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Abstract. A group G is an A-group if xαx = xxα for all x ∈ G and all automorphisms
α of G. Such groups have nilpotency class at most 3; we construct the first example
having class precisely 3.

1. Introduction

A group G is an E-group (respectively A-group) if xφx = xxφ for all x ∈ G and
all endomorphisms (respectively automorphisms) φ of G. Clearly every E-group is an
A-group.

Taking φ to be the inner automorphism induced by an arbitrary g ∈ G shows that
[xg, x] = 1 or equivalently [g, x, x] = 1 for all x ∈ G. Hence every A-group is a 2-Engel
group and so is nilpotent of class at most 3 [15, Theorem 12.3.6]. The first non-abelian
E-groups were constructed by Faudree [7]. All known E- and A-groups (see for example
[2] and [14]) have class at most 2.

A p-group which is an E-group (A-group) is a pE-group (pA-group). Since 2-Engel
groups with no elements of order 3 are nilpotent of class at most 2, a finite pA-group of
class 3 must be a 3-group. Caranti [10, Problem 11.46] asked if there exists a finite pE-
or pA-group having class 3.

A necessary condition for a finite p-group to be an E-group was given by Malone [11,
Theorem 1] in 1969.

Theorem 1.1. Let P be a finite pE-group. If its derived quotient P/P ′ has exponent pr,
then all elements of P having order dividing pr are central.

Motivated by this property, a class of finite p-groups was introduced in [2]: P is a pE-
group if P is a 2-Engel group and there exists a positive integer r such that Ωr(P ) ≤ Z(P )
and exp(P/P

′
) = pr. A finite pE-group is a pE-group, but the converse is false in general

[2, Remark 2.2]. If d ≤ 3, then every d-generator pE-group has class at most 2.
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In [1, Remark 2.1] a finite 3E-group of class 3 is constructed as follows. Consider the
largest 2-Engel group P of exponent 27 with defining generators x1, . . . , x9 satisfying the
following relations:

x3
1 = [x2, x3][x4, x5][x6, x7][x8, x9], x

3
2 = [x1, x3][x4, x6][x5, x8][x7, x9],

x3
3 = [x1, x2][x4, x7][x5, x9][x6, x8], x

3
4 = [x1, x5][x2, x6][x3, x9][x7, x8],

x3
5 = [x1, x4][x2, x8][x3, x7][x6, x9], x

3
6 = [x1, x7][x2, x9][x3, x5][x4, x8],

x3
7 = [x1, x8][x4, x9][x3, x6][x2, x5], x

3
8 = [x1, x9][x3, x4][x2, x7][x5, x6],

x3
9 = [x1, x6][x3, x8][x2, x4][x5, x7].

We used the ANU Nilpotent Quotient package of Nickel [13], available in GAP [8]
or Magma [3], to construct a power-conjugate presentation (see §2.1) for P .

From this presentation, we learn that |P | = 384 and compute readily that |P ′| = 375,
|Z(P )| = 339, exp(P/P ′) = 3, P ′ = Z2(P ) ∼= C36

9 ×C3
3 and Ω1(P

′) = γ3(P ) = Z(P ) ∼= C39
3 .

Since every commutator [xi, xj] appears only once in the defining relations, it follows that

〈x3
1, . . . , x

3
9〉 = 〈x3

1〉 × · · · × 〈x3
9〉.

Therefore |P 3| = |〈x3
1, x

3
2, . . . , x

3
9〉(P ′)3| = 345, so by regularity |Ω1(P )| = |P : P 3| = 339.

Hence Ω1(P ) = γ3(P ) = Z(P ) and P is a 3E-group of class 3.
Let Autc(G) denote the group of central automorphisms of a group G: namely those

automorphisms of G which multiply each element of G by an element of its centre. Our
principal result, answering one of Caranti’s questions, is the following.

Theorem 1.2. Aut(P ) = Autc(P )Inn(P ). In particular, P is an A-group.

Motivated in part by a search for such groups, Traustason [16] developed a general
theory of symplectic alternating algebras, and constructed a related family of finite 2-
Engel 3-groups of class 3.

In Section 3 we establish this theorem by constructing the automorphism group of P .
We do this using a refinement of the algorithm of Eick, Leedham-Green and O’Brien [6]
which we now review. Implementations are available in both GAP and Magma and these
play an important role in our proof, as do computations in both systems.

2. An automorphism group algorithm

The algorithm of [6] proceeds by induction down the lower exponent-p central series of a
finite p-group P ; namely, it successively computes Aut(Pi) for the quotients Pi = P/Pi(P ),
where (Pi(P )) is the descending sequence of subgroups defined recursively by P0(P ) = P
and Pi(P ) = [Pi−1(P ), P ]Pi−1(P )p for i ≥ 1.
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2.1. Power-commutator presentations. Let G be a soluble group with composition
series G = C1 �C2 � · · ·�Cn�Cn+1 = 1. Each factor Ci/Ci+1 is cyclic of prime order pi.
If we choose gi ∈ Ci \ Ci+1, then we obtain a polycyclic generating sequence (g1, . . . , gn)
of G. Each g ∈ G can be written uniquely as gε11 . . . gεnn for 0 ≤ εi < pi. Such descriptions
underpin most efficient algorithms for soluble groups; see [9, Chapter 8] for more details. A
polycyclic generating sequence for a p-group G determines a consistent power-commutator

presentation for G whose defining relations are of the form gpi = g
β(i,i,i+1)
i+1 · · · gβ(i,i,n)

n and

[gj, gi] = g
β(i,j,j+1)
j+1 · · · gβ(i,j,n)

n for 1 ≤ i < j ≤ n where β(i, j, k) ∈ {0, . . . , p− 1}.

2.2. The p-covering group of a p-group. The p-covering group P ∗ of a p-group P is
the largest elementary abelian, central Frattini extension of P . Thus, if ψ : P ∗ → P is the
natural homomorphism of the extension andM = ker(ψ), thenM is an elementary abelian
p-group which is central in P ∗ and M ≤ Φ(P ∗). The kernel M is the p-multiplicator of
P . If P is described by a consistent power-commutator presentation, then we use the
algorithm of [12] to compute efficiently a power-commutator presentation for P ∗ and an
explicit homomorphism ψ : P ∗ → P .

Theorem 2.1. Let P be a p-group, let Pi = P/Pi(P ) have minimal generating set
g1, . . . , gd, and let P ∗i be the p-covering group of Pi. Consider the natural epimorphisms
ψ : P ∗i → Pi and γ : Pi+1 → Pi. Let g∗j and gj be arbitrary preimages of gj under ψ and
γ, respectively. Then ε : P ∗i → Pi+1 : g∗j 7→ gj defines an epimorphism.

Since M ≤ Φ(P ∗i ) it follows that P ∗i = 〈g∗1, . . . , g∗d〉. If we have polycyclic generating
sequences for P ∗i and Pi+1, we can readily determine U := ker(ε). By construction U ≤M .

2.3. The basic algorithm. Recall that the algorithm proceeds by induction down the
lower exponent-p central series of P . Since P1 = P/P1(P ) is elementary abelian, Aut(P1) ∼=
GL(d, p). Now we assume by induction that we know Aut(Pi) for some i ≥ 1 and we seek
a generating set of Aut(Pi+1). Let P ∗i be the p-covering group of Pi and M the corre-
sponding p-multiplicator.

Theorem 2.2. Each automorphism α of Pi extends to an automorphism α∗ of P ∗i via
the natural homomorphism P ∗i → Pi. Moreover, α∗ leaves M invariant and α induces an
automorphism αM of M , which depends only on α.

We describe the explicit construction for the action on M . Let m ∈ M . Since M ≤
Φ(P ∗i ), we can write m = w(g∗1, . . . , g

∗
d) for some word w in the generating set g∗1, . . . , g

∗
d of

P ∗i . Let hi = (g∗i )
ψα ∈ Pi and choose a preimage h∗i in P ∗i under the natural epimorphism

ψ : P ∗i 7−→ Pi. We define mαM = w(h∗1, . . . , h
∗
d).

Theorem 2.1 provides an epimorphism ε : P ∗i → Pi+1 with kernel U ≤ M . Using the
action of Aut(Pi) on M , we define the stabiliser S := StabAut(Pi)(U). The extensions of
the inner automorphisms of Pi act trivially on the p-multiplicator of Pi and so stabilise
U .

Let T be the group of automorphisms of Pi+1 which centralise Pi+1/Pi(Pi+1).
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Theorem 2.3. Let ν : Aut(Pi+1) → Aut(Pi) be the natural homomorphism where T =
ker(ν) and S = im(ν). Then Aut(Pi+1) = TR, where R is an arbitrary preimage of S
under ν.

It is straight-forward to construct M , U , and the action of Aut(Pi) on M . To deter-
mine Aut(Pi+1), we must determine each of S and T . A generating set for T is readily
constructed using the following lemma.

Lemma 2.4. Let P be a p-group with Pc+1(P ) = 1 and c ≥ 2. Let g1, . . . , gd and x1, . . . , xl
be minimal generating sets for P and Pc(P ), respectively. Define

βi,j : P → P :

{
gi 7→ gixj
gk 7→ gk for k 6= i.

Then {βi,j | 1 ≤ i ≤ d and 1 ≤ j ≤ l} is a polycyclic generating sequence for the
elementary abelian p-group of automorphisms of P centralising P/Pc(P ).

The major task is to construct a generating set for S. The standard technique to
construct the stabiliser S of a subspace U is to list the orbit of U and, concurrently with
its construction, calculate Schreier generators for S; see for example [9, Chapter 4]. If the
orbit is small, this approach is very efficient. In [6] various refinements were introduced to
break up a difficult stabiliser computation into smaller pieces; these extend significantly
the range of application of the automorphism group algorithm. We identify those key
refinements needed to establish Theorem 1.2.

(1) Exploit the internal structure of the p-multiplicator M of Pi. Since M is elemen-
tary abelian, it is an Aut(Pi)-module. Use its submodule structure to minimise
the lengths of the orbits constructed.

(2) Observe, from Lemma 2.4, that the acting group A := Aut(Pi) has a normal
p-subgroup N , namely the centraliser in A of V ∼= P/P1(P ), and A/N is a sub-
group of GL(V ). In particular, the action of N on M is as a unipotent subgroup
of GL(M). Costi [5] (see also [6, §5.2]) describes an algorithm UnipotentSta-
biliser to construct a canonical representative U of the N -orbit of a subspace U
of M . Simultaneously, it constructs a generating set for the stabiliser in N of U
and t ∈ N such that U t = U . Use this algorithm to construct the stabiliser of U
in N without explicitly constructing its orbit.

(3) If possible, replace the acting group A by a proper subgroup which contains the
stabiliser of U .

(4) If the acting group A is soluble then ascend a composition series for A, determining
orbits under successive terms of the series. At each step, use the property that an
orbit under a normal subgroup is a block of a permutation action.

3. The automorphism group of P

Recall that P has order 384 and class 3. Its lower exponent-p central series and lower
central series coincide; hence P1 := P/P1(P ) has order 39, and P2 := P/P2(P ) has
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order 345 and a centre of order 336. In Table 1, we record log3(|Pi|), the rank of the
p-multiplicator M of Pi and the rank of the kernel U of the homomorphism from P ∗i to
Pi+1. We identify U with a subspace of the corresponding vector space.

i Pi M U
1 9 45 9
2 45 204 165
3 84

Table 1. Data for P

Lemma 3.1. Aut(P2) = Autc(P2).

Proof. Let A := Aut(P1) and observe that A ∼= GL(9, 3). The 45-dimensional A-module
M has a direct sum decomposition into irreducibles submodules M1⊕M2, where M1 has
dimension 36 and M2 has dimension 9. The action of A on M1 is the alternating square
representation Λ2(V ) for V = GF(3)9 and its action on M2 is as GL(V ). The stabiliser in
A of the 18-dimensional space U+M2 contains the stabiliser of U , and is also the stabiliser
of the 9-dimensional space W := (U +M2)/M2. We restrict the A-module action from M
to the composition factor M/M2 of dimension 36.

Thus our task is to construct the stabiliser of W under Λ2(V ). Since the action of
A on M1 is as the alternating square representation Λ2(V ), each of the 19682 non-zero
vectors in W determines an anti-symmetric bilinear 9 × 9 form, where the 36 entries in
the vector define the above-diagonal entries in the matrix of the form. Precisely four of
these forms have rank 4, 956 have rank 6, and 18722 have rank 8. The four forms of rank
4 occur as two pairs, {γ,−γ} and {ζ,−ζ}. It is easy to write down the stabiliser of γ as
a subgroup of GL(V ) since it has known shape 320.(GL(5, 3)× Sp(4, 3)). This we also do
for ζ. The intersection C of these two groups has order 211 × 323 and fixes both γ and
ζ. Its normaliser N := NGL(9,3)(C) has order 214 × 323 and contains the stabiliser of U
under A. Since the action of N on M is highly reducible, it is reasonably routine using
the refinements of [6] to establish that the stabiliser of U in N is trivial. Theorem 2.3
now implies that Aut(P2) = T , the group defined in Lemma 2.4. �

We can construct C readily using either the faithful representation of GL(V ) as per-
mutations of the non-zero vectors in V , or the algorithm of Brooksbank & O’Brien [4].

Proof of Theorem 1.2. Lemma 3.1 shows that A := Aut(P2) is a group of order 3224. It
acts on M , the p-multiplicator of P2, as a unipotent subgroup of GL(204, 3). We use the
UnipotentStabiliser algorithm to construct the stabiliser in A of the kernel U . This
stabiliser is the inner automorphism group of P2. The result now follows from Theorem
2.3. 2
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