. Forn = 6, they have been used in [6].

4. Edge colours

Let Σ be the graph induced by∆ on the set of pointsPa opposite to a fixeda ∈ P .
We arbitrarily attach colours 1 to 5 to the five lines ona. Consider an edge{b, c} in Σ
and letL ∈ L be the line containingb andc. Lemma 2.1 shows that there is a unique line
on a closest toL. We colour{b, c} with the colour of that line. Thus every edge inΣ is
given a colour from 1 to 5. Corollary 2.2 implies that the five edges on every vertex of
Σ exhibit all five colours. Hence no two edges incident to the same vertex can have the
same colour.

Let G admit an automorphism groupQ that fixesa, stabilizes every line ona, and is
transitive on the setPa of opposites toa. Clearly,Q acts onΣ. Since it stabilizes each of
the five lines ona, it permutes the edges ofΣ preserving each colour.
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Lemma 4.1. The groupQ acts regularly onPa.

Proof: In view of assumption (ii) of Theorem 1.2, we need only show thatQb is trivial
for b ∈ Pa. Since the five edges ofΣ on b have pairwise different colours,Qb fixes all
neighbours ofb in Σ: that is,Qb = Qc wheneverb andc are adjacent vertices ofΣ. Thus
Qb fixes pointwise the connected componentΣ0 of Σ containingb.

SinceQb fixes the five edges onb and since lines inΓ have three points,Qb fixes
all points ofΓ collinear withb, and the same applies to all vertices ofΣ0. Picking an
arbitraryn-pathx0, x1, . . . , xn in Σ, we see thatQb fixes every point on this path and
furthermore fixes every neighbour ofx0 and ofx1. Thus, the assumptions of [16, (3.7)]
are satisfied, and soQb is trivial. 2

This, together with Lemma 3.1, determines the order ofQ.

Corollary 4.2. The groupQ has order210.

We next show thatΣ (the subgraph induced onPa) is a Cayley graph forQ. We fix
b ∈ Pa as our initial vertex and let{b, ci} for 1 ≤ i ≤ 5 be the five edges onb where
{b, ci} has the colouri. Letαi be the unique element ofQ takingb to ci.

Lemma 4.3. Eachαi is an involution.

Proof: The action ofQ is colour-preserving and{b, ci} is the only edge onci of colouri;
henceαi stabilizes the edge{b, ci}, and so takesci back tob. In particular,bα

2

i = cαi

i = b.
Henceα2

i ∈ Qb = 1. 2

LetCay(G, I) be theCayley digraphof a groupG with subsetI. Theverticesof this
digraph are the elements ofG and(x, y) is adirected edgewheneveryx−1 ∈ I. Clearly,
Cay(G, I) is an undirected graph if every element ofI is an involution. In particular, in
view of Lemma 4.3,Cay(Q, {α1, . . . , α5}) is a graph.

Lemma 4.4. The coloured graphΣ is isomorphic toCay(Q, {α1, . . . , α5}). The mapφ
assigning to eachc ∈ Pa the unique element ofQ takingb to c is an isomorphism.

Proof: Clearly,φ is a bijection between the vertex setsPa andQ. Since both graphs have
valency five, it remains to show thatφ takes edges to edges. Consider an edge{d, e} in
Σ. Letβ = φ(d), that is,bβ = d. If i is the colour of{d, e}, thenβ takes the edge{b, ci}
to {d, e}, which means thatcβi = e. But ci = bαi , so e = bαiβ, that is,φ(e) = αiβ.
Thusφ(e)φ(d)−1 = αiββ

−1 = αi ∈ {α1, . . . , α5}, which proves thatφ(d) andφ(e) are
adjacent inCay(Q, {α1, . . . , α5}). 2

Lemmas 3.2 and 4.4 together imply the following.

Corollary 4.5. The Cayley graphCay(Q, {α1, . . . , α5}) has girth at least eight. In par-
ticular, each product of at most sevenαi in which any two consecutive elements are
distinct represents a non-identity element ofQ.

Let Q0 = 〈α1, . . . , α5〉. It is well known thatCay(G, I) is connected if and only
if G = 〈I〉. Thus each connected component ofCay(Q, {α1, . . . , α5}) is isomorphic
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to Cay(Q0, {α1, . . . , α5}). In particular, the size of each connected component ofΣ is
|Q0|, and the number of connected components ofΣ is the index[Q : Q0]. SinceQ is a
2-group, so isQ0. Corollary 3.3 implies the following.

Corollary 4.6. The order ofQ0 is 28, 29, or 210. The graphΣ has4, 2, or 1 connected
components, respectively.

Example 4.7. We revisit Example 1.3, defining the following elements ofT :

α0 = u5 α1 = u2 α2 = u2u
3
3u4u5u6u

2
7u8

α3 = u2u3u4u
2
5u6u

3
7u8 α4 = u2u

2
3u4u

3
5u6u7u8 α5 = u8

Thatα0, . . . , α5 generateQ is a consequence of the following:

u2 = α1 u3 = α0α5α3α5α4 u4 = α3α1α4α5α2 u5 = α0

u6 = α2α5α3α4α1 u7 = α0α4α2α4α3 u8 = α5

Let b be the image ofG1 underv5; as the notation suggests,α1, . . . , α5 are the elements of
Qmovingb to a collinear point inΣ. The Cayley graphΣ has two connected components,
which are interchanged byα0. This implies thatQ0 has order29.

Here is a defining set of relations forQ in terms of these generators. It enables us to
studyQ andΣ without recourse toT . We write[x, y] = x−1y−1xy for x, y ∈ Q.

α2
1 = α2

2 = · · · = α2
5 = 1,

α2
0 = α5α2α4α1α3,

αα0

1 = α3α1α4α1α2α5,

αα0

2 = α4α2α5α2α3α1,

αα0

3 = α1α3α5α3α2α4,

αα0

4 = α3α4α5α4α1α2,

αα0

5 = α2α5α3α5α1α4,

[αi, αj ]
2 = 1 wheneveri, j > 0,

[α4, α1] = α5α2α1α4α3,

[α2, α1] = α5α2α1α3α4.

5. Action on neighbours

In this section we examine the action ofQ on the set∆1(a) of points that are adjacent
to a in ∆. Recall thata is on five lines ofG, these are labelled by five distinct colours. By
assumption, each of the lines is invariant under the action of Q. Therefore every element
of Q either fixes theith line pointwise, or it fixesa and interchanges the remaining two
points on the line. Thus the induced action ofQ on∆1(a) is a subgroup of the elementary
abelian group of order25.

Lemma 5.1. The group induced byQ0 on∆1(a) is elementary abelian of order24. The
group induced byQ has order24 or 25 and none ofα1, . . . , α5 belongs to the Frattini
subgroup ofQ.
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Proof: Fix i ∈ {1, . . . , 5} and recall that the elementαi of Q0 takesb to its neighbourci
in Σ. LetMi be the line containingb andci and letLj be the line ona colouredj. Let
d be the point onLj closest tob and lete be the third point onMi (other thanb andci).
If j = i, then there is a shortest path fromb to a going throughMi andLi. Clearly this
shortest path goes throughe andd, which implies that the∆-distance betweend ande is
two. This in turn implies that the distance betweend andci is three; sod is the point on
Li closest toci. Sinceαi takesb to ci and stabilizesLi, it must fixd. Henceαi fixesLi

pointwise.
Now assumej 6= i. We claim that the pointd of Lj closest tob cannot be closest

to ci. Indeed, if it is, the distance from bothb andci to d is three. By Lemma 2.1,Mi

contains a unique point closest tod. This means that closest tod is the third pointe and
that the distance fromd to e is two. However, in this case we have a shortest path froma
to b via d ande, which means thatMi should have the same colour asLj, a contradiction.
We proved thatd is not closest toci on Lj, which means that closest tod is the third
point, sayf . The elementαi stabilizesLj and takesb to ci. This yields thatαi takesd to
f , that is,αi acting onLj fixesa and switches the other two points.

To summarize, eachαi fixes all three points of the lineLi and switches two points in
each of the other four lines ona. In the action ofQ on∆1(a), the elementsαi generate an
elementary abelian group of order24, whose elements switch points in an even number
of lines ona.

Since the Frattini subgroup ofQ is the smallest normal subgroupΦ(Q) such that
Q/Φ(Q) is an elementary abelian2-group, none ofα1, . . . , α5 belongs toΦ(Q). 2

Note that any four of the involutionsαi generate the group induced byQ0 on∆1(a).
In fact, in this action the product of allαi is the identity, and this is the only linear relation
that theαi satisfy.

Corollary 5.2. The Frattini quotient ofQ0 is elementary abelian of order24 or 25. The
order is 24 if and only if α1 · · ·α5 (or the product in any other order) belongs to the
Frattini subgroupΦ(Q0).

Proof: By the above, the rank ofQ0/Φ(Q0) is at least four. On the other hand, sinceQ0

is generated by five elements, the rank cannot be more than five. 2

The structure ofΣ reflects the different orders ofQ0/Φ(Q0).

Lemma 5.3. The graphΣ is bipartite if and only if|Q0/Φ(Q0)| = 25.

Proof: Clearly, Σ is bipartite if and only if every connected component is bipartite.
Each connected component ofΣ is isomorphic toCay(Q0, {α1, . . . , α5}). Thus we can
substituteΣ by this Cayley graph.

LetG be a group generated by a set of involutionsI. It is well known thatCay(G, I)
is bipartite if and only ifG has an index two subgroupH that is disjoint fromI. Indeed, if
the graph is bipartite, thenH is the stabilizer of the (unique, since the graph is connected)
partition. Conversely, if such a subgroupH exists, then the two cosets ofH are the parts
of the partition.
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If Q̄0 = Q0/Φ(Q0) has order25, then the images̄αi of the five involutionsαi form a
basis forQ̄0. We chooseH as the full preimage inQ0 of the subgroup in̄Q0 consisting
of all elements having an even number of nonzero coordinateswith respect to the basis
{ᾱi}. Thus, the Cayley graph is bipartite.

If Q̄0 has order24, then it follows from Lemma 5.1 thatΦ(Q0) is the kernel of the
action ofQ0 on∆1(a). Note that every index 2 subgroupH inQ0 containsΦ(Q0). Since
the product of all fiveαi (in any order) lies inΦ(Q0) (see Corollary 5.2), it also lies in
H. But this implies that if four of theαi lie outside ofH, then the fifth lies inH. Thus,
no suchH exists inQ0, so the Cayley graph is not bipartite. 2

Example 5.4. Consider again the groupQ and elementsg andf from Examples 1.3, 3.4,
and 4.7. In their conjugation action onQ, bothg andf leave{α0, . . . , α5} invariant and
act on the indices according to the permutations(1, 2, 3, 4, 5) and(1, 2, 4, 3), respectively.
Observe thatΦ(Q) = Φ(Q0) has order 32 and equals the commutator subgroups of both
Q andQ0.

6. Apartments and factorizations

An apartmentin a generalizedn-gon is a2n-cycle in the corresponding incidence
graphΓ. In the collinearity graph∆, it is a geometricn-cycle. Hence, in our context,
an apartment is a geometric8-cycle in∆. Every such cycle is a union of two shortest
paths connecting two opposite points. We choose a particular apartmentC through the
selected pointsa andb. It is the union of the two shortest paths betweena andb passing
through the lines ona carrying colours1 and5. We say that this apartment has colour
{1, 5}. Clearly, for each pair of colours and eachc ∈ Pa there is a unique apartment
througha andc coloured with that pair of colours. Note that every apartment on a is
“coloured”, andQ permutes these apartments and preserves colour.

We name all components ofC: let it pass froma to point a1 via lineA1 (labelled
with colour1), froma1 to a2 via lineA2, froma2 to a3 viaA3, froma3 to b viaA4 (hence
the intersection ofA4 with Pa is an edge ofΣ of colour1), from b to b1 via lineB1 (its
intersection withPa has colour5), from b1 to b2 viaB2, from b2 to b3 viaB3, and finally,
from b3 back toa via B4, which is the line ona marked with colour5. This notation is
∆-style, because it distinguishes between points and lines.

It is convenient to also use a more symmetric,Γ-style notation. Letp1 = A1, p2 = a1,
p3 = A2, p4 = a2, p5 = A3, p6 = a3 andp7 = A4. Symmetrically, letq1 = B1, q2 = b1,
q3 = B2, q4 = b2, q5 = B3, q6 = b3 andq7 = B4. For i, j ∈ {1, . . . , 7}, defineUij to be
the stabilizer inQ of bothpi andqj, and setUi = Uii.

For i ∈ {1, . . . , 7}, the opposite verticespi andqi of C, whether points or lines, are
opposite. By definition,Q fixes the base pointa, soUi fixes every vertex on the half of
C which is the shortest path betweenpi andqi passing througha. HenceUi resembles
what for Moufang generalized polygons is aroot subgroup[16]. In Proposition 6.1(i)
we show that it has the same order as a root group. However, we cannot prove (directly,
without use of our main result) thatUi is a root group as this would require that it fix all
vertices ofΓ adjacent to a non-end vertex of the root (that is, the shortest path frompi to
qi througha).
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We also use a∆-style notation forUi that distinguishes between points and lines. For
i ∈ {1, . . . , 4}, letSi be the joint setwise stabilizer inQ of Ai andBi. ThenSi = U2i−1.
Similarly, for i ∈ {1, 2, 3}, we letTi be the stabilizer inQ of bothai andbi, soTi = U2i.

Proposition 6.1. The groupsSi (i = 1, 2, 3, 4) andTi (i = 1, 2, 3) satisfy the following
properties.

(i) EverySi has order2, everyTi has order4.
(ii) If i ≤ j, thenUij = UiUi+1 · · ·Uj. In particular,Q = U17 = S1T1S2T2S3T3S4.
(iii) Every contiguous subproduct in the factorization of (ii) is a subgroup ofQ.
(iv) Each element ofQ can be uniquely written ass1t1s2t2s3t3s4, wheresi ∈ Si and

ti ∈ Ti.

Proof: We claim that the vertex-wise stabilizer inQ of every simple path of length at
least nine inΓ is trivial if this path containsa. It suffices to consider the case where the
path has length exactly nine. Such a path lies in a unique apartment inΓ, which in turn
contains a unique point fromPa. Since the action ofQ onPa is regular, the stabilizer of
the path is trivial, proving the claim.

Note thatUij stabilizes vertex-wise the pathγ in Γ obtained by combining the shortest
path fromqj to a and the shortest path froma to pi. This combined pathγ has length
8 + i− j. Hence, ifj < i then the claim implies thatUij = 1.

Suppose now thati ≤ j. Let δi = 4 if i is even (sopi andqi are points), andδi = 2
otherwise. We claim that|Uij| = δiδi+1 · · · δj. LetN denote the right-side product. Note
that the pathγ extends inN ways to a simple path of length nine inΓ, and henceγ
is contained in exactlyN apartments, sayC1, . . . , CN . We claim that the action ofUij

on theN apartmentsCk is regular. Indeed, everyCk contains a unique pointwk from
Pa. SinceUij ≤ Q, the stabilizer ofwk in Uij is trivial, and hence also the stabilizer in
Uij of Ck is trivial. Now pick two apartments,Ck andCk′. Note that bothCk andCk′

pass throughp1 = A1 andq7 = B4. HenceCk andCk′ have colour{1, 5}. It follows
thatx ∈ Q takingwk to wk′ also takesCk to Ck′. This element fixes all vertices in the
intersection ofCk andCk′. In particular,x fixespi andqj and sox ∈ Uij, proving that
Uij acts regularly on theN apartmentsCk. This shows that|Uij| = N . SinceUi = Uii,
it follows that|Ui| = δi, which proves (i).

Next considerUij andUi′j′, wherei ≤ i′, j ≤ j′, and i′ ≤ j + 1. It follows
from the definition thatUij ∩ Ui′j′ = Ui′j. BothUij andUi′j′ are subgroups ofUij′ , so
UijUi′j′ ⊆ Uij′ . On the other hand,

|UijUi′j′ | =
|Uij| · |Ui′j′ |

|Uij ∩ Ui′j′ |
=

|Uij| · |Ui′j′ |

|Ui′j|
=
δi · · · δjδi′ · · · δj′

δi′ · · · δj
= δi · · · δj′ = |Uij′ |,

proving thatUijUi′j′ = Uij′ . Applying this factorization consecutively, withi < j,
we findUij = Ui,j−1Ujj = . . . = UiiUi+1,i+1 · · ·Ujj = UiUi+1 · · ·Uj. In particular,
Q = U17 = U1U2 · · ·U7, which completes the proof of (ii) and (iii).

Sinceδ1δ2 · · · δ7 = 21+2+1+2+1+2+1 = 210, the number of productss1t1s2t2s3t3s4
coincides with|Q|, so (iv) follows. 2

This factorization ofQ has consequences forα1, . . . , α5 andCay(Q, {α1, . . . , α5}).
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Lemma 6.2. (i) S1 = 〈α5〉 andS4 = 〈α1〉.
(ii) For each i ∈ {2, 3, 4} andx ∈ (U1 · · ·Ui)

# ∪ (U8−i · · ·U7)
#, the distance ofx in

Cay(Q, {α1, . . . , α5}) to 1 is at least8− i.

Proof: Observeα1 takesb to the other pointc1 of the lineA4 that lies inPa, soα1

stabilizesA4. SinceQ stabilizesB4, we deduce thatα1 ∈ S4, proving thatS4 = 〈α1〉.
Symmetrically,S1 = 〈α5〉. This implies (i).

As for (ii), if x ∈ (U1 · · ·Ui)
#, thenx fixes the vertexqi of Γ. But qi has distancei to

b in Γ, sobx has the same distance toqi. This implies thatd(b, bx) is at most2i in Γ and so
at mosti in ∆. The path fromb to bx via qi does not lie inΣ andi ≤ 4 and the geometric
girth of∆ is eight, so the distance betweenb andbx in Σ is at least8− i. The conclusion
of the statement now follows from Lemma 4.4. The argument forx ∈ (U8−i · · ·U7)

# is
similar, as such an element fixesp8−i. 2

Lemma 6.3. Suppose that|Q0/Φ(Q0)| = 25.

(i) If X is the set of all vertices ofCay(Q0, {α1, . . . , α5}) at distance at least six
from the vertex1, thenX has a subset of size five with all mutual distances in
Cay(Q0, {α1, . . . , α5}) at least two.

(ii) Assume that|Q0| ≥ 29. If X is the set of all vertices ofCay(Q0, {α1, . . . , α5})
at distance at least seven from the vertex1, thenX has a subset of size five with
all mutual distances inCay(Q0, {α1, . . . , α5}) at least four.

Proof: Instead ofCay(Q0, {α1, . . . , α5}), we use the isomorphic graphΣ0, the con-
nected component ofΣ containingb. Since|Q0/Φ(Q0)| = 25, this graph is bipartite by
Lemma 5.3.

(i) Assume first that|Q0| = 28. LetX = Σ≥6(b), the set of vertices ofΣ0 at distance
at least six fromb. We need to find a subsetZ ofX of size five so that all mutual distances
in Z are at least two. Each colouri contributes one vertexzi to Z. We describe this for
i = 1 and then invoke similarity for all other colours.

Let i = 1. If R = U57, thenR is the setwise stabilizer inQ of the lineA3. By
Proposition 6.1(ii), (iv),R = S3T3S4 has order16. Corollary 4.6 implies that[Q : Q0] ≤
4, so |R ∩ Q0| ≥ 4. SinceS4 = 〈α1〉 ≤ Q0 by Lemma 6.2,R ∩ Q0 > S4 and so
we can selectx ∈ (R ∩ Q0) \ S4. Let e be the edge{b, bα1} = {b, c1} (this edge is
the intersection ofA4 with Pa) and letf = ex. Sincex is not inS4, we deduce that
Ax

4 6= A4. Hence the distance between every vertex one and every vertex onf in ∆ is
at most three; furthermore, the shortest path goes via the linesA4,A3, andAx

4 . Since the
geometric girth of∆ is eight, the distance inΣ0 betweene andf is at least five.

SinceΣ0 is bipartite,f contains a vertexz1 at distance at least six fromb. Hence
z1 ∈ X. Similarly, constructzi for each colouri ≥ 2 (notice that Lemma 6.2 holds for
other choices than1 and5 with the indices suitably permuted).

Consider two of these vertices,zi andzj; since each is connected tob via a path in∆
of length three, there is a path of length six in∆ going fromzi via b to zj and this simple
path has no edges fromΣ. Therefore the distance inΣ0 betweenzi andzj is at least two,
proving (i).
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(ii) Assume now that|Q0| = 210−d for d ∈ {0, 1}. LetX be the set of vertices ofΣ0

at distance at least seven fromb, and takeR = U67, the stabilizer inQ of the pointa3.
Note thatR = T3S4 and so|R| = 8. Thus|R ∩ Q0| ≥ 23−d ≥ 4, since[Q : Q0] = 2d.
This again allows us to choosex ∈ (R∩Q0) \ S4. As above, lete = {b, c1} andf = ex.
SinceAx

4 6= A4 anda3 ∈ A4 is stabilized byx, soa3 ∈ A4 ∩ Ax
4 , the distance in∆

between every vertex one and every vertex onf is two and, furthermore, the shortest
path goes viaa3. Thus the distance betweene andf in Σ0 is at least six.

SinceΣ0 is bipartite, we find a vertexz1 onf such that the distance inΣ0 betweenb
andz1 is at least seven, soz1 ∈ X. By similarity, selectzi for each colouri.

If i 6= j, then∆ contains a simple path of length four going fromzi via b to zj. Con-
sequently, the distance in∆ betweenzi andzj is four, so, by Lemma 2.1, their mutual
distance inΣ0 is at least four. 2

Recall that thedistancebetween a pair of edges is the minimum of the four distances
between the end vertices of the edges.

Lemma 6.4. Suppose that|Q0/Φ(Q0)| = 24 and |Q0| ≥ 29. LetX be the set of all
verticesx of Cay(Q0, {α1, . . . , α5}) which are at distance at least six from the vertex1,
and such thatx2 = 1. Let(X,E) be the subgraph ofCay(Q0, {α1, . . . , α5}) induced on
X. ThenE has a subsetS = {f1, . . . , f5}, wherefi has colouri, satisfying the following
properties.

(i) The distance between every pair of edges inS is at least four.
(ii) If fi = {xi, yi} thenxi andyi commute withαi in Q0 and they do not commute

with αj whenj 6= i.

Proof: Once again we work inΣ0 instead ofCay(Q0, {α1, . . . , α5}). We exploit the
same idea as in Lemma 6.3, except this timeΣ0 is not bipartite. We provide complete
details only forf1 and select all otherfi by similarity.

Let e = {b, c1}, wherec1 = bα1 , and setR = U67 = T3S4. Since[Q : Q0] ≤ 2,
|S4| = 2, and|R| = 8, we deduce thatR ∩Q0 > S4. Next we selectx ∈ (R ∩Q0) \ S4,
but we must ensure thatx2 = 1 andx commutes withα1 (recall〈α1〉 = S4 from Lemma
6.2).

SinceR = T3S4 andR ∩ Q0 > S4, we can writeR ∩ Q0 = (T3 ∩ Q0)S4. Since
T3 ∩ Q0 has index 2 inR ∩ Q0, it is a normal subgroup. In particular,T3 ∩ Q0 contains
an involution that is central inR ∩Q0. Choose this element asx. Clearly,x2 = 1 andx
commutes withα1. Alsox ∈ T3 and sox /∈ S4 in view of Proposition 6.1(iv).

Let f1 = ex. Note thatf1 = ex = {b, bα1}x = {bx, bα1x}. Hence, using the mapφ of
Lemma 4.4, we can takex1 andy1, as in (ii), to bex andα1x. Clearly, bothx1 andy1
are involutions and commute withα1.

Manifestly, every shortest path between the vertices one andf1 has length two and
passes througha3. This implies that both vertices off1 lie in the set of all vertices ofΣ0

that are at distance at least six fromb.
This also implies thatx = x1 does not commute withαj for all j 6= 1. We setz = bx.

Assuming thatxαj = αjx, we obtain thatcxj = bαjx = bxαj = zαj . Since there is a
path in∆ of length two connectingb andz via a3 and the colour1 linesA4 andAx

4 , we
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deduce thatcj = bαj andzαj are connected by a path of length two in∆ involving two
lines of colour1. On the other hand,b andcj are connected by an edge of colourj in
Σ0, soz = bx andzαj = cxj are also connected inΣ0 by an edge of colourj. This gives
a geometric cycle in∆ of length six, which is a contradiction. Hencex1 andαj cannot
commute. The argument fory = y1 is similar if we setz = by instead ofbx. Hencey1
andαj do not commute.

We selectfi similarly for i ≥ 2. It remains to check the distances between different
fi. Taking verticesu onfi andv onfj, we observe as in Lemma 6.3 that there is a simple
path of length four in∆ going fromu to v via b. Therefore the distance inΣ0 betweenu
andv is at least four. 2

Example 6.5. The groupsUi, for 1 ≤ i ≤ 7, defined at the beginning of this section for
the colours{1, 5}, coincide with〈u9−i〉 defined in Example 1.3.

To find easily computable necessary conditions for groupsQ of order210 to appear in
the conclusion of Theorem 1.2, we study how factorizations of W = U26 = T1S2T2S3T3
can be extended to factorizations ofQ.

Lemma 6.6. The groupW has order28 and is normal inQ, andQ/W ∼= 22.

Proof: The claim about the order ofW follows from Proposition 6.1. SinceW has index
2 in each ofS1W andWS4, it is normal in both and also inS1WS4 = Q. Recall from
Lemma 6.2 thatS1 = 〈α5〉 andS4 = 〈α1〉. Thus,Q/W has order 4 and is generated by
two involutions, so it is elementary abelian. 2

Definition 6.7. LetG be a2-group with a collection of subgroupsH1, . . . , Hk such that
(1) G = H1H2 . . . Hk; (2) |G| = |H1| · |H2| · · · |Hk|; and (3) for alli ≤ j, the product
HiHi+1 · · ·Hj is a subgroup ofG. ThenH1, . . . , Hk form atight factorizationof G.

The factorizations ofQ in Proposition 6.1(ii) are tight.
Given two factorizationsG = H1 · · ·Hk andG′ = H ′

1 · · ·H
′
k with the same number

k of factors, an isomorphism between the two factorizations is a group isomorphism
ψ : G → G′ such thatψ(Hi) = H ′

i for all i. Clearly, for alli ≤ j, the mapψ induces an
isomorphism ofHi · · ·Hj ontoH ′

i · · ·H
′
j.

Define theleft automorphism groupAut−(G;H1, . . . Hk) of the factorization to be
the group of automorphisms ofG normalizing each subproduct subgroupH1 · · ·Hi for
i = 1, . . . , k. Similarly, theright automorphism groupAut+(G;H1, . . . , Hk) consists
of all automorphisms ofG normalizing each subproduct subgroupHi · · ·Hk for i =
1, . . . , k. Let Aut(G;H1, . . . , Hk) be those automorphisms ofG normalizing eachHi.
Clearly,Aut(G;H1, . . . , Hk) = Aut−(G;H1, . . . , Hk) ∩ Aut+(G;H1, . . . , Hk).

Recall thatW is normal inQ = S1WS4 with S1 = 〈α5〉 andS4 = 〈α1〉. Observe
thatU2j = U2 · · ·Uj has index 2 inU1j = U1U2 · · ·Uj. Henceα5 ∈ S1 = U1 normalizes
each subgroupU2 · · ·Uj. Similarly,α1 ∈ S4 = U7 normalizes each subgroupUi · · ·U6.
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Lemma 6.8. LetL = Aut−(W ;T1, S2, T2, S3, T3) andR = Aut+(W ;T1, S2, T2, S3, T3).
The involutionα5 induces an automorphism ofW contained inL and, symmetrically,α1

induces an automorphism ofW contained inR.

We now investigate restrictions on the elementsαi for i = 2, 3, 4.

Lemma 6.9. For eachi ∈ {2, 3, 4} there existswi ∈ W \ (T1S2T2 ∪ T2S3T3 ∪ Φ(Q0))
such thatαi = α5wiα1.

Proof: We first showαi ∈ α5Wα1. SinceQ = S1WS4, eachx ∈ Q is one (and only
one) of the following types:x = w, α5w, wα1, orα5wα1 for somew ∈ W . Therefore it
suffices to show thatαi does not belong toWS4 ∪S1W . By Lemma 5.1 eachαi fixes all
three points on the line containinga that is marked with colouri, and moves two points
on each of the other four lines ona. In particular,αi does not lie inWS4 = U27, which
is the pointwise stabilizer inQ of the lineA1 marked with colour1. Similarly,αi is not
contained inS1W = U16, which is the pointwise stabilizer of the lineB4 of colour5.

Sinceαi = α5wiα1 for somewi ∈ W , we deduce thatwi = α5αiα1 is at distance
three to1 in Cay(Q0, {α1, . . . , α5}). By Lemma 6.2(ii) and Corollary 5.2, respectively,
this implieswi 6∈ T1S2T2 ∪ T2S3T3 andwi 6∈ Φ(Q0). 2

Lemma 6.10. The elementr = (α5α1)
2 = [α5, α1] ofW satisfies the following:

(i) r = wiw
α5α1

i for i ∈ {2, 3, 4};
(ii) rα5 = rα1 = r−1;
(iii) r ∈ Φ(Q0) \ (T1S2 ∪ S3T3).

Proof: Recall that eachαi has order 2. Sinceα2
i = (α5wiα1)

2 = α5wiα1α5wiα1, we
deduce thatα5wiα1α5wiα1 = 1, sowiα1α5wiα1α5 = 1. Multiplying both sides on the
right with r = (α5α1)

2 and cancellingα1α5α5α1 establishes (i). Part (ii) follows from
the definition ofr. Part (iii) follows from Lemma 6.2(ii), Corollary 5.2, and the fact that
r is at distance four to1 in Cay(Q0, {α1, . . . , α5}). 2

Lemma 6.11. Φ(Q) = Φ(W )[α5,W ][α1,W ].

Proof: Clearly, the right hand side is contained inΦ(Q), so we only need to establish the
reverse inclusion. Note thatX = Φ(W )[α5,W ][α1,W ] is normal inW and also invari-
ant underα5 andα1, since it contains[α5,W ] and [α1,W ], respectively. In particular,
X is normal inQ. Hence we just need to verify that̄Q = Q/X is elementary abelian.
Observe thatα5 andα1 have order 2, and all nontrivial elements ofW/X have order 2
sinceX ≥ Φ(W ). Hence it suffices to show that̄Q is abelian. Clearly,W/X is abelian
and also the images̄α5 andᾱ1 of α5 andα1 moduloX centralizeW/X. To show that̄α5

andᾱ1 commute, we prove thatr ∈ X. By Lemma 6.10,r = wiw
α5α1

i = w2
i [wi, α5α1].

Since each of̄α5 andᾱ1 centralizeW/X, the product̄α5ᾱ1 centralizesW/X. Therefore
r̄ = w̄2

i [w̄i, ᾱ5ᾱ1] = w̄2
i = 1, sinceW/X is elementary abelian. 2
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Recall from Corollary 5.2 thatQ0/Φ(Q0) is isomorphic to24 or 25. SinceQ/W ∼= 22

andΦ(Q) = Φ(W )[α5,W ][α1,W ] ≤ W , we obtain the following result whenΣ has a
single connected component.

Corollary 6.12. If Q0 has order210, thenW/Φ(W )[α5,W ][α1,W ] is isomorphic to22

or 23.

This nontrivial condition onW cannot be verified without first knowing the automor-
phisms induced byα5 andα1. Hence we need a weaker form that can be verified directly
from the factorizationW = T1S2T2S3T3. The automorphisms ofW induced byα5 and
α1 are inL andR, respectively. The following is a consequence of Corollary 6.12 and
the fact that bothα5 andα1 are involutions.

Corollary 6.13. If Q0 has order210, thenW/Φ(W )[L,W ][R,W ] is elementary abelian
of rank at most3.

Proof: The automorphisms induced byα5 and α1 lie in L andR, respectively, so
Φ(W )[α5,W ][α1,W ] ≤ Φ(W )[L,W ][R,W ]. 2

Lemma 6.14. The elementsw2, w3, w4 satisfy the following properties:

(i) |wi| > 2;
(ii) wα5

i wi, w
α1

i wi lie outsideT1S2 ∪ S3T3;
(iii) |w−1

i wj| > 2 if i 6= j;
(iv) |Q0/Φ(Q0)| = 24 if and only ifw2w3w4 ∈ Φ(Q0);
(v) w3 6= w4w2.

Proof: (i) The square ofwi = α5αiα1 is at distance at most six to1 inCay(Q0, {α1, . . . , α5}),
which has girth at least eight, so|wi| ≥ 4.
(ii) wα5

i wi = αiα1αiα1 is at distance four to1 in Cay(Q0, {α1, . . . , α5}), so does not
belong toT1S2 ∪ S3T3 by Lemma 6.2.
Claim (iii) follows from the fact thatw−1

i wj is conjugate toαiαj.
(iv) Corollary 5.2 implies thatα5α2α3α4α1 ∈ Φ(Q0) if and only if |Q0/Φ(Q0)| = 24.
The assertion follows fromw2w

−1
3 w4 = α5α2α3α4α1 andw2

3 ∈ Φ(Q0).
(v) This is immediate from the previous computation asα5α2α3α4α1 = 1 would contra-
dict the girth ofΣ being at least eight. 2

7. The groups of order dividing2
9

Corollary 4.6 states thatQ0 = 〈α1, . . . , α5〉 is a group of order2n for 8 ≤ n ≤ 10.
We now prove Theorem 1.2 when the order ofQ0 divides 29 (or, equivalently,Σ is
disconnected).

Definition 7.1. (G, I) is aninvolution pair if I is a set of involutions which generates a
2-groupG, andCay(G, I) has girth at least eight.

Observe that if(G, I) is an involution pair, then, for every subsetS of I, the pair(〈S〉, S)
is an involution pair.
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Corollary 4.5 establishes that each ofCay(Q, {α1, . . . , α5}) andCay(Q0, {α1, . . . , α5})
has girth at least eight. Corollary 5.2 implies that|Q0/Φ(Q0)| = 2k wherek ∈ {4, 5}.
Lemma 5.1 and the observation that the Frattini subgroup of any subgroup (here,Φ(Q0))
is contained in Frattini subgroup of its overgroup (here,Φ(Q)) show that none of theαi

is in Φ(Q0).
We use these properties to obtain a list of candidate groups forQ0.

Theorem 7.2. Consider a groupG of order28 or 29 that satisfies the following:
(i) |G/Φ(G)| is 24 or 25;

(ii) G has a generating setI of size 5 such that(G, I) is an involution pair.
There are14 such groups of order28, all satisfying|G/Φ(G)| = 25. There are421

and32555 such groups of order29, satisfying|G/Φ(G)| = 24 and25, respectively.

Theorem 7.2 was proved by investigating the relevant groupsof order dividing29;
these are in the SMALL GROUPSlibrary [2], distributed withGAP [1] and MAGMA [4].

We can easily determine those groupsG which satisfy condition (i) of Theorem 7.2.
The number of such groups is recorded in Table 2.

Order |G/Φ(G)| Number
28 24 20 241
28 25 28 653
29 24 359 611
29 25 7 111 878

TABLE 2. Number of groups of order28 and29 satisfying Theorem 7.2(i)

The algorithm used to determine ifG satisfies (ii) is the following.
(1) Determine the setJ of involutions ofG which lie outsideΦ(G).
(2) Construct a listM3 of all G-automorphism class representatives of 3-element

subsets ofJ .
(3) Construct the listL3 of all X in M3 such that(〈X〉, X) is an involution pair.
(4) For eachX ∈ L3, chooseα4 ∈ J to obtainY = X ∪ {α4} of size4; decide

if (〈S〉, S) is an involution pair for everyS ⊆ Y of cardinality3 or 4. Record
thoseY which satisfy this condition to obtainL4.

(5) For eachX ∈ L4, chooseα5 ∈ J to obtainY = X ∪ {α5} of size5; decide
if (〈S〉, S) is an involution pair for everyS ⊂ Y of cardinality3 or 4. Record
thoseY which satisfy this condition to obtainL5.

(6) For eachI ∈ L5, decide ifCay(G, I) has girth at least eight. If not, thenG does
not satisfy condition (ii) of Theorem 7.2, and we removeI from the listL5.

(7) ReturnL5.
We now use additional properties ofQ0 to eliminate all but one of the groups of

Theorem 7.2.

Proposition 7.3. Among the groupsG appearing in Theorem 7.2,
(i) none of the14 groups of order28 and none of the32555 groups of order29 with

|G/Φ(G)| = 25 satisfies Lemma6.3;
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(ii) precisely two of the421 groups of order29 with |G/Φ(G)| = 24 satisfy condition
(i) of Lemma6.4: namely,512#233888 and512#384204;

(iii) 512#233888 does not satisfy condition (ii) of Lemma 6.4.

HenceQ0 is uniquely determined as512#384204; of course, this is the group of
Example 4.7.

Proposition 7.4. Up to isomorphism, there is a unique generalized octagon of order
(2, 4) satisfying the condition of Theorem 1.2 in whichQ0 is as in Example4.7.

Proof: Assume thatG is a generalized octagon as in the hypothesis. Straightforward
calculations show that, up to automorphism classes ofQ0, there is, up to ordering of the
indices, a unique 5-tupleα1, . . . , α5 such that the Cayley graphCay(Q0, {α1, . . . , α5})
satisfies the conclusions of Lemma 6.4. Consequently, we may assume, without loss of
generality, thatα1, . . . , α5 are as given in Example 4.7. This means thatΣ, the graph
induced by∆ on the set of pointsPa opposite toa, being the disjoint union of two copies
of Cay(Q0, {α1, . . . , α5}), is the same as in the known octagon of order(2, 4). Let Σ0

be the component ofΣ containing the vertexb used to define the involutionsαi. LetΣ1

be the other connected component ofΣ.
Let P0 be the vertex set ofΣ0. We first determine the∆-distance onP0. In view

of transitivity ofQ0 on P0, it suffices to find the distances fromb to all other pointsc.
Clearly, if the distance betweenb andc in Σ is at most4, then their distance in∆ is the
same. AsΣ0 has diameter6, we may assume thatc is atΣ-distance5 or 6 to b. Now c
has∆-distance2, 3, or 4 to b, and the shortest path fromc to b in ∆ goes via∆3(a).

Suppose that the∆-distance betweenb andc is 2. This means thatb andc are both
collinear to a pointd ∈ ∆3(a). Let {b, b′, d} be the line throughb andd and let{c, c′, d}
be the line throughc andd. Since the geometric girth of∆ is 8, the edges{b, b′} and
{c, c′} of Σ must be at distance6. For every edge ofΣ there are exactly four vertices at
distance6 from that edge, and on these vertices there is only one edge. It follows that
there are exactly2 ·5 = 10 points inP0 that are at∆-distance2 from b, but not at distance
2 in Σ.

The above observation also implies that everyd ∈ ∆3(a) lies on at most two lines
meetingΣ0. Since this equally applies toΣ1 andd lies on a total of four lines meetingΣ,
we conclude thatd lies on exactly two lines meetingΣ0 and exactly two lines meeting
Σ1. This allows us to claim that there is a bijection between∆3(a) and the collection of
all 4-sets inP0 formed by two edges at distance6. We call such4-setsdouble edges. The
stabilizer inQ0 of a double edgeD has size4 and acts regularly onD. We have shown
that the points ofP0 at distance2 from b can be identified uniquely.

This also gives us some information about points at distance3 to b, namely, all points
c such that either there exists a pointb′ adjacent tob that is at distance2 from c, or
symmetrically, there exists a pointc′ adjacent toc that is at distance2 from b. Clearly,
all such pointsc can be identified. Ifc is not of this kind and at distance3 to b in ∆, then
the unique shortest path fromb to c goes via adjacent pointsd andd′ of ∆3(a). LetD
andD′ be the double edges onb andc, corresponding tod andd′, respectively.

We claim that the stabilizer inQ0 of D ∪D′ coincides with the stabilizer of the edge
{d, d′} and has order8. In view of the regularity ofQ0 on P0, it suffices to show that
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every memberg of Q0 mappingb to an element ofD ∪D′ preserves all ofD ∪D′. The
third point, saye, on the line containingd andd′ is collinear with a unique point, say
f , in ∆1(a). This implies that all four edges ofD ∪ D′ in Σ0 have the same colour. In
particular,g maps the edge{b, b′} on b in D to an edge of the same colour, which forces
the third point on the line containingbg and(b′)g to bed or d′. Since all points ofD∪D′

have∆-distance3 to f and4 to a, the elementg fixesf , and hence alsoe. This implies
thatg stabilizes{d, d′}, and, because of the bijective correspondence mentioned above,
alsoD ∪D′. This settles the claim. Observe that the distance betweenD andD′ in Σ is
at least5.

The claim allows us to identify all pairs(b, c) at distance3. Namely, the set of all
points fromP0 atΣ-distance≥ 5 to D consists of exactly12 points and it is a disjoint
union of three double edgesD′. Only one of these setsD′ satisfies the property that the
stabilizer inQ0 of D ∪ D′ is of size8 (it is of size4 for the other two double edges).
Hence we can uniquely identify all points inP0 at ∆-distance3 from b. As the only
remaining∆-distance is4, the∆-distance between any pair of points fromP0 is uniquely
determined (and, hence, as in Example 4.7).

To show that knowledge ofΣ0 and the∆-distance onP0 determine∆ uniquely,
we change our language. The graph∆, being distance regular, can be realized by unit
vectors in a Euclidean space (an eigenspace of its adjacencymatrix) in such a way that all
mutual inner products only depend on the distances of the corresponding vertices in∆.
See [5, Proposition 4.4.1] for details. In particular,∆ can be realized by 1755 unit vectors
ex (x ∈ P ) in a 78-dimensional Euclidean space in such a way that(ex, ey) = (−1

2
)k,

wherek is the∆-distance betweenx andy.
We know all distances on the setP0. This gives us the Gram matrix of size512×512.

The rank of this matrix is exactly78. Hence we have found the unique (up to an isometry)
realization ofP0 by unit vectors. If{x, y, z} is a line of∆ then, by an easy calculation,
the vectorex + ey + ez has length zero. Henceex + ey + ez = 0. Since everyd ∈ ∆3(a)
lies on a line{d, c, c′}, wherec andc′ are adjacent vertices ofΣ0, we can now construct
all vectorsed as−ec − ec′ for all edges{c, c′} of Σ0. The above inner product formula
provides the complete information about the∆-distances among the vertices of∆3(a).
Taking all adjacent vertices in∆3(a) and repeating the above argument, we construct all
vectorsed for d ∈ ∆2(a), also in∆1(a), and finally∆0(a) = {a}.

Hence we have uniquely recovered the system of unit vectors representing the points
in P \ P1, whereP1 = Pa \ P0 is the vertex set ofΣ1. It remains to recoverP1.

To this end, we define thepurple graphon∆3(a), whose edges are all pairs{d, d′}
such that(ed, ed′) = 1

4
and the distance betweend andd′ in the subgraph of∆ induced

onP \ P1 is not2. Clearly,{d, d′} is an edge of the purple graph if and only if there is a
(unique) pointx in P1 collinear with bothd andd′.

Since the geometric girth of∆ is 8, the three edges in every 3-clique of the purple
graph must correspond to the samex ∈ P1. Everyx ∈ P1 is collinear with exactly five
points from∆3(a). It follows that the maximal cliques in the purple graph havesize5
and they bijectively correspond to the points fromP1. Furthermore, different maximal
cliques meet trivially or in one point.
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Now that we can identify points ofP1 with maximal cliques of the purple graph, we
can decide if two points ofP1 are adjacent: two pointsx andx′ of P1 are adjacent if
and only if the corresponding maximal cliquesX andX ′ of the purple graph meet in
one pointd (the third point on the line throughx andx′) and additionally all∆-distances
between points inX \{d} and points inX ′ \{d} are3. Since these distances can be read
off from the known vectors representing points in∆3(a), this shows that the collinearity
graph∆ is unique. 2

This establishes Theorem 1.2 in the case where|Q0| ≤ 29. We finish this section
with some remarks on the computations. These were performedusing MAGMA . The
SMALL GROUPSlibrary provides a function to identify a group of order dividing 28. As
a preprocessing step, we applied (an obvious variation of) the algorithm used in Theorem
7.2 to determine all involution pairs(G, I) where|G| divides 256 and3 ≤ |I| ≤ 4. We
record the number of such groups in Table 3. Hence we could readily decide in steps (4)–
(5) whether or not(〈S〉, S) is an involution pair. The automorphism group of a2-group
was computed using the algorithm of [9]. The memory resources used to establish the
result are small, but the time taken is significant: an estimate is approximately 10 CPU
years running MAGMA 2.15. Most of this was used to prove Theorem 7.2.

Order #I Number
26 3 11
27 3 33
27 4 20
28 3 124
28 4 539

TABLE 3. Number of groups of order dividing28 arising in involution pairs

8. The groups of order210

We now finish the proof of Theorem 1.2 by showing that the assumption |Q0| = 210

leads to a contradiction.
There are49 487 365 422 groups of order210 (see [2]), too many for the methods of

Section 7 to be feasible. Our approach is based on Proposition 6.1: namely,Q = Q0

admits a tight factorizationQ = S1T1S2T2S3T3S4 with the property that every factorSi

has order two and every factorTi has order four. We call such a factorization a2424242-
factorization, and similarly for subproducts. However, the number of tight factorizations
of Q is also prohibitively large. Therefore we focus instead on the ‘middle’ ofQ, the
tight 42424-factorization ofW = U26 = T1S2T2S3T3 as in Section 6.

Using a standard extension algorithm, all tight 42424-factorizations of groups of or-
der 256 were constructed usingGAP. These factorizations were also determined directly
by processing each relevant group of order 256 in MAGMA . This led to the following
result.
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Lemma 8.1. Exactly 3090 of the 56092 groups of order256 have at least one tight
42424-factorization.

The 3090 groups have1 948 859 tight 42424-factorizations, representing all possi-
bilities for W = T1S2T2S3T3. For each factorization, an algorithm described below
was applied inGAP that produces a list of all 5-tuples corresponding to a generating
setα1, . . . , α5 of an overgroupQ of W and to an extension ofT1S2T2S3T3 to a tight
2424242-factorizationS1T1S2T2S3T3S4 satisfying the necessary conditions of Sections
4 and 6 forQ to be as in the hypotheses of Theorem 1.2.

Let Fk be the set of all words of length at mostk in the symbolsα1, . . . , α5 without
repetitions. A member ofFk is 1-balancedif the sum of the occurrences ofαj over
all j 6= 5 is even, and5-balancedif the sum of the occurrences ofαj over all j 6= 1 is
even. Observe that1-balanced or5-balanced words can be evaluated to elements ofW by
substitutingαj by α5wjα1 for j = 2, 3, 4 and interpretingα1 andα5 as automorphisms
of W . (Note that Lemma 6.10 is needed here.) For a nonempty listS of elements from
W of length at most 3, we defineEk(S) to be the set of all evaluations of words inFk as
above withwj (for j ∈ {2, 3, 4}) the(j − 1)-st element ofS. In our description below,
we call the check thatE7(S) does not contain the identity thegirth teston S. This is
justified by Lemma 3.2 or Corollary 4.5. If a triplew2, w3, w4 passes this test, then the
girth of Cay(Q, {α1, . . . , α5}) is at least eight because the products ofαi of length at
most seven that are not tested have an odd number ofα1 or of α5 and so are non-trivial.

Similarly, we use Lemma 6.2 to check (using computations inW only) that, for a 5-
tuple(a5, a1, w2, w3, w4), whereai is the automorphism ofW induced byαi, the distance
conditions inCay(G, {α1, . . . , α5}) on elements of(U1 · · ·Ui)

# ∪ (U8−i · · ·U7)
#, for

i ∈ {2, 3, 4}, are satisfied. This check is called thedistance test.
Let W , a group of order28, have tight factorizationT1S2T2S3T3. The algorithm to

process the factorization is the following.

(1) ComputeL = Aut−(W ;T1, S2, T2, S3, T3), R = Aut+(W ;T1, S2, T2, S3, T3)
and initializeL as the empty list.

(2) ComputeF = Φ(W ) and the subgroupX = F [L,W ][R,W ] ofW . If |W/X| >
23, then returnL (in view of Corollary 6.13).

(3) Compute the setsW of all elements ofW \ (T1S2T2 ∪ T2S3T3 ∪ F ) of order
at least 4 andR = X \ (T1S2 ∪ S3T3). If |W| < 3, then returnL (in view of
Lemmas 6.9 and 6.14). IfR = ∅, then returnL (in view of Lemma 6.10(iii)).

(4) Compute the listCL of conjugacy classes of elementsx of order at most two
in L such that|W/〈F, [W,x]〉| ≥ 4, and, similarly,CR with R instead ofL. If
CL = ∅ or CR = ∅ then returnL (in view of Corollary 6.12).

(5) ComputeA = L ∩ R and compile a listX5 of A-class representatives in the
union of all conjugacy classes inCL.

(6) Compute the unionX1 of all conjugacy classes inCR.
(7) For each automorphisma5 ∈ X5:

i. ComputeR5 = {r ∈ R | ra5 = r−1} andW5 = {w ∈ W \ F [W, a5] |
wa5w 6∈ T1S2 ∪S3T3}. If R5 = ∅ or |W5| < 3, then continue with the next
a5 (in view of Lemmas 6.10, 6.11, and 6.14).

ii. For eacha1 ∈ X1:
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(a) ComputeY = F [W, a5][W, a1]. If |W/Y | > 23, then continue with
the nexta1 (in view of Corollary 6.12).

(b) ComputeR1 = {r ∈ R5∩Y | ra1 = r−1} andW1 = {w ∈ W5 \Y |
wa1w 6∈ T1S2 ∪ S3T3}. If R1 = ∅ or |W1| < 3, then continue with
the nexta1 (in view of Lemmas 6.10, 6.11, and 6.14).

(c) ReplaceR1 by its subset of allr such that conjugation byr onW
coincides with(a5a1)2. If R1 is empty, then continue with the next
a1 (in view of Lemma 6.10).

(d) Compute the setW2 of all membersw of W1 such thatwwa5a1 ∈ R1

and the girth test onS = {w} is passed. If|W2| < 3, then continue
with the nexta1 (in view of Lemma 6.14).

(e) For eachw2 ∈ W2:
I. Computer = w2w

a5a1
2 and the setW3 of all w ∈ W2 \ w2Y

such thatwwa5a1 = r, |w−1w2| > 2, and the girth test onS =
{w2, w} is passed. If|W3| < 2 or r 6∈ R1, then continue with
the nextw2 (in view of Corollary 4.5 and Lemma 6.14).

II. For eachw3 ∈ W3:
-i- Compute the setW4 of allw ∈ W3\w3Y such that|w−1w3| >

2, and the girth test onS = {w,w2, w3} is passed; if|W/Y | =
8, then also requirew 6∈ w2w3Y .

-ii- If W4 is empty, then continue with the nextw3 (in view of
Corollary 4.5 or Lemma 6.14).

-iii- For eachw4 ∈ W4, if (a5, a1, w2, w3, w4) passes the distance
test, add it to the listL.

ReturnL.

The listL produced by applying the above algorithm to each tight factorization is
empty.

Theorem 8.2. None of the3090 groupsW of order 256 of Lemma 8.1 has a tight 42424-
factorizationW = T1S2T2S3T3 that extends to a groupQ, generated by involutions
α1, . . . , α5, with a tight 2424242-factorizationQ = S1T1S2T2S3T3S4 for which the con-
clusions of Lemmas 4.3, 6.2, 6.9, 6.10, 6.11, 6.14 and Corollaries 4.5, 5.2, 6.12, 6.13
withQ0 = Q are satisfied.

Proof: If α1, . . . , α5 were as stated in the assumptions, then(a5, a1, w2, w3, w4), whereai
(for i = 1, 5) is the automorphism induced onW by conjugation byαi andwj = α5αjα1

(for j = 2, 3, 4), would appear in the outputL of the algorithm, contradicting thatL is
the empty list. 2

This result implies Theorem 1.2 in caseQ0 = Q. Since the caseQ0 < Q was
resolved in Section 7, this completes the proof of Theorem 1.2.

We finish with some remarks on the computations. The steps in our algorithm are
chosen so as to filter out cases as early as possible. In ourGAP implementation, we per-
formed all group operations inW (represented as a permutation group) without having
to buildQ; this was critical to the speed of the computations. The above interpretation of
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balanced words inαi as elements ofW is part of this effort. The number of tight factori-
sations for a group of order256 varied from1 to 60322. The most expensive calculations
were those for 256#6823, 256#27519, and 256#27633, with 4456, 4101, and 27125 tight
factorizations respectively. Again, the memory resourcesrequired to establish the result
are small, but the time taken is significant: an estimate is approximately 15 CPU years
runningGAP 4.6.5.
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Basel 1998.

DEPARTMENT OFMATHEMATICS AND COMPUTERSCIENCE, TECHNISCHEUNIVERSITEIT EIND-
HOVEN, NETHERLANDS

E-mail address: a.m.cohen@tue.nl

DEPARTMENT OF MATHEMATICS, PRIVATE BAG 92019, AUCKLAND , UNIVERSITY OF AUCK-
LAND , NEW ZEALAND

E-mail address: e.obrien@auckland.ac.nz

SCHOOL OFMATHEMATICS, UNIVERSITY OF BIRMINGHAM , BIRMINGHAM B15 2TT, UK
E-mail address: S.Shpectorov@bham.ac.uk


