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Abstract

Let G be isomorphic to a group H satisfying SL(d, q) ≤ H ≤ GL(d, q) and
let W be an irreducible FqG-module of dimension at most d2. We present a
Las Vegas polynomial-time algorithm which takes as input W and constructs a
d-dimensional projective representation of G.

1 Introduction

A major research topic over the past decade has been the development of efficient
algorithms for the investigation of subgroups of GL(d,Fq) where Fq is a finite field of
size q = pf . We refer to the recent survey [15] for background related to this work.

A particular focus is the development of algorithms to construct an isomorphism
between an arbitrary representation of a classical group and its “standard” (or natural)
representation.

In 2001, Kantor and Seress [9] proved that there is a Las Vegas algorithm that,
given as input an arbitrary permutation or (projective) matrix representation G of
an almost simple classical group H of Lie type of known characteristic, constructs
an isomorphism between G and the natural projective representation of H. Their
algorithm also constructs a new “nice” generating set S for G such that any element
can be reached efficiently from S by a short straight-line program: an efficiently stored
group word on S that evaluates to g. (For a formal definition and discussion of their
significance, see [18, p. 10].)

In this paper, we present efficient algorithms to construct such an isomorphism for a
projective matrix representation of degree at most d2 of the general linear groups having
natural module of dimension d. In the natural module, a “nice” generating set can be
constructed using the efficient algorithms of [5] or [11]. Hence this work supplements
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that of [9], providing fast polynomial time reduction for the most commonly occurring
irreducible representations of general linear groups.

An additional motivation for our algorithm is the recent work of Ryba [17]. He
presents a polynomial-time Las Vegas algorithm that, given as input an odd defining
characteristic absolutely irreducible representation of a finite Chevalley group, con-
structs its action on the adjoint module. Since the adjoint module of GL(d, q) has
dimension at most d2 − 1, a combination of Ryba’s algorithm and ours can be used to
construct the action on the natural module.

A similar program has been carried out for the alternating and symmetric groups
in [2] and [3]. The algorithm of [2] constructs an isomorphism between an arbitrary
permutation or matrix representation of An or Sn and the natural permutation rep-
resentation on n points; in [3] a specialized, faster algorithm does the same for the
deleted permutation module, which is the smallest dimensional matrix representation
of these groups.

2 Background and main result

We now consider in more detail our task. Let SL(d, q) ≤ H ≤ GL(d, q) with q = pf .
Let V denote the natural module of H and V ∗ is its dual module. Define the Frobenius
map δ : GL(d, q) 7→ GL(d, q) by (ai,j)

δ = (ap
i,j) for (ai,j) ∈ GL(d, q).

Two representations ρ1 and ρ2 of H are quasiequivalent if there exists θ ∈ Aut(H)
such that ρ1 is equivalent to θρ2.

Let H act on an irreducible FqG-module W of dimension at most d2. For a discus-
sion of such irreducible representations, see [12]. In particular, W is quasiequivalent to
an irreducible section of V ⊗ V δe

, or V ∗ ⊗ V δe
where 0 ≤ e < f .

The irreducible sections of V ⊗ V are the symmetric and alternating squares of V
of dimension d(d + 1)/2 and d(d − 1)/2 respectively.

Consider V ∗ ⊗ V with basis {ei ⊗ ej | 1 ≤ i, j ≤ d} and let

w :=
d

∑

i=1

ei ⊗ ei, U := {
∑

i,j

αi,jei ⊗ ej |
d

∑

i=1

αi,i = 0}, W1 := U ∩ 〈w〉.

The adjoint module of V is W := U/W1. If d mod p ≡ 0 then W has dimension d2 − 2,
otherwise d2 − 1.

The remaining irreducible representations of dimension at most d2 are V ⊗V δe
and

V ∗ ⊗ V δe
where 0 < e < f .

Our principal goal is an algorithm that, given as input such an irreducible repre-
sentation W of H, constructs a d-dimensional projective representation of H.

Our algorithm assumes that we can construct random elements of a finite group G.
Following the notation of [18, p. 24], an algorithm constructs an ε-uniformly distributed
random element x of G if (1 − ε)/|G| < Prob(x = g) < (1 + ε)/|G| for all g ∈ G; if
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ε < 1/2, then the algorithm constructs nearly uniformly distributed random elements of
G. Babai [1] presents a black-box Monte Carlo algorithm to construct such elements in
polynomial time. Another, more practical, option is the product replacement algorithm
of Celler et al. [6], which also runs in polynomial time (see [16]). For a discussion of
both algorithms, we refer the reader to [18, pp. 26-30].

Let ξ denote the cost of constructing a nearly uniformly distributed random element
in a group G and let ρr denote the cost of a field operation in a finite field Fr. Our
main result is the following.

Theorem 2.1 Let d ≥ 2 and let q = pf be a prime power. Let SL(d, q) ≤ H ≤ GL(d, q)
where H has natural module V . Suppose that H is given as G = 〈X〉 acting irreducibly
on a Fq-vector space W of dimension n ≤ d2. Subject to Conjecture 4.9, given as input
G, the value of d, and error probability ǫ > 0, there is a polynomial-time Las Vegas
algorithm that, with probability at least 1 − ǫ, sets up a data structure to construct the
projective action of G on V in time O(ξd2 log q log(1/ǫ) + ρqd

9 log2 d log2 q). The time
requirement to evaluate the image of g ∈ G on V is O(ξ + ρqd

8 log q).

We prove this theorem by exhibiting an algorithm with the stated complexity. We
present the conjecture and evidence in its support in Section 4.3. Theorem 2.1 depends
on Conjecture 4.9 only if W is the exterior square of V .

An n × n matrix over Fq requires Θ(d4 log q) space, so the running time of the
algorithm, in terms of the input length N , is O(ξN + ρqN

2.25 log2 N). We use the
conventional estimate of O(n3) field operations for matrix multiplication; if it can be
done in O(nω) field operations for some constant ω < 3, then our algorithm runs in
O(ξd2 log q + ρqd

3+2ω log2 d log2 q) time.
In Section 3 we outline the basic algorithm common to all of the cases, and in

Section 4 estimate the costs of common steps. We then study each representation in
turn, and finally report briefly on an implementation of the algorithms in Magma [4].

3 The general strategy

Let q = pf be a prime power and let r be a prime. Recall from [14] that r is a primitive
prime divisor of qd − 1 if r | qd − 1 but r does not divide qe − 1 for e < d. We use the
notation ppd(q; d) to describe such an r.

By a theorem of Zsigmondy (see [14]), ppd(q; d) primes exist for all q and d except
when q = 2, d = 6 and q is a Mersenne prime, d = 2. To cover these exceptional cases,
we call 9 a ppd(2; 6) prime and 4 a ppd(q; 2) prime for Mersenne prime q.

Recall that H has natural module V and is given as G ≤ GL(W ) where W = Fn
q .

Let s ∈ H and assume that |s| is divisible by some ppd(q; d). Hence s is a power of
a Singer cycle and has d one-dimensional eigenspaces 〈e1〉, 〈e2〉, . . . , 〈ed〉 in V ⊗ Fqd .
Let σ = δf be the Frobenius map of GL(d, qd) whose fixed points contain H. Thus σ
centralizes 〈s〉 and so σ transitively permutes the eigenspaces of s acting on V ⊗ Fqd .
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Consequently, we can index the eigenspaces 〈ei〉 of s and choose the eigenvectors ei

within the eigenspaces in such a way that eσ
i = ei+1 where the index is computed

modulo d. If e1s = ωe1, then eis = ωqi−1
ei for i ≤ d.

Our goal is to write the action A of an arbitrary g ∈ G on V ⊗ Fqd , in the basis
e1, . . . , ed. If W is either the alternating or symmetric square representation, then we
also compute the base change matrix B between a particular Fq-basis b1, . . . , bd and
e1, . . . , ed. Hence, we also learn the action BAB−1 of g on the natural module V . In
the other cases, the action of G in a suitable Fq-basis is recovered using the algorithm
of [8] which has complexity O(ρqd

5 log2 d).
We now summarise the algorithm Decompose to construct the projective action of

G on V .

1. Find, by random search, s ∈ G which satisfies the following:

• if W is not the adjoint module, then s has n one-dimensional eigenspaces;

• if W is the adjoint module, then s has d2 − d one-dimensional eigenspaces
and an n − (d2 − d)-dimensional eigenspace for the eigenvalue 1;

• |s| is divisible by some ppd(q; d) prime.

2. Construct a basis B0 consisting of eigenvectors for the action of s on W ⊗ Fqd .

3. Label the elements of B0 by ordered pairs (i, j) with 1 ≤ i, j ≤ d. The labels
are found by discovering a sufficient number of algebraic dependencies among the
eigenvalues. This labelling must be commensurate with the basis e1, . . . , ed and
consistent with the action of σ.

4. From the eigenspace labelled with (i, j), compute the vector corresponding to
ei ⊗ ej.

Steps 1 to 4 create the data structure described in Theorem 2.1 and are applied
once. To obtain the image of g ∈ G, we apply the following step.

5. First write g in the basis B0; then compute the action of g on V ⊗ Fqd in the
basis e1, e2, . . . , ed; finally rewrite with respect to the basis b1, b2, . . . , bd for the
natural module V .

4 The common steps

We first discuss costs associated with the extension field Fqd . Since Step 1 is common
to all representations, we next discuss it in detail and estimate its cost. To conclude
this section, we discuss base change between the bases b1, . . . , bd of V and e1, . . . , ed of
V ⊗ Fqd , and consider properties of matrices written with respect to the latter basis.
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4.1 Construction of the extension field

Since we work in Fqd , as a preprocessing step we construct that field.

Lemma 4.1 The extension field Fqd can be constructed by a Las Vegas algorithm, in
O(ρqd

3 log2 d log q) time. The cost of a field operation in Fqd is O(ρqd
2 log2 d). Taking

a square root of an element of Fqd can be done in O(ρqd
3 log2 d log q) time.

Proof: We construct Fqd as an extension of Fq. To do this, we search for monic
polynomials of degree d from the polynomial ring Fq[x] until we find an irreducible
f(x). With probability at least 1/(d + 1) (see [14]), a random polynomial of degree
d defined over Fq[x] is irreducible. That a polynomial of degree d is irreducible over
Fq[x] can be decided in O(ρqd

2 log d log log d log q) time by a Las Vegas algorithm (see
[19, 14.14]).

The elements of Fqd are the residue classes of Fq[x] modulo f(x), and they can be
represented by the polynomials of degree at most d − 1. We summmarize the cost of
field operations in Fqd .

• O(ρqd) for addition and O(ρqd log d log log d) for multiplication and division (see
[19, 8.23, 9.6]);

• O(ρqd
2 log d log log d) for taking inverses; we compute the inverse of a(x) ∈ Fqd

by writing the greatest common divisor 1 of f(x) and a(x) in the form 1 =
f(x)g(x) + a(x)h(x) by a Euclidean algorithm of length at most d, and then
taking h(x) as the inverse.

• Taking square roots of some c ∈ Fqd can be done by factorizing the polynomial
x2 − c, in time O(ρqd log qd) = O(ρqd

3 log2 d log q) (see [19, 14.14]). 2

We use the following result, obtained in [2, 4.6] as an application of [19, 14.19].

Lemma 4.2 The distinct linear factors of some g(x) ∈ F[x] of degree n can be com-
puted by a Las Vegas algorithm, in O(ρFn log2 n log(n|F|) log log n) time.

4.2 Step 1 of the general strategy: Finding s

We now discuss the search for random s ∈ G which satisfies the conditions associated
with Step 1 of Decompose. If an s satisfying the eigenvalue condition is found, then we
check that |s| is divisible by a ppd(q; d) prime as follows. If (d, q) equals (6, 2) or (2, p)
with p Mersenne, then define m := 21 and m := p − 1, respectively; otherwise

m := qd
∏

j|d,j 6=d

d

j
(qj − 1). (1)

Now |s| is divisible by a ppd(q; d) prime if and only if sm 6= 1. We decide this by raising
the eigenvalues of s to the m-th power.
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Lemma 4.3 We can decide if s ∈ G satisfies the conditions of Step 1 by a Las Vegas
algorithm in O(ρqd

6 log q) time.

Proof: The characteristic polynomial c(x) of s can be computed using the algorithm of
[10] in O(ρqn

3 log n) = O(ρqd
6 log d) time. By Lemma 4.2, the distinct linear factors of

c(x) in Fqd are obtained by a Las Vegas algorithm, in O(ρqdn log2 n log(nqd) log log n) =
O((ρqd

2 log2 d)(d2 log2 d)(log d + d log q)(log d)) = O(ρqd
5 log5 d log q) time. If W is the

adjoint module, then the 1-eigenspace of s can be computed in O(ρqd
6) time. Raising

the eigenvalues of s to the power m in (1) takes O(nρqd log(qd3/2
)) = O(ρqd

11/2 log2 d log q)

time, using the trivial upper estimate 2
√

d for the number of divisors of d. 2

We now derive a sufficient condition to identify a suitable element of H, and use
this condition in Lemma 4.5 to estimate the number of random elements processed in
our search.

Theorem 4.4 Suppose that (d, q) 6= (3, 4) and that the order of s ∈ H is a multiple
of (qd − 1)/(q − 1). If W is not the adjoint module, then s has n distinct eigenvalues
in Fqd. If W is the adjoint module, then 1 is an eigenvalue of s with eigenspace of
dimension n − (d2 − d), and s has d2 − d other eigenvalues.

Proof: Let α be a primitive element of Fqd . If the order of s is a multiple of

(qd−1)/(q−1), then the eigenvalues of s in V ⊗Fqd are ω, ωq, . . . , ωqd−1
, where ω = αk

for some divisor k of q − 1.
If W is the symmetric square of V , then the eigenvalues of s in W ⊗ Fqd are

ωqi−1+qj−1
, for 1 ≤ i ≤ j ≤ d. Suppose that ωqi1−1+qj1−1

= ωqi2−1+qj2−1
for some

i1 ≤ j1, i2 ≤ j2. Then αk(qi1−1+qj1−1) = αk(qi2−1+qj2−1). If the exponents on both
sides are less than qd − 1, then they must be equal. This implies j1 = j2, and so
i1 = i2. If k(qi1−1 + qj1−1) ≥ qd − 1, then k = q − 1 and i1 = j1 = d, so the only
remaining possibility is 2(q − 1)qd−1 = qd − 1 + (q − 1)(qi2−1 + qj2−1). This simplifies
to qd−1 = qd−2 + qd−3 + · · · + q + 1 + qi2−1 + qj2−1. If q = 2, then we further simplify
to 1 = qi2−1 + qj2−1, a contradiction. If q ≥ 3, then q = 3 and i2 = j2 = 1, otherwise
the right-hand-side of the last equation is not divisible by q. But this also leads to a
contradiction.

If W is the alternating square, then the eigenvalues of s in W ⊗Fqd are ωqi−1+qj−1
,

for 1 ≤ i < j ≤ d. Since all occur as eigenvalues for the symmetric square, they are
distinct.

If W is the adjoint module, then the eigenvalues of s in W ⊗Fqd , different from 1,

are of the form ωqi−1−qj−1
, for 1 ≤ i ≤ j ≤ d, i 6= j. If ωqi1−1−qj1−1

= ωqi2−1−qj2−1
for

some i1 6= j1, i2 6= j2, then αk(qi1−1+qj2−1) = αk(qi2−1+qj1−1). As in the symmetric square
case, the only solution of this equation implies that j2 ∈ {i2, j1}. Since j2 6= i2, we
must have j2 = j1, and so i1 = i2.

6



Now consider the case W = V ⊗ V τ . If τ = δe and 0 < e < f , then the eigenvalues
of s in W ⊗ Fqd are ωqi−1+peqj−1

, for 1 ≤ i, j ≤ d. Suppose that ωqi1−1+peqj1−1
=

ωqi2−1+peqj2−1
for some 1 ≤ i1, j1, i2, j2 ≤ d. Then

αk(qi1−1+peqj1−1) = αk(qi2−1+peqj2−1). (2)

If one of i1 = i2 and j1 = j2 holds, then clearly the other equality holds as well. If
the exponents on both sides of (2) are equal, then qi1−1 − qi2−1 = pe(qj2−1 − qj1−1). If
j1 6= j2, then the exponent of p in the prime factorization of the right-hand-side of this
last equation is equal to e mod f , but on the left-hand-side the exponent is 0 mod f ,
a contradiction. Hence ji = j2, and so i1 = i2. If j1, j2 ≤ d − 2, then both exponents
in (2) are at most k(qd−1 + peqd−3) < (q − 1)(qd−1 + qd−2) ≤ qd − 1, so the exponents
must be equal. But this implies i1 = i2 and j1 = j2.

If d ≥ 5 then, given any solution of (2), there exists m ∈ {0, 1, 2, 3, 4} so that
jk + m − 1 ≤ 2d − 2 and jk + m − 1 6∈ {d − 1, d} holds for k = 1, 2. Hence, raising (2)
to the qm-th power and replacing the terms qik+m−1, qjk+m−1 by qik+m−1−d, qjk+m−1−d,
respectively, in the case these exponents are greater than d, we obtain a solution of (2)
with j1, j2 ≤ d − 2. Therefore, for the original j1, j2 we have j1 + m − 1 ≡ j2 + m − 1
(mod d), implying j1 = j2. Similarly, if 3 ≤ d ≤ 4 then, given any solution of (2),
there exists m ∈ {0, 1, 2} so that jk + m − 1 ≤ 2d − 2 and jk + m − 1 6= d holds
for k = 1, 2. Hence it is enough to consider solutions of (2) with j1, j2 ≤ d − 1
and at least one of the exponents of α on both sides of (2) is greater than qd − 1.
However, if j1 ≤ d − 1 then k(qi1−1 + peqj1−1) > qd − 1 is possible if and only if
k = q − 1, i1 = d, j1 = d − 1, and again k(qi1−1 + peqj1−1) < 2(qd − 1). Hence the only
case to consider is (q − 1)(qd−1 + peqd−2) = (q − 1)(qi2−1 + peqj2−1) + qd − 1. Here the
left-hand-side is divisible by p, so we must have i2 = 1 and p = 2. Thus our equation is
equivalent to 2e(qd−2−qj2−1) = (qd−1 +q−2)/(q−1). Using that 2e ≥ 2 and j2 ≤ d−2
(because j2 6= j1), the left-hand-side of the last equation is greater than the right-hand-
side, unless d = 3, q = 4, j2 = 1. This is the exception identified in the statement of the
lemma. The last subcase is d = 2. Since i1 6= i2, j1 6= j2, αk(1+peq) = αk(q+pe). But this
implies that k(1+peq−q−pe) = k(q−1)(pe−1) is a multiple of q2−1, a contradiction
since it is not divisible by a ppd(p; 2f) prime.

Finally, if W = V ∗⊗V τ , then the eigenvalues of s in W ⊗Fqd are ω−qi−1+peqj−1
, for

1 ≤ i, j ≤ d. Suppose that ω−qi1−1+peqj1−1
= ω−qi2−1+peqj2−1

for some 1 ≤ i1, j1, i2, j2 ≤
d. Then αk(qi2−1+peqj1−1) = αk(qi1−1+peqj2−1). As in the previous case, the only solution
is i1 = i2, j1 = j2 if (d, q) 6= (3, 4). 2

As stated, Theorem 4.4 identifies a sufficient condition for an element of H to be
suitable; its statement can be readily adapted to G.

Lemma 4.5 The expected sample size for Step 1 is O(1/4d2 ln q) and the expected
running time is O(ξd2 log q + ρqd

8 log2 q).
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Proof: By [14], the probability that the order of a random s ∈ H is divisible by a
ppd(q; d) number is greater than 1/2d. If the order of s is divisible by a ppd(q; d),
then CH(s) is the intersection of H with the cyclic subgroup generated by a Singer
cycle; further the order of s is largest if and only if CH(s) = 〈s〉. The probability that
this occurs is greater than 1/(2 ln qd), since ϕ(k) > k/(2 ln k) for all k > 2 (see [13,
p. 227]). Hence the probability that a random s ∈ H satisfies the order requirement of
Theorem 4.4 is greater than 1/(4d2 ln q). Combining with Lemma 4.3, we obtain the
statement of this lemma. 2

4.3 The base change matrix

Let s ∈ H have order a multiple of (qd − 1)/(q − 1). Consider a basis b1, b2, . . . , bd of
the natural module V of H in which s is represented by the matrix

S =













0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2

· · · · · · · · · · · · · · ·
0 0 · · · 1 ad−1













. (3)

This is the rational canonical form, or companion matrix, of the left action of s in V ∗,
but the bi are row vectors, a basis for the right action of H on V . The characteristic
polynomial of s is xd − ∑d−1

i=0 aix
i, with the entries ai in the last column of S.

Let s have eigenvalues ω, ωq, . . . , ωqd−1
in V ⊗ Fqd , and corresponding eigenvectors

e1, e2, . . . , ed satisfying eσ
i = ei+1. We now determine the base change matrix between

the bases b1, b2, . . . , bd of V and e1, e2, . . . , ed of V ⊗ Fqd , and obtain structural infor-
mation about the matrix of an element of H in the basis e1, e2, . . . , ed.

Lemma 4.6 The base change matrix between b1, b2, . . . , bd and e1, e2, . . . , ed has the
form

B =









µ µω µω2 · · · µωd−1

µq (µω)q (µω2)q · · · (µωd−1)q

· · · · · · · · · · · · · · ·
µqd−1

(µω)qd−1
(µω2)qd−1 · · · (µωd−1)qd−1









.

for some non-zero µ ∈ Fqd.

Proof: Let e1 = (α1, . . . , αd) in the basis b1, b2, . . . , bd. Then e1s = ωe1 implies that

(α1, . . . , αd)S = (ωα1, . . . , ωαd).

Also, by (3),
(α1, . . . , αd)S = (α2, . . . , αd, β),
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with β =
∑d

i=1 αiai−1. Comparing the first d− 1 corresponding entries in the two vec-
tors on the right-hand-sides of these equations, we obtain αi = α1ω

i−1 for 2 ≤ i ≤ d.
Hence, with the notation µ := α1, the first row of the base change matrix B is
(µ, µω, . . . , µωd−1). Since eσ

i = ei+1 for all i, the other rows of B can be obtained
by taking the q-th power of entries in the previous row. 2

Lemma 4.7 Let h ∈ H and let A = (aij) be the matrix of h in the basis e1, . . . , ed.
For i, j ∈ {1, . . . , d},

ai+1,j+1 = aq
ij

(where the index d + 1 is interpreted as 1).

Proof: Let c1, c2, . . . , cd be the column vectors of B−1, where B is the base change
matrix defined in Lemma 4.6. Then e1c1 = 1 and for 2 ≤ j ≤ d, ejc1 = eσj−1

1 c1 = 0.

Applying σi−1 to these equations, we obtain eσi−1

1 cσi−1

1 = eic
σi−1

1 = 1 and ejc
σi−1

1 = 0

for all j 6= i. Hence ci = cσi−1

1 for 2 ≤ i ≤ d.
If M is the matrix of h in the basis b1, b2, . . . , bd, then its entries are in Fq, and

A = BMB−1. Thus aij = eiMcj and aq
ij = eσ

i M
σcσ

j = ei+1Mcj+1 = ai+1,j+1. 2

Lemma 4.8 Let h ∈ H, and let A = (aij) be the matrix of h in the basis e1, . . . , ed.

(a) For i, j ∈ {1, . . . , d}, Prob(aij = 0) < 4/qd. If q ≥ 3 then Prob(aij = 0) < 2/qd.

(b) Prob(all aij 6= 0) > 5/8.

Proof: Recall that the entries of A lie in Fqd , not Fq.

(a) By Lemma 4.7, the first row of A determines uniquely the other rows of A, and
aij = 0 if and only if a1,j−i+1 = 0 (if j − i + 1 ≤ 0 then define a1,j−i+1 as
a1,j−i+1 := a1,d+j−i+1). There are qd2−d vectors of length d over Fqd with a 0
entry in position j − i + 1. Not all of these vectors can occur as the first row of
a matrix for h ∈ GL(d, q), so

Prob(a1,j−i+1 = 0) <
qd2−d

|GL(d, q)| =
1

qd

d
∏

k=1

1

1 − 1/qk
.

Observe that

d
∏

k=1

(1 − 1

qk
) > (1 − 1

q
)(1 −

d
∑

k=2

1

qk
) > (1 − 1

q
)(1 − 1

q2

1

1 − 1/q
) =

q2 − q − 1

q2
.

This last fraction is greater than 1/2 if q ≥ 3 and is equal to 1/4 if q = 2, implying
both claims of (a).
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(b) By Lemma 4.7, it is enough to estimate the probability that the first row of A
consists of all non-zero entries. By (a), if q ≥ 3, then the probability that the
first row of A contains a zero entry is less than 2d/qd ≤ 1/4 (not considering the
solvable case (d, q) = (2, 3)). Similarly, if q = 2 and d ≥ 6, then the probability
that the first row of A contains a zero entry is less than 4d/2d ≤ 3/8. For
3 ≤ d ≤ 5, we counted using GAP [7] the exact number of h ∈ GL(d, 2) with a
zero entry in its matrix A. 2

In Section 6.2, we require the following conjecture.

Conjecture 4.9 Let h be a random element of H and let A = (aij) be the matrix of
h in the basis e1, . . . , ed. The probability that a principal 3 × 3 submatrix of A has
determinant 0 is less than c/qd for an absolute constant c, unless d = 3m and the
principal submatrix is from rows and columns i,m + i, 2m + i for some i.

In the exceptional case, the first row of the submatrix uniquely determines the other
entries; in all other cases, there is an entry which is “independent” of the others. It
appears that the value of this entry is roughly uniformly distributed in F∗

qd and only one
value makes the determinant 0. The conjecture and these observations are supported
by experiment: we considered large random samples of elements from the alternating
square representation of GL(d, q) for q = 2, 3 and d ≤ 9.

4.4 Avoiding division by zero

Let g ∈ G, let A = (aij) be the matrix of g in the basis e1, . . . , ed, and let K = (κij,kℓ)
be the matrix of g in the basis B0 obtained in Step 3 of Decompose.

In Step 4, we determine the constants associated with our choice of basis. In doing
so, we perform arithmetic operations on the entries of K; some of these operations are
not possible if certain entries of A are 0. Lemma 4.8 implies that, with high probability
all entries of A are non-zero and so we can perform the computations.

In Step 5, we compute the action A of arbitrary g ∈ G in the basis e1, . . . , ed. The
algorithms of Sections 5-7 may not work if A has zero entries; however, if we multiply
g by a random m ∈ G, then both m and gm are uniformly distributed (but not
independent) random elements of G. Hence, with probability at least 1/4, all entries
in the d × d matrices of m and gm are non-zero. If so, then we compute the action of
m and gm in the basis e1, . . . , ed, and obtain the action of g as the ratio of these two
matrices.

Summarizing, in Sections 5-7 we may assume that, for g ∈ G, all entries of its
matrix A are non-zero. In Section 6.2 we assume Conjecture 4.9 which implies that
all of the 3 × 3 submatrices of A not having the exceptional indices have non-zero
determinant.
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5 The symmetric square representation

In this case, q must be odd. Suppose that G ≤ GL(W ) where W is the symmetric
square of V , and s ∈ G was constructed as described in Step 1 of Decompose. We now
discuss Steps 2 – 5.

5.1 Labelling the basis

Let li = ωqi−1
, for 1 ≤ i ≤ d, be the eigenvalues of s in its action on V ⊗ Fqd . The

eigenspaces of s on W are 〈ei,j = ei ⊗ ej〉 for 1 ≤ i ≤ j ≤ d, and ei,js = ωqi−1+qj−1
ei,j.

We know the set L of products li,j := lilj for 1 ≤ i ≤ j ≤ d. We identify the indices
(i, j) corresponding to every element of L, and choose a basis B0 = {fi,j}, fi,j ∈ 〈ei,j〉,
using the following procedure.

1. We construct the orbits Ω1, . . . , Ωk of eigenvalues under the Frobenius map σ. If
d is odd, then there are (d + 1)/2 orbits of size d; otherwise there are d/2 orbits
of size d and one of size d/2.

2. We identify the orbit Ωm of size d which satisfies the following test: for all distinct
pairs α, β ∈ Ωm, γ = α · β is a square, and one of the square roots of γ is in Ωj

for some j 6= m.

3. Now we have identified that Ωm is the orbit of l1,1 under σ. We choose an arbitrary
element of Ωm as l1,1 and label lj,j = l1,1σ

j−1.

4. For i 6= j, we evaluate γ = li,ilj,j; record li,j as the one of ±√
γ in L.

5. From each orbit of eigenvalues Ω, we pick an arbitrary li,j ∈ Ω and compute its
eigenspace 〈ei,j〉. We choose the vector fi,j ∈ 〈ei,j〉 whose first non-zero coordinate
is equal to 1.

6. For the other elements lσ
r

i,j ∈ Ω, we compute fi+r,j+r := fσr

i,j .

Since we identified ω2 = l1,1, we can compute ω and the base change matrix B of
Section 4.3. We may choose µ := 1 as the (1, 1) entry of B.

Lemma 5.1 The cost of this procedure is O(ρqd
9 log2 d log q).

Observe that the largest exponent for d comes from Step 5, where we compute d
eigenvectors at a cost O(ρqdn3) = O(ρqd

8 log2 d) for each.
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5.2 Determining the constants

The outcome of the last step is the following: for 1 ≤ i ≤ j ≤ d, we now know

fi,j = ci,jei,j

for some ci,j ∈ Fqd . We now describe a procedure to determine these constants.
Our choice of fi,j implies that ci+1,j+1 = cq

i,j. Since we can multiply all basis vectors
by the same scalar, we may assume that c1,1 = 1 (implying c2,2 = c3,3 = · · · = cd,d = 1).
We have no further control over the ci,j. Our procedure must compute their values.

We choose random g ∈ G and compute the matrix K = (κij,kl) representing the
action of g on W with respect to the basis B0 = {fi,j}. Let A = (aij) be the matrix of
g in the basis e1, . . . , ed. A priori, we do not know the entries of A, but we may assume
that all entries of A are non-zero.

If eig =
∑d

j=1 aijej, then

(ei ⊗ ej)g = (
d

∑

s=1

aises) ⊗ (
d

∑

t=1

ajtet)

and so
cijeijg = fijg =

∑

κij,stfst =
∑

κij,stcstest.

The basic equation for κij,kℓ is

κij,kℓ =
cij

ckℓ

(aikajℓ + aiℓajk(1 − δkl)). (4)

where δkl = 1 if k = l, otherwise 0.
By choosing specific values of the indices, this equation allows us to readily deduce

the following formulas.

(i) κii,jj = cii

cjj
a2

ij = a2
ij.

(ii) κii,ii = a2
ii.

Hence the values aij are determined up to a sign ambiguity.

(iii) κij,jj =
cij

cjj
aijajj = cijaijajj.

(iv) κii,ij = 2 cii

cij
aiiaij = 2

cij
aiiaij.

We square (iii) and substitute (i), (ii) to get

(v) c2
ij =

κ2
ij,jj

κjj,jjκii,jj
cjjcii =

κ2
ij,jj

κjj,jjκii,jj
.

Taking the product and ratio of (iv) and (iii), and using (i) and (v), we get

12



(vi) aiiajj =
κij,jjκii,ij

2κii,jj
.

(vii) aii

ajj
=

κii,ijκij,jj

2κjj,jjκii,jj
.

Taking j = k, Equation (4) gives

κij,jℓ =
cij

cjℓ

(aijajℓ + aiℓajj).

Rearranging and multiplying by aii/ajj, we get

(viii)
cij

cjℓ
aiℓaii = aii

ajj
(κij,jℓ − c2

ij
aij

cij

ajℓ

cjℓ
).

Using (iv)–(vii), the right-hand-side of (viii) can be expressed as a function of the κij,kℓ.
We now describe the procedure to extract the cij.

1. If d is even, let m = d/2, else m = d.

2. We evaluate (viii) for i = 1, j = 2, . . . m, ℓ = (2j − 1) to obtain

c1j

cj,2j−1

a1,2j−1a11

as a function of the κij,kℓ.

3. Since c1j/cj,2j−1 = c
(1−qj−1)
1j is a power of c1j with even exponent, by (v) we can

express it as a function of the κij,kℓ.

4. Thus we obtain a1,2j−1a11 as a function of the κij,kℓ, and (iv) now yields the value
of c1,2j−1 without ambiguity.

5. If d is even, then we must compute the values c1,2j. By (v), we know c2
12, but c12

cannot be computed without ambiguity: writing g ∈ G in the basis e1, . . . , ed or
in e1,−e2, e3, . . . ,−ed yields the same action on W . Hence we choose an arbitrary
square root of c2

12 from (v) to obtain c12.

6. Evaluating (viii) with i = 1, j = 2, ℓ = 4, 6, . . . , d, we obtain a1ℓa11 as a function
of c12, c2ℓ = cq

1,ℓ−1, and the κij,kℓ without further ambiguity (apart from the sign
of c12).

7. Now (iv) yields the value of c1ℓ. The values cij, for i > 1, can be obtained as

cij = cqi−1

1,j−i+1.

Lemma 5.2 The cost of this procedure is O(ξ + ρqd
8 log2 d).

The most expensive part of this procedure is writing g with respect to the basis B0 =
{fi,j}.
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5.3 Evaluating images

Assume we now wish to carry out Step 5 of Decompose: namely, we want to construct
the projective image of an arbitrary g ∈ G.

We first compute the matrix K = (κij,kl) representing the action of g on W with
respect to the basis B0 = {fi,j}. We then compute the aij in terms of the κrs,tu:
for given i, j, we compute a11aij = (a11/aii)(aiiajj) using (vii) and (iv). Hence the
aij values are recovered up to a scalar multiple a11. By (ii), the value of a11 can be
computed only up to a sign ambiguity.

Lemma 5.3 The cost of this procedure is O(ρqd
8 log2 d).

If necessary, we compute the images of m and gm for random m ∈ G as discussed in
Section 4.4.

6 The alternating square representation

Suppose that G ≤ GL(W ) where W is the alternating square of V , and s ∈ G is
constructed as described in Step 1 of Decompose. We now discuss Steps 2 – 5.

6.1 Labelling the basis

Let li = ωqi−1
, for 1 ≤ i ≤ d, be the eigenvalues of s in its action on V ⊗ Fqd . A basis

of W is the set of vectors ei,j = ei ∧ ej for 1 ≤ i < j ≤ d, and ei,js = ωqi−1+qj−1
ei,j.

We know the set L of products lilj for 1 ≤ i ≤ j ≤ d. We identify the indices (i, j)
corresponding to every element of L, and choose a basis B0 = {fi,j}, fi,j ∈ 〈ei,j〉, using
the following procedure.

1. We construct the orbits of the eigenvalues under the Frobenius map σ.

2. We choose an orbit of length d, and label an element of this orbit as l1l2. Taking
q-th powers determines l2l3 and l3l4.

3. We identify l1l4 = (l1l2)(l3l4)/(l2l3), and by taking q-th powers we identify l2l5
and l3l6.

4. We identify l1l6 = (l1l4)(l3l6)/(l3l4), and by taking q-th powers we identify l2l7
and l3l8.

5. In the same manner, we identify l1l2i for i ≤ d/2. It remains to identify l1l2i+1.

6. Assume d = 2k + 1. By taking q-th powers, we identify l2l2k+1 and l3l1. We
compute (l1l3)/(l1l2)

q−1 = ω2. From ω2, we compute ωqi−1+qj−1
for all i, j. If

these are not elements of L, then we select another L-orbit of length d and pick
another candidate for l1l2.
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7. Assume d = 2k. We know that (l1l2)(l3l4) = (l1l3)
q+1. We choose an orbit of

length d in L and an element x of this orbit such that xq+1 = (l1l3)
q+1. We

compute x/(l1l2)
q−1. If our choice of x is valid as l1l3, then this last ratio is ω2.

From ω2, we compute ωqi−1+qj−1
for all i, j. If these are not elements of L, then

we select another L-orbit of length d and pick another candidate for l1l3. The
case d = 4 is exceptional: one orbit has size 4, the only other has size 2, and we
choose x from the orbit of length 2.

8. From each orbit Ω of eigenvalues, we pick an arbitrary li,j ∈ Ω and compute its
eigenspace 〈ei,j〉. We choose the vector fi,j ∈ 〈ei,j〉 whose first non-zero coordinate
is equal to 1.

9. For the other elements lσ
r

i,j ∈ Ω, we compute fi+r,j+r := fσr

i,j .

During this procedure, we computed ω2, so we can compute the base change matrix
B of Section 4.3.

Lemma 6.1 The cost of this procedure is O(ρqd
9 log2 d log q).

6.2 Determining the constants

The outcome of the last step is the following: for 1 ≤ i < j ≤ d, we now know

fi,j = ci,jei,j

for some ci,j ∈ Fqd . We now describe a procedure to determine these constants.
Our choice of fi,j implies that ci+1,j+1 = cq

i,j. Since we can multiply all basis vectors
by the same scalar, we may assume that c1,2 = 1 (implying c2,3 = c3,4 = · · · = cd−1,d =
1). We have no further control over the ci,j. Our procedure must compute their values.

We choose random g ∈ G and compute the matrix K = (κij,kl) representing the
action of g on W with respect to the basis {fi,j}.

If eig =
∑d

j=1 aijej, then

(ei ⊗ ej)g = (
d

∑

s=1

aises) ∧ (
d

∑

t=1

ajtet)

and so
cijeijg = fijg =

∑

κij,stfst =
∑

κij,stcstest.

The basic equation for κij,kℓ is

κij,kℓ =
cij

ckℓ

(aikajℓ − aiℓajk). (5)
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Underpinning our procedure is the observation that, in dimension 3, the exterior
square is the dual of the natural module. This means that for distinct triples i, j, k,
the matrices

Bijk =





aii
cik

cjk
aij

cij

cjk
aik

cjk

cik
aji ajj

cij

cik
ajk

cjk

cij
aki

cik

cij
akj akk



 , Cijk =





κjk,jk −κik,jk κij,jk

−κjk,ik κik,ik −κij,ik

κjk,ij −κik,ij κij,ij



 (6)

satisfy BijkCijk = det(Bijk) · I, because by (5) the entries of Cijk are the appropriate
2 × 2 minors of Bijk. This implies det(BijkCijk) = det(Bijk) · det(Cijk) = det(Bijk)

3.
Moreover, if Cijk is invertible, then Bijk =

√

CijkC
−1
ijk ; so we can compute Bijk up to

a sign ambiguity. Conjecture 4.9 implies that we may assume that Bijk is invertible
unless j = i + d/3 and k = i + 2d/3.

We now describe the procedure to determine the constants ci,j. Recall that we can

assume c12 = 1 (and consequently ci,i+1 = cqi−1

12 = 1 for all i ≤ d − 1).

1. For k = 4, 6, . . . , 2⌊d/2⌋, we compute B132 and B13k. We choose the square
root of determinants so that the common entries B132[1, 1] = B13k[1, 1] = a11

and B132[2, 2] = B13k[2, 2] = a33 are equal. Now B132[2, 1] = a31c32/c12 = a31

and B13k[2, 1] = a31c3k/c1k = a31c
q2

1,k−2/c1k. Taking the ratio, we obtain c1k =

cq2

1,k−2B132[2, 1]/B13k[2, 1] and so recursively we can compute c14, c16, . . . , c1,2⌊d/2⌋.
Since cij = cq

i−1,j−1, we obtain all cij with i < j and j − i odd.

2. For k = 5, 7, . . . , 2⌈d/2⌉−1, we compute B123 and B12k, again choosing the square
roots of determinants so that the common entries B123[1, 1] = B12k[1, 1] = a11

and B123[2, 2] = B12k[2, 2] = a22 are equal. Thus B123[2, 1] = a21c23/c13 = a21/c13

and B12k[2, 1] = a21c2k/c1k = a21c
q
1,k−1/c1k. The ratio yields

c1k = c13c
q
1,k−1

B123[2, 1]

B12k[2, 1]
. (7)

Since c1,k−1 is already known, we obtain c1k as the value of c13 multiplied by a
known quantity.

3. If d is odd, then c13 = cq2

1,d−1 is known, and we obtain all c1j without ambiguity.
The other cij are computed by the formula cij = cq

i−1,j−1.

4. If d is even, then we compute B123 and B124. Now (7), with the value k = 4, gives
c14 = cq+1

13 B123[2, 1]/B124[2, 1]. Since c14 is already known, we obtain cq+1
13 . Using

the formula cij = cq
i−1,j−1, and the values of c1k and cq+1

13 , we obtain cij with i < j
and j − i even as cij = c13cij if i is odd, and as cij = c13

−1cij if i is even, where
cij is a known element of Fqd .

We do not compute the value for c13 because (q+1)-st roots cannot be computed
in polynomial time. Instead we ignore both c13 and c−1

13 , and take cij = cij for all
i < j with j − i even.
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The justification is the following. Given g ∈ G, we want to compute the coeffi-
cients in the linear combination emg =

∑

ℓ amℓeℓ. If we know cij, then amℓ can be
computed from an appropriate entry of some Bijk. If we use cij in place of cij, then
we obtain c13amℓ when both m and m−ℓ are odd; amℓ/c13 when m is even and m−ℓ
is odd; and amℓ when m− ℓ is even. Thus, instead of A = (amℓ), we construct the
conjugate of A by the diagonal matrix Diag(1, c13, 1, c13, . . . , 1, c13). Equivalently,
this is the action of g in the basis e1, e2/c13, e3, e4/c13, . . . , ed−1, ed/c13.

Lemma 6.2 The cost of this procedure is O(ξ + ρqd
8 log2 d log q).

6.3 Evaluating images

Given g ∈ G, we compute the matrix K = (κij,kl) representing the action of g on W
with respect to the basis B0 = {fi,j}. We determine the first row of A by computing
the matrices B12k for 3 ≤ k ≤ d. Following Lemma 4.7, the other entries of A can be
obtained by taking q-th powers.

Lemma 6.3 The cost of this procedure is O(ρqd
8 log2 d log q).

If necessary, we compute the images of m and gm for random m ∈ G as discussed in
Section 4.4.

7 The adjoint representation

Let V ∗⊗V have basis B0 := {ei⊗ej | 1 ≤ i, j ≤ d}. Recall from Section 2 our definition
of the adjoint module W := U/W1. Consider a basis for W which is the union of the
set B1 of d2 − d vectors ei ⊗ ej + W1, i 6= j, and a set B2 of d − 1 or d − 2 vectors of
the form x + W1 for some x ∈ 〈ei ⊗ ei | 1 ≤ i ≤ d〉. We can compute the subspaces
〈ei ⊗ ej + W1〉; by choosing the vectors with first coordinates 1 from these subspaces,
we construct B1. Choosing the remaining basis vectors from the 1-eigenspace of s on
W , we construct B2.

For g ∈ G, let K1 and K2 be the matrices of g on V ∗ ⊗ V with basis B0 and on
W with basis B1 ∪ B2, respectively. Independent of the particular choice of B2, the
(d2 − d) × (d2 − d) submatrices of K1 and K2, determined by the basis vectors ei ⊗ ej

and ei ⊗ ej + W1, respectively, are identical.

7.1 Labelling the basis

Let li = ωqi−1
, for 1 ≤ i ≤ d, be the eigenvalues of s in its action on V ⊗ Fqd . The

one-dimensional eigenspaces of s on W are 〈ei,j〉 for i 6= j, and ei,js = ωqi−1−qj−1
ei,j.

We know the set L of products li,j := lil
−1
j for 1 ≤ i, j ≤ d, i 6= j. We identify the

indices (i, j) corresponding to every element of L, and choose a basis for W using the
following procedure.
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1. We construct the d − 1 orbits of elements of L under the Frobenius map σ.

2. We choose one of these orbits and declare an entry from this orbit as l1,2. For
i ∈ {2, . . . , d − 1}, we label li,i+1 = lqi−1,i, and ld,1 = lqd−1,d.

3. For k ∈ {2, . . . , d − 1}, we perform the following:

• We evaluate ν := l1,kl
q(k−1)

1,2 .

• If ν 6∈ L, then we choose a different orbit.

• Otherwise we label ν as l1,k+1.

• For j ∈ {2, . . . , d − k}, we identify lj,j+k := lqj−1,j+k−1. Also we identify
ld+1−k,1 := lqd−k,d.

• For j ∈ {d + 2 − k, . . . , d}, we identify lj,j−d+k := lqj−1,j−d+k−1.

4. For each of the d − 1 orbits on L, we pick a representative li,j and compute its
eigenspace 〈ei,j〉. We choose the vector fi,j ∈ 〈ei,j〉 whose first non-zero coordinate
is equal to 1.

Since we can assume that the first coordinate of each ei is 1, the vector fi,j

corresponds precisely to ei ⊗ ej, not just to a scalar multiple of it. For other
eigenvalues lσ

r

i,j , we compute fi+r,j+r := fσr

i,j . Let B1 := {fi,j | 1 ≤ i 6= j ≤ d}.

5. We compute the 1-eigenspace of s and choose an arbitrary basis B2 for it. Then
B1 ∪ B2 is a basis of W .

Lemma 7.1 The cost of this procedure is O(ρqd
9 log2 d log q).

Since the exponent of ω in li,j is a multiple of q − 1, we cannot compute ω in
polynomial time. Hence we cannot compute the base change matrix B of Section 4.3,
but instead use the algorithm of [8] to perform the final base change.

7.2 Evaluating images

Given g ∈ G, we compute the matrix representing the action of g on W with respect
to the basis B1 ∪B2. Let K1 be the matrix of g in the basis B0, let K2 = (κij,kl) be the
matrix of g in the basis B1 ∪B2, let A = (aij) be the matrix of g in the basis {ei}, and
let A∗ = (a∗

ij) be the matrix of gϕ in the basis {ei}. Here ϕ is a graph automorphism,
namely an inverse transpose map, but it is taken with respect to the basis b1, . . . , bn

defined in Section 4.3. Thus A and A∗ are not inverse transposes of each other. The
goal is to recover a scalar multiple of A. The basic equation in K1 is

κij,kl = a∗
ikajl. (8)
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The (d2 − d)× (d2 − d) submatrix of K2 indexed by B1 is the corresponding submatrix
of K1, so we may use (8) for i 6= j and k 6= ℓ.

To determine a∗
11aks for any s, k, we use the following equations.

κ1k,1s = a∗
11aks k, s ≥ 2

κ21,2s = a∗
22a1s, s 6= 2

κ2k,21 = a∗
22ak1, k 6= 2

κ31,32 = a∗
33a12

κ32,31 = a∗
33a21

a∗
11/a

∗
22 = κ1j,1ℓ/κ2j,2ℓ for some j, ℓ 6∈ {1, 2}

a∗
11/a

∗
33 = κ1j,1ℓ/κ3j,3ℓ for some j, ℓ 6∈ {1, 3}

Lemma 7.2 The cost of this procedure is O(ρqd
8 log2 d).

If necessary, we compute the images of m and gm for random m ∈ G as discussed in
Section 4.4.

8 The other representations

We now discuss the outstanding cases: namely, W = V ⊗V τ and W = V ∗⊗V τ . Recall
that H ≤ GL(d, q) with q = pf . The operation τ is to take pe-th powers of the entries
in the matrices representing the group elements, for some fixed positive e < f , and so
W is now irreducible.

As before, we can assume that the first coordinate of the basis vector e1 is 1;
since all other ei are obtained by the Frobenius map σ, their first coordinate is also
1. Consequently, the first coordinates of the d2 vectors ei ⊗ ej are 1. These d2 vectors
form a basis of W . Hence, we can compute the one-dimensional subspaces 〈ei ⊗ ej〉
and, by picking the vectors with first coordinates 1 from these subspaces, we choose
the vectors ei ⊗ ej.

8.1 Labelling the basis when W = V ⊗ V τ

Let li = ωqi−1
, for 1 ≤ i ≤ d, be the eigenvalues of s in its action on V ⊗ Fqd . The

eigenspaces of s on W are 〈ei,j = ei ⊗ ej〉 for 1 ≤ i, j ≤ d, and ei,js = ωqi+qjpe
ei,j.

We know the set L of products li,j := li(lj)
pe

for 1 ≤ i, j ≤ d. We identify the indices
(i, j) corresponding to every element of L, and choose a basis B0 = {fi,j}, fi,j ∈ 〈ei,j〉,
using the following procedure.

1. We construct the orbits of eigenvalues under the Frobenius map σ.

2. We choose one of these orbits and declare an entry λ from this orbit as l1,1.
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3. If there exists an eigenvalue ν where ν1+pe
= λ1+qpe

and λq+1ν−1 is also an
eigenvalue, then we identify l1,2 as ν and λq+1ν−1 as l2,1. Otherwise we choose a
new orbit.

4. For i ∈ {2, . . . , d}, we label li,i = lqi−1,i−1,

5. For i ∈ {2, . . . , d − 1}, we label li,i+1 = lqi−1,i, and ld,1 = lqd−1,d.

6. For i ∈ {2, . . . , d − 1}, we label li+1,1 := l1,1li,ili+1,i+1/li,i+1l1,i and l1,i+1 :=
l1,1li+1,i+1/li+1,1.

7. The remaining values li,j can now be identified by taking q-th powers of the
already labelled elements of their orbits.

8. For each orbit on L, we pick a representative li,j and compute its eigenspace 〈ei,j〉.
We choose the vector fi,j ∈ 〈ei,j〉 whose first non-zero coordinate is equal to 1.

Since we can assume that the first coordinate of each ei is 1, the vector fi,j

corresponds precisely to ei ⊗ ej, not just to a scalar multiple of it. For other
eigenvalues lσ

r

i,j , we compute fi+r,j+r := fi,jσ
r.

Lemma 8.1 The cost of this procedure is O(ρqd
9 log2 d log q).

We use the algorithm of [8] to perform the final base change.

8.2 Evaluating images when W = V ⊗ V τ

Given g ∈ G, we compute its d2 × d2 matrix K = (κij,kl) in the basis {ei ⊗ ej}. Let
A = (aij) be the matrix of g in the basis {ei}. The goal is to recover a scalar multiple
of A. The basic equation for κij,kℓ is

κij,kℓ = aika
pe

jℓ .

We choose an arbitrary non-zero entry κi0j0,k0ℓ0 in K. For this fixed j0, ℓ0, the matrix
with (i, k) entry κij0,kℓ0 = aika

pe

j0ℓ0
is a projective image of g.

Lemma 8.2 The cost of this procedure is O(ρqd
8 log2 d).

8.3 Labelling the basis when W = V ∗ ⊗ V τ

Labelling the basis for this case is essentially identical to that described in Section 8.1.
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8.4 Evaluating images when W = V ∗ ⊗ V τ

Given g ∈ G, we compute its d2 × d2 matrix K = (κij,kl) in the basis {ei ⊗ ej}. Let
A = (aij) be the matrix of g in the basis {ei} and let A∗ = (a∗

ij) be the matrix of gϕ
in the basis {ei} for a graph automorphism ϕ. The goal is to recover a scalar multiple
of A∗. The basic equation for κij,kℓ is

κij,kℓ = a∗
ika

pe

jℓ .

We choose an arbitrary non-zero entry κi0j0,k0ℓ0 in K. For this fixed j0, ℓ0, the matrix
with (i, k) entry κij0,kℓ0 = a∗

ika
pe

j0ℓ0
is a projective image of g.

Lemma 8.3 The cost of this procedure is O(ρqd
8 log2 d).

9 Implementation and performance

We have implemented our algorithms in Magma. We use the algorithm of [6] to
generate random elements and in Step 1 choose a sample of size 4d2.

Table 1: Performance of implementation for some groups

d q G Setup Image

5 710 Symmetric square 1.0 0.02

Alternating square 0.3 0.01

Adjoint 1.6 0.05

V ⊗ V τ 1.5 0.05

10 56 Symmetric square 15.7 0.4

Alternating square 6.0 0.2

Adjoint 34.5 1.1

V ⊗ V τ 73.6 1.0

15 32 Symmetric square 50.1 1.7

Alternating square 23.4 1.3

Adjoint 140.2 5.2

V ⊗ V τ 150.7 1.2

The computations reported in Table 1 were carried out using Magma V2.13 on
a Pentium IV 2.8 GHz processor. Let G act as the named representation of H :=
GL(d, q). The first four steps of Algorithm Decompose provide the data structure of
Theorem 2.1. Having computed this data, we can now compute the projective image
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of g ∈ G. In the final two columns, we list the CPU times in seconds to set up the
data structure, and to evaluate the image of a randomly chosen element of G.
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