RECOGNIZING FINITE MATRIX GROUPS OVER INFINITE FIELDS

A. S. DETINKO, D. L. FLANNERY, AND E. A. O'BRIEN

ABSTRACT. We present a uniform methodology for computing with finitely generatatiirngroups
over any infinite field. As one application, we completely solve the probledeoiding finiteness in
this class of groups. We also present an algorithm that, given such adfiaiip as input, in practice
successfully constructs an isomorphic copy over a finite field, andth&esopy to investigate the
group’s structure. Implementations of our algorithms are availableAiva.

1. INTRODUCTION

This paper establishes a uniform methodology for computing with finitely gésblinear groups
over any infinite field. Our techniques constitute a computational analodfieitef approximation’
[24, Chapter 4], which is a major tool in the study of finitely generated lineaus. It relies on the
fact that each finitely generated linear groGpis residually finite. Moreover( is approximated
by matrix groups of the same degree over finite fields [26, Theorem ASY. We also use the
fundamental result thatr has a normal subgroup of finite index with every torsion element unipo-
tent [24, 4.8, p. 56]. For computational purposes, the key objective determine a congruence
homomorphism whose kernel has this property, and whose image is detieed finite field.

The first problem that we solve is a natural and obvious candidate fapphication of our
methodology: testing finiteness of finitely generated linear groups. Thidgmohas been inves-
tigated previously, but only for groups over specific domains. Algorithonsefsting finiteness over
the rational fieldQ are given in [2]. One of these, based on integrality testing, is exploitedras p
of the default procedures IBAP [14] and MAGMA [3] to decide finiteness ove). Groups over a
characteristic zero function field are considered in [22]. Howeveralperithm there possibly in-
volves squaring dimensions. Function fields are also dealt with in [5, &,22], where computing
in matrix algebras plays a central role. While the algorithms from [8, 9] haes implemented in
MAGMA, we know of no implementations of those from [5, 18, 22].

In this paper, we design a new finiteness testing algorithm that may be emglor/te first time,
over any infinite field. The algorithm is concise and practical. Our implementiatatiatributed with
MAGMA, and we demonstrate that it performs well for a range of inputs.

If a groupG is finite then, in practice, we can often construct an isomorphic cogy ofer some
finite field. As a consequence, drawing on recent progress in compwitingnatrix groups over fi-
nite fields [1, 21], we obtain the first algorithms to answer many structuestepns abou&z. These
include: computing|G|; testing membership irz; computing Sylow subgroups, a composition
series, and the solvable and unipotent radical& of
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We emphasize that this paper provides a framework for the solution ofi&ra@mputational
problems than the testbed ones treated here. SW-homomorphisms (defovedaoe used in [7] to
test nilpotency over certain fields. In [11], these are extended to deictdal properties of finitely
generated linear groups. The present paper gives a comprehaansunt of our techniques that is
valid in all settings. For further discussion of how these ideas have meaoged, see the survey
[6].

Briefly, the paper is organized as follows. Sections 2 and 3 set up oyutational analogue of
finite approximation. The algorithms are presented and justified in Sectiortie fimal section, we
report on our M\GMA implementation.

2. CONGRUENCE HOMOMORPHISMS OF FINITELY GENERATED LINEAR GRORB

Let p be a proper ideal of an (associative, unital) ridg The natural surjectiol — A/p
induces an algebra homomorphidviut(n, A) — Mat(n, A/p), which restricts to a group homo-
morphismGL(n, A) — GL(n,A/p). All these congruence homomorphisms will be denoted by
¢, . Theprincipal congruence subgrouB, is the kernel ofp, in GL(n, A).

We fix some more notation, used throughout. 1Set= {¢1,...,9,} € GL(n,F), whereF is a
field. Denote(S) by G. ThenG < GL(n, R), whereR C F is the (Noetherian) ring generated by
the entries of the matriceg, gi‘l, 1 <i < r. Recall thatR/p is a finite field if p is a maximal
ideal (see [24, p. 50]). For the purpose of studyidgwe may assume without loss of generality
thatF is the field of fractions ofR, and is a finitely generated extension of its prime subfield.

Each finitely generated linear group possesses a normal subfraiinite index whose torsion
elements are all unipotent; g9 is torsion-free ifchar R = 0. A proof of this result, due to Selberg
(1960) and Wehrfritz (1970), can be found in [24, 4.8, p. 56]; artshew proof is supplied by
Proposition 2.1 and Corollary 2.2 below. We call such a normal subghowb a given linear group
anSW-subgrouplf p is an ideal ofR such thafl’, is an SW-subgroup of:L(n, R), then¢, is an
SW-homomorphisnwe now formulate conditions that enable us to construct SW-homomorphisms.

Proposition 2.1. Let A be a Noetherian integral domain, angdbe a maximal ideal ofA. If T,
has a non-trivial torsion elemerit, thenp := char(A/p) > 0 and |h| is a power ofp.

Proof. Set|h| = q. Since¢,(h) = 1,,, we haveh = 1,, + b whereb € Mat(n, p), b # 0,,. Hence
(1, +b)? =1,, so that

) qb+<g)b2+---+bq—0n.

For k > 2, denote thd, j)th entry ofb* by bg.“) ; thenbg‘?) € pF. By the Krull Intersection Theorem
[17,27.8, p. 437]0;":1;)’“ = {0}. Hence there exists a positive integesuch thatb;; € p¢ for all

i,j,butb,.s ¢ pc*t for somer, s. This implies thaibg?) € pkc. Now
qbrs + <g> B+ b0 =0

by (1), sogb,s € p** C p=t.
Suppose that ¢ p. SinceA/p is a field, there exist € A andy € p such thatl = gz + y.
Then
brs = qul' + brsy
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and so, becaudg, € p¢ andqgb,, € pt!, we getb,.; € p°t!. This contradiction proves thate p.
Thus ¢ must be a power op. For if not, we could have begun with of prime order different tg,
and thenp would contain two different prime integers and so would contain d

Corollary 2.2. Let p, p1, and p» be maximal ideals of the Noetherian integral domain

(i) If char(A/p) =0 thenT, is torsion-free.

(i) Suppose thathar A = 0, and char(A/p1) # char(A/p2). ThenT',, N T, is a torsion-
free subgroup ofGL(n, A). In particular, if A = R thenI',, N T, is an SW-subgroup of
GL(n, R).

(i) Suppose thathar A = p > 0. Then each torsion element Bf, is unipotent. In particular,
if A = R thenI', is an SW-subgroup d&L(n, R).

Proof. Clear from Proposition 2.1. O

Note that parts (i) and (ii) of Corollary 2.2 contribute to a solution of the prolpesed on p. 70
of [23].

By Corollary 2.2 (ii), if char R = 0 then an SW-subgroup can be constructed as the intersection
of two congruence subgroups. Since this may not be convenient, we mentamore result.

Proposition 2.3. Suppose that\ is a Dedekind domain of characteristic zero, amds a maximal
ideal of A such thatchar(A/p) = p > 2. If p ¢ p? thenT, is torsion-free.

Proof. See [23, Theorem 4, p. 70]. O

3. CONSTRUCTION OFSW-HOMOMORPHISMS

We now outline methods to construct both congruence homomorphisms ahd®dmorphisms,
given the assumptions dn made in the second paragraph of Section 2.

SinceF is a finitely generated extension of its prime subfield, there is a sulifigldF of finite
degree over the prime subfield, and elements . . , z,,, (m > 0) algebraically independent ovr,
such thatF is a finite extension ofl. = P(z1,...,2,,);say|F: Ll =e> 1. Here|P: Q| =k > 1
if char[F =0, and if charF = p > 0 thenP is the fieldF, of sizeq.

Each type of field is considered in its own section below. For an integral idohaand
e A\{0}, let %A denote the ring of fractions with denominators in the multiplicative submonoid
of A generated by:.

3.1. The rational field. LetF = Q. ThenR = iZ wherey is the least common multiple of the
denominators of the entries in the matri(ygsgi_l, 1 < i <r. Foraprimep € Z not dividing 1,
define¢; = ¢1,, : GL(n, R) — GL(n,p) to be entry-wise reduction modujo. If p > 2 then we
denote¢, , by ®; = ®,,. By Proposition 2.3®; is an SW-homomorphism.

3.2. Number fields. Let F be a number field, so thdt = Q(«) for some algebraic number. Let
f(t) be the minimal polynomial ofx, of degreek. Multiplying « by a common multiple of the
denominators of the coefficients ¢f¢), if necessary, we may assume thats an algebraic integer;
thatis, f(t) € Z[t].

We haveR C %Z[a] - %(’) for someu € Z, whereQ is the ring of integers of'. We define
an SW-homomorphism o as the restriction of a congruence homomorphism on the Dedekind
domain%@.
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Let p € Z be a prime not dividing:, and denote byf(¢) the polynomial obtained by mog
reduction of the coefficients of(¢). Further, leta be a root off(¢), so thata is a root of someZ,, -
irreducible factorf;(t) of f(t). Eachb € R may be expressed uniquely in the fobra= S5 ¢;a
wherec; € iZ. Thus the assignment, ), : b — zfz‘ol qﬁlm(ci)o‘/ is well-defined. Moreover,
¢2, is @ ring homomorphismk — Z,(a) = F,, say. Thus we have an induced congruence
homomorphismps , : GL(n, R) — GL(n,p").

Next, we state criteria under whichy = ¢5 , is an SW-homomorphism.

Lemma 3.1. Suppose thap € Z is an odd prime dividing neithet. nor the discriminant off (¢).
Then the kernel op, , on GL(n, R) is torsion-free.

Proof. Let f;(t) be a preimage of;(¢) in Z[t]. The idealp generated by and f;(«) in %(’) is
maximal, by [19, Theorem 3.8.2]. Hengen R is a maximal ideal ofR. Also p ¢ p? by [19,
Proposition 3.8.1, Theorem 3.8.2]. The lemma then follows from Proposition 2.3 O

Lemma 3.2. There are no non-triviap-subgroups ofGL(n,F) if p > nk + 1.

Proof. Let g € GL(n, Q) be of orderp. Since the characteristic polynomial @has a primitivepth
root of unity as a root, it is divisible by theth cyclotomic polynomial. Thug —1 < n. The general
claim holds because each subgrougiif(n, F) is isomorphic to a subgroup &kL(nk, Q). O

Corollary 3.3. Suppose thaiA is a Noetherian subring df , and p is a maximal ideal ofA such
that char(A/p) = p > nk + 1. ThenI', is torsion-free.

Proof. This is a consequence of Proposition 2.1 and Lemma 3.2. O

Let p € Z be a prime not dividing:. We denotep, ,, by 3 = 5, if one of the following extra
conditions orp is satisfied:p is odd and does not divide the discriminant of the minimal polynomial
of a; or p > nk + 1. The preceding discussion shows tldgt is an SW-homomorphism.

Example 3.4. Suppose thaF is a cyclotomic field, saf = Q(¢) where( is a primitive cth root
of unity, ¢ > 2. If p > 2 andp does not dividdcm(y, ¢), then ¢, , is an SW-homomorphism by
Lemma 3.1.

3.3. Function fields. Let F = P(z1,...,2,), m > 1, whereP is Q, a number field, off,. We
haveR C iP[xh .., ] for somep = p(z1,. .., x,) determined byS U S,

Leta = (a1,...,an) beanon-root ofs. If char[F = 0, thena, € P for all ; if F has positive
characteristic, then the; are in]P? or some finite extension. Defings = ¢3 , to be the map that
substitutess; for z;, 1 < i < m. Corollary 2.2 (i) implies thatys : GL(n, R) — GL(n,P) is a
homomorphism with torsion-free kernelé¢har F = 0. We then obtain an SW-homomorphism in
zero characteristic by settings = ®3,, = ®;, 0 ¢3,, Wherei =1 or2if P=QorPis a
number field, respectively. IP = F, then®3 = ¢3 is an SW-homomorphism by Corollary 2.2 (jii).
Notice that®s , ,, is defined for all but a finite number of andp whenm = 1; otherwise,®3 , ,
is defined for infinitely many: andp.

3.4. Algebraic function fields. For m > 1, let L = P(xy,...,2,) andLy = Plzy, ..., 2y,
where againP is Q, a number field, off,. We assume thaf = L(«) is a simple extension of
L of degreee > 1. For instance, we can stipulate tHgtis a separable extension &f (e.g., in
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characteristi this is assured ip t ). Let f(t) € Lo[t] be the minimal polynomial of.. We have
R C i}Lo[a] for someyp € 1y determined in the usual way by the inptit

Suppose that = (a,...,ay) IS @ non-root ofu, where thea; are inlP or a finite extension.
Denote by f(t) the polynomial obtained by substitution afin the coefficients off(¢). Define
¢ = ¢3q(c) for c € i]Lo similarly. Let & be a root of f(t). Define ¢y = ¢s4 : R — P(a)
by ¢4 : 375 ciat = .9, Ga'. Therefore, ifchar F = 0 then we get an induced congruence
homomorphismp, : GL(n, R) — GL(n,P(a)), whose kernel is torsion-free by Corollary 2.2 (i).
Setdy = Py qp = Pipo duq, Wherei =1 if P(a) = Q, andi = 2 if P(a) is a number field. If
charF > 0 then we set®, = ¢4. In all cases®, is an SW-homomorphism. As wittks ,, ,,, the
homomorphism®, ,, ,, is defined for infinitely many: andp, and for all but a finite number aof, p
whenm = 1.

Remark3.5. FieldsF as in Sections 3.1-3.4 are the main ones support€sliAy and MAGMA.

Remark3.6. SW-homomorphisms are used in [11, Section 5.3] to test whether GL(n,F) is
central-by-finite; indeed, each ‘W-homomorphism’ defined in that paparspecial kind of SW-
homomorphism. They also feature in the nilpotency testing algorithm of [7].

3.5. Analyzing congruence homomaorphisms.We now prove some results that will be helpful in
the analysis of our algorithms.

Lemma 3.7.Let A be a Dedekind domain, and Iét be a finitely generated subgroup@Gi(n, A).
For all but a finite number of maximal idea}sof A, the following are true:
(i) if G isfinite theng, is an isomorphism ofs onto ¢,(G);
(i) if G is infinite, andv is a positive integer, them,(G) contains an element of order greater
thanv.

Proof. (Cf. [24, p. 51] and [8, Lemma 3].) Note that a non-zero elemeat A is contained in only
finitely many maximal ideals ofA. To see this, leuA = pf' - -- pt, where thep; are maximal
ideals. If p is a maximal ideal ofA containinga, thenp(* - -- p C p, sop = p; for somei.

Next, let M = {hy,...,hqs} C Mat(n,A), and for each pait, k € {1,...,d}, | # k, choose
(i,4) such thath, (i, j) — hi(7,5) # 0. Denote the product of all differencés(i, j) — hx (i, 5) by
ap . If p is anideal ofA not containingays, then|¢,(M)| = |M].

Taking M to be the set of elements 6f, part (i) is now clear.

If G isinfinite thenG contains an element of infinite order, by a result of Schur [23, Theorem 5,
p. 181]. Thus, taking\ to be {g,...,g¢", g1}, we get (ii). O

To utilize Lemma 3.7 in our context, |& be one ofQ, a number fieldP(z), or a finite exten-
sion of P(x). The relevant SW-homomorphisf on GL(n, R) is the restriction of a congruence
homomorphismy, on GL(n, A), where A is a Dedekind domain with maximal ideal Hence
for G < GL(n, R) and all but a finite number of choices in the definitionqf, the following
hold: (a) if G is finite, then® is an isomorphism ort7; (b) if G is infinite, then®(G) contains
an element of order greater than any given positive integdfor the other field& where R may
not be contained in a Dedekind domain (function fields with more than one muatge or finite
extensions thereof), it is still true that there are infinitely many SW-homonmsoreh® such that
(a) and (b) hold. This follows from the definition @ in each case, and arguing as in the proof of
Lemma 3.7.
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4. FINITENESS ALGORITHMS FOR MATRIX GROUPS

4.1. Preliminaries: asymptotic bounds. We continue with the notation of the previous section:
F:Ll=e>1,L=P(zy,...,2), m>0,and|P: Q| =k >10rP =F,.
Suppose first thathar F = 0. Putng = nke.

Lemma 4.1. A finite subgroup& of GL(n,F) is isomorphic to a subgroup d&L(ng, Q).

Proof. Certainly G is isomorphic to a subgroup d&L(ne,L), and a subgroup oGL(ne,P) is
isomorphic to a subgroup @kL(nke, Q). The lemma follows from [23, p. 69, Corollary 4]. O

It is well-known that the order of a finite subgroup 6fl.(n, Q) is bounded by a function of
n (see, e.g., [12, 13]). Hence by Lemma 4.1 there are functigns: v (ng) and vo = va(ng)
bounding the order of a finite subgroup@L(n, F) and the order of a torsion element@L(n, F),
respectively. Fomgy > 10 or ng = 3,5 we may takev; = 2™ (ng)! by [12, Theorem A]; for the
remainingng, values ofy; are also listed there. A suitable function is given by the next lemma.

Lemma 4.2. If g is a torsion element ofiL(n, F), then|g| < 2°+13L70/2) where2* is the largest
power of2 dividing ng .

Proof. Let F = Q. If |g| is odd then|g| < 31"/2] by [13, p. 3519]. Suppose thatis a 2-element.
Theng is conjugate to a monomial matrix ov€r (see [20, 1V.4]). Since the order ofzzelement in
Sym(n) is bounded by the largest powet of 2 dividing n, |g| < 2!*!. Lemma 4.1 now implies
the result in the general cadeD Q. O

Here is one more useful condition to detect infinite groups in characteréstic z
Lemma4.3. If G < GL(n,F) is finite andp > ng + 1 thenp 1 |G]|.
Proof. This follows from Lemmas 3.2 and 4.1. O

Now suppose thatharF > 0. The order of a finite subgroup &&L(n,F) can be arbitrarily
large. On the other hand, the orders of torsion elemen@lagf, F) are bounded. The next lemma
furnishes such a bound.

Lemma 4.4. Let ng = ne. If g is atorsion element ofsL(n,F) then|g| < ¢™ — 1.

Proof. The proof is essentially the same as that of [22, Theorem 3.3, Corollgry\8elrecap the
main points. It suffices to assume thiat= .. By [25], ¢ is conjugate to a block upper triangular
matrix, where the (irreducible) blocks alg -matrices. Hence the characteristic polynomiaj dfas
I, -coefficients. It follows that the dimension ¢§)r, is at mostn, and so every invertible element
of this enveloping algebra has order at mgst— 1. O

4.2. Testing finiteness.Using Section 3, we can construct a congruence imagé) of G <
GL(n,F) over a finite field such that the torsion elementstgf := G N I', are unipotent. Thus,

to decide finiteness of7, we merely test whethety, is trivial (charF = 0), or whetherG,, is
unipotent charF > 0). Both tasks can be accomplished using oméymal generatorof G,:
generators for a subgroup whose normal closur€'irs G,—that is, we do not need to construct
the full congruence subgroup. Normal generators are found bydastdmethod [16, pp. 299-300]
that requires a presentation ¢f(G) as input. Since it is a matrix group over a finite field, we can
compute a presentation of,(G) using the algorithms described in [1, 21]. We refer to such an
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algorithm asPresentation. Let SWImage be an algorithm that constructs a congruence image
over a finite field. The congruence homomorphism in question is one of thbdW@morphisms

d = ®;, 1 <i<4,defined in Sections 3.1-3.4. The following procedure tests finitenesg then
lines just explained (see Section 4.1 for definitionsigfand v1 ).

IsFiniteMatrixGroup

Input: S = {g1,...,9-} € GL(n,F).
Output: true if G = (5') is finite; false otherwise.

(1) H := SWImage(G) = (®(q1),...,P(gr))-

(2) If charF = 0 and either H| > v, or p divides|H | for some primep > ng+ 1, then return
false.

(3) Presentation(H) := (®(g1),...,®(gr) | wj(®(g1),...,P(gr)) =1;1 < 5 < t).

(4) K :={wj(g1,---,9,) |1 <j <t}

(5) If charF = 0 and K = {1,}, or charF > 0 andIsUnipotent(({K)%), then returntrue.
Else returnfalse.

Step (2) is justified by Lemma 4.3 and the comments before Lemma 4.2. For exaniples if
a number field then Lemma 3.7 suggests that the initial check in this step will usuatliyfydthat
G is infinite. We test unipotency of the congruence subgroéap© in step (5) using the normal
generating sek . A procedure for doing this, based on computation in enveloping algabigisen
in [11, Section 5.2]. Also note that we can apply a conjugation isomorphigm[&5] to write the
SW-image over the smallest possible finite field of the chosen characteristic.

Next we consider the special but very important case €has a cyclic group: testing whether
g € GL(n,F) has finite order. Let» be an upper bound on the order of a torsion element of
GL(n,F). See Lemmas 4.2 and 4.4 for valuesgf

IsFiniteCyclicMatrixGroup
Input: g € GL(n,F).
Output: true if g has finite orderfalse otherwise.

(1) h := SWImage(g).

(2) d:=0rder(h).

(3) If d > vy, or charF = 0 andp | d for some primep > ny + 1, then returnfalse.

(4) If charF = 0 andg? = 1,,, or char F > 0 and IsUnipotent(g?), then returntrue. Else
returnfalse.

Note thatg? is unipotent in characteristig > 0 if and only if its order divideg [log, n ] (see [23,
p. 192]). Also, ifchar F = 0 and IsFiniteCyclicMatrixGroup returnstrue, then the orderl
of ¢ is calculated in step (2). In the situations covered by Lemma 3/¢| i infinite thend > v,
for all but a finite number of choices @f. That is, we expect that infiniteness|gf will be detected
at step (3) ofIsFiniteCyclicMatrixGroup.
Recall that an infinite group’ < GL(n,F) has an infinite order element. Hence, as a precursor to
runningIsFiniteMatrixGroup, we check vialsFiniteCyclicMatrixGroup whether ‘random’
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elements of7, produced by a variation of the product replacement algorithm [4E hrdinite order;
cf. [2, Section 8.2].

4.3. Recognizing finite matrix groups. Suppose that; < GL(n,F) is finite. We describe how to
find an isomorphic copy ofs in someGL(n, ¢) and carry out further computations with.

If charF = 0 thenSWImage(G) = ®(G) isisomorphic toG. If charF > 0 then the congruence
subgroup may be non-trivial. We repeat the construction of normalrgeme of the congruence
subgroup for different choices @b, until we find a® for which all these generators are trivial.
By the discussion at the end of Section 3.5pif = 1 (there is just one indeterminate) then in a
finite number of iterations we will get an isomorphic copy@fby Lemma 3.7. Otherwise, there
are infinitely many isomorphism&, and the procedure will terminate if the set of maximal ideals
is recursively enumerable. In our many experiments the procedurgsabugceeded in finding an
isomorphic copy of.

Once we have an isomorphic copy, algorithms for matrix groups over finite figéek [1] and [16,
Chapter 10]) are used to investigate the structure and propert@s lof particular, we can

e compute a composition series and short presentatiot/for
e compute|G];
e compute the solvable and unipotent radicals, the derived subgroupy,camd Sylow sub-
groups ofG;
e test membership of € GL(n,F) in G.
Where feasible, the computation is undertaken directly in the isomorphic cogytha result is
‘lifted’ by means of the known isomorphism 6. Sometimes this involves additional work. For
instance, membership testing requires that we construct a new isomorpliimemnely, of(G, ).

5. IMPLEMENTATION AND PERFORMANCE

The algorithms have been implemented in&MA as part of our packagelFINITE [10]. We use
machinery from the GMPOSITIONTREE package [1, 21] to study congruence images and construct
their presentations.

We implemented SW-homomorphisms in full, as per Sections 3.1-3.4. When sekeginge
p subject to various conditions (see Sections 3.1 and 3.2), our defaultecioothe smallest
valid one. In Sections 3.3 and 3.4 we need to find a non-toof a collection of polynomials
{fi,-. ., fs} € PXyq,...,Xy,]. For example, ifP = F, then we could choose = (ai,...,a1)
wherea; € F,, | > max;deg(f;), anda; does not lie in a proper subfield &, . To avoid
working with potentially large field extensions, we instead generate randetuples of elements
of (increasing extensions ofj, to obtaina. A similar strategy of generating random-tuples is
employed in characteristi@.

The SW-homomorphisms are applied iRFINITE to solve specific problems, such as testing
finiteness, virtual properties, and nilpotency (the latter over an arbfieddy significantly enhancing
[7]). Here we report on the algorithms of Sections 4.2 and 4.3.

In our implementation ofIlsFiniteMatrixGroup and IsFiniteCyclicMatrixGroup, we
construct (at least) two SW-homomorphisms and determine the orders of tgesro&G under
these. IfG is finite andchar F = 0, then the orders must be identical. In positive characteristic, the
least common multiple of the orders of two images of an element of f@it®ust be at most, .
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The single most expensive task is evaluating relations to obtain normalagerscior the kernel of
an SW-homomorphism, since this may lead to blow-up in the size of matrix entriesehie first
check the orders of images under several SW-homomorphisms bef@aealate relations.

In [9] we proposed an alternative algorithm to decide finiteness forpgrdefined over function
fields of positive characteristic. This is an option NFINITE; it avoids evaluation of relations over
the field of definition, and is sometimes faster tHaFiniteMatrixGroup for such groups.

We now describe sample outputs that illustrate the efficiency and scope mhplementation.
The examples chosen cover the main domains and a variety of groupsxauingents were per-
formed using M\GMA V2.17-2 on a 2GHz machine. All examples are randomly conjugated, so that
generators are not sparse, and matrix entries (numerators and detoos)iage large. Since random
selection plays a role in some of the@@POSITIONTREE algorithms, times stated are averages over
three runs. The complete examples are available inNFeNITE package.

(1) G1 < GL(24,Q(¢17)) is a conjugate of the monomial groyp;7) : Sym(24). It has order
1724241, the maximum possible for a finite subgroup®F.(24, Q(¢17)) by [12]. We decide
finiteness of this3-generator group and determine its orderl4B5s; compute a Sylow
3-subgroup in22s; and the derived group 7 s.

(2) G2 < GL(12,F) whereF = P(x) andP = Q(v/2). Itis conjugate tal ! H, where H; is
RationalMatrixGroup(4,2) and Hy = PrimitiveSubgroup(3,1), both from standard
MAGMA databases. We decide finiteness of thigenerator group in8s; compute its order
21637 in 1435s; its centre in3s; and its Fitting subgroup iBs.

(3) G3 < GL(20,FF) whereTF is a degree extension of the function fiel@(x) . Itis conjugate
to the derived subgroup of the monomial gropl) ¢ Sym(20) in GL(20,F). We decide
finiteness and compute the order of tRisgenerator group in090s; and construct a Sylow
7-subgroup in5s.

(4) G4 < GL(100,Q(¢19)). We prove that thid4-generator group is infinite ifs.

(5) G5 < GL(30,F) whereF is an algebraic function field of degréeover Q(x). We prove
that this4-generator group is infinite im024s.

(6) Gs < GL(6,FF) whereF is an algebraic function field of degr@eover Fy(x). It is conju-
gate toGL(6, 3%). We find the order of thi -generator group i 8s; its unipotent radical
in 15s; a Sylow3-subgroupH in 18s; and compute the normalizer {fs of H in 42s.

(7) G7 < GL(16,FF) whereF is a degree extension offy (). Itis conjugate to the Kronecker
product of GL(8, 2) with a unipotent subgroup o&L(2,Fy(x)). We decide finiteness of
this 8-generator group ih6s; we compute its ordel6 - |GL(8, 2)| and an isomorphic copy
in 488s; and determine the Fitting subgrouplips.

(8) Gs < GL(12,FF) whereF is a function field with two indeterminates ov&g. We prove
that this8-generator group is infinite iGs.

(9) Gy < GL(12,F) whereF is a degree2 extension of a univariate function field ov&e.
We prove that thiss-generator group is infinite ih0s.
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