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ABSTRACT. We present a uniform methodology for computing with finitely generated matrix groups
over any infinite field. As one application, we completely solve the problem ofdeciding finiteness in
this class of groups. We also present an algorithm that, given such a finitegroup as input, in practice
successfully constructs an isomorphic copy over a finite field, and usesthis copy to investigate the
group’s structure. Implementations of our algorithms are available in MAGMA .

1. INTRODUCTION

This paper establishes a uniform methodology for computing with finitely generated linear groups
over any infinite field. Our techniques constitute a computational analogue of‘finite approximation’
[24, Chapter 4], which is a major tool in the study of finitely generated linear groups. It relies on the
fact that each finitely generated linear groupG is residually finite. Moreover,G is approximated
by matrix groups of the same degree over finite fields [26, Theorem A, p. 151]. We also use the
fundamental result thatG has a normal subgroup of finite index with every torsion element unipo-
tent [24, 4.8, p. 56]. For computational purposes, the key objective is todetermine a congruence
homomorphism whose kernel has this property, and whose image is definedover a finite field.

The first problem that we solve is a natural and obvious candidate for anapplication of our
methodology: testing finiteness of finitely generated linear groups. This problem has been inves-
tigated previously, but only for groups over specific domains. Algorithms for testing finiteness over
the rational fieldQ are given in [2]. One of these, based on integrality testing, is exploited as part
of the default procedures inGAP [14] and MAGMA [3] to decide finiteness overQ . Groups over a
characteristic zero function field are considered in [22]. However, thealgorithm there possibly in-
volves squaring dimensions. Function fields are also dealt with in [5, 8, 9, 18, 22], where computing
in matrix algebras plays a central role. While the algorithms from [8, 9] have been implemented in
MAGMA , we know of no implementations of those from [5, 18, 22].

In this paper, we design a new finiteness testing algorithm that may be employed, for the first time,
over any infinite field. The algorithm is concise and practical. Our implementationis distributed with
MAGMA , and we demonstrate that it performs well for a range of inputs.

If a groupG is finite then, in practice, we can often construct an isomorphic copy ofG over some
finite field. As a consequence, drawing on recent progress in computingwith matrix groups over fi-
nite fields [1, 21], we obtain the first algorithms to answer many structural questions aboutG . These
include: computing|G| ; testing membership inG ; computing Sylow subgroups, a composition
series, and the solvable and unipotent radicals ofG .
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We emphasize that this paper provides a framework for the solution of broader computational
problems than the testbed ones treated here. SW-homomorphisms (defined below) are used in [7] to
test nilpotency over certain fields. In [11], these are extended to decidevirtual properties of finitely
generated linear groups. The present paper gives a comprehensive account of our techniques that is
valid in all settings. For further discussion of how these ideas have been developed, see the survey
[6].

Briefly, the paper is organized as follows. Sections 2 and 3 set up our computational analogue of
finite approximation. The algorithms are presented and justified in Section 4. Inthe final section, we
report on our MAGMA implementation.

2. CONGRUENCE HOMOMORPHISMS OF FINITELY GENERATED LINEAR GROUPS

Let ρ be a proper ideal of an (associative, unital) ring∆ . The natural surjection∆ → ∆/ρ

induces an algebra homomorphismMat(n,∆) → Mat(n,∆/ρ) , which restricts to a group homo-
morphismGL(n,∆) → GL(n,∆/ρ) . All these congruence homomorphisms will be denoted by
φρ . Theprincipal congruence subgroupΓρ is the kernel ofφρ in GL(n,∆) .

We fix some more notation, used throughout. LetS = {g1, . . . , gr} ⊆ GL(n,F) , whereF is a
field. Denote〈S〉 by G . ThenG ≤ GL(n,R) , whereR ⊆ F is the (Noetherian) ring generated by
the entries of the matricesgi , g

−1
i , 1 ≤ i ≤ r . Recall thatR/ρ is a finite field if ρ is a maximal

ideal (see [24, p. 50]). For the purpose of studyingG , we may assume without loss of generality
thatF is the field of fractions ofR , and is a finitely generated extension of its prime subfield.

Each finitely generated linear group possesses a normal subgroupN of finite index whose torsion
elements are all unipotent; soN is torsion-free ifcharR = 0 . A proof of this result, due to Selberg
(1960) and Wehrfritz (1970), can be found in [24, 4.8, p. 56]; a short new proof is supplied by
Proposition 2.1 and Corollary 2.2 below. We call such a normal subgroupN of a given linear group
anSW-subgroup. If ρ is an ideal ofR such thatΓρ is an SW-subgroup ofGL(n,R) , thenφρ is an
SW-homomorphism. We now formulate conditions that enable us to construct SW-homomorphisms.

Proposition 2.1. Let ∆ be a Noetherian integral domain, andρ be a maximal ideal of∆ . If Γρ

has a non-trivial torsion elementh , thenp := char(∆/ρ) > 0 and |h| is a power ofp .

Proof. Set |h| = q . Sinceφρ(h) = 1n , we haveh = 1n + b whereb ∈ Mat(n, ρ) , b 6= 0n . Hence
(1n + b)q = 1n , so that

(†) qb+

(

q

2

)

b2 + · · ·+ bq = 0n.

For k ≥ 2 , denote the(i, j) th entry ofbk by b
(k)
ij ; thenb(k)ij ∈ ρk . By the Krull Intersection Theorem

[17, 27.8, p. 437],∩∞
k=1ρ

k = {0} . Hence there exists a positive integerc such thatbij ∈ ρc for all

i, j , but brs /∈ ρc+1 for somer, s . This implies thatb(k)ij ∈ ρkc . Now

qbrs +

(

q

2

)

b(2)rs + · · ·+ b(q)rs = 0

by (†), so qbrs ∈ ρ2c ⊆ ρc+1 .
Suppose thatq /∈ ρ . Since∆/ρ is a field, there existx ∈ ∆ and y ∈ ρ such that1 = qx + y .

Then
brs = qbrsx+ brsy
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and so, becausebrs ∈ ρc andqbrs ∈ ρc+1 , we getbrs ∈ ρc+1 . This contradiction proves thatq ∈ ρ .
Thusq must be a power ofp . For if not, we could have begun withh of prime order different top ,
and thenρ would contain two different prime integers and so would contain1 . �

Corollary 2.2. Let ρ , ρ1 , andρ2 be maximal ideals of the Noetherian integral domain∆ .

(i) If char(∆/ρ) = 0 thenΓρ is torsion-free.
(ii) Suppose thatchar∆ = 0 , and char(∆/ρ1) 6= char(∆/ρ2) . ThenΓρ1 ∩ Γρ2 is a torsion-

free subgroup ofGL(n,∆) . In particular, if ∆ = R thenΓρ1 ∩ Γρ2 is an SW-subgroup of
GL(n,R) .

(iii) Suppose thatchar∆ = p > 0 . Then each torsion element ofΓρ is unipotent. In particular,
if ∆ = R thenΓρ is an SW-subgroup ofGL(n,R) .

Proof. Clear from Proposition 2.1. �

Note that parts (i) and (ii) of Corollary 2.2 contribute to a solution of the problem posed on p. 70
of [23].

By Corollary 2.2 (ii), if charR = 0 then an SW-subgroup can be constructed as the intersection
of two congruence subgroups. Since this may not be convenient, we mention one more result.

Proposition 2.3. Suppose that∆ is a Dedekind domain of characteristic zero, andρ is a maximal
ideal of∆ such thatchar(∆/ρ) = p > 2 . If p /∈ ρ2 thenΓρ is torsion-free.

Proof. See [23, Theorem 4, p. 70]. �

3. CONSTRUCTION OFSW-HOMOMORPHISMS

We now outline methods to construct both congruence homomorphisms and SW-homomorphisms,
given the assumptions onF made in the second paragraph of Section 2.

SinceF is a finitely generated extension of its prime subfield, there is a subfieldP ⊆ F of finite
degree over the prime subfield, and elementsx1, . . . , xm (m ≥ 0) algebraically independent overP ,
such thatF is a finite extension ofL = P(x1, . . . , xm) ; say |F : L| = e ≥ 1 . Here|P : Q| = k ≥ 1

if charF = 0 , and if charF = p > 0 thenP is the fieldFq of sizeq .
Each type of field is considered in its own section below. For an integral domain ∆ and

µ ∈ ∆\{0} , let 1
µ∆ denote the ring of fractions with denominators in the multiplicative submonoid

of ∆ generated byµ .

3.1. The rational field. Let F = Q . ThenR = 1
µZ whereµ is the least common multiple of the

denominators of the entries in the matricesgi, g
−1
i , 1 ≤ i ≤ r . For a primep ∈ Z not dividing µ ,

defineφ1 = φ1,p : GL(n,R) → GL(n, p) to be entry-wise reduction modulop . If p > 2 then we
denoteφ1,p by Φ1 = Φ1,p . By Proposition 2.3,Φ1 is an SW-homomorphism.

3.2. Number fields. Let F be a number field, so thatF = Q(α) for some algebraic numberα . Let
f(t) be the minimal polynomial ofα , of degreek . Multiplying α by a common multiple of the
denominators of the coefficients off(t) , if necessary, we may assume thatα is an algebraic integer;
that is,f(t) ∈ Z[t] .

We haveR ⊆ 1
µZ[α] ⊆ 1

µO for someµ ∈ Z , whereO is the ring of integers ofF . We define
an SW-homomorphism onR as the restriction of a congruence homomorphism on the Dedekind
domain 1

µO .
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Let p ∈ Z be a prime not dividingµ , and denote byf̄(t) the polynomial obtained by modp
reduction of the coefficients off(t) . Further, letᾱ be a root off̄(t) , so thatᾱ is a root of someZp -
irreducible factorf̄j(t) of f̄(t) . Eachb ∈ R may be expressed uniquely in the formb =

∑k−1
i=0 ciα

i

where ci ∈ 1
µZ . Thus the assignmentφ2,p : b 7→ ∑k−1

i=0 φ1,p(ci)ᾱ
i is well-defined. Moreover,

φ2,p is a ring homomorphismR → Zp(ᾱ) = Fpl , say. Thus we have an induced congruence
homomorphismφ2,p : GL(n,R) → GL(n, pl) .

Next, we state criteria under whichφ2 = φ2,p is an SW-homomorphism.

Lemma 3.1. Suppose thatp ∈ Z is an odd prime dividing neitherµ nor the discriminant off(t) .
Then the kernel ofφ2,p on GL(n,R) is torsion-free.

Proof. Let fj(t) be a preimage of̄fj(t) in Z[t] . The idealρ generated byp and fj(α) in 1
µO is

maximal, by [19, Theorem 3.8.2]. Henceρ ∩ R is a maximal ideal ofR . Also p 6∈ ρ2 by [19,
Proposition 3.8.1, Theorem 3.8.2]. The lemma then follows from Proposition 2.3. �

Lemma 3.2. There are no non-trivialp-subgroups ofGL(n,F) if p > nk + 1 .

Proof. Let g ∈ GL(n,Q) be of orderp . Since the characteristic polynomial ofg has a primitivep th
root of unity as a root, it is divisible by thep th cyclotomic polynomial. Thusp−1 ≤ n . The general
claim holds because each subgroup ofGL(n,F) is isomorphic to a subgroup ofGL(nk,Q) . �

Corollary 3.3. Suppose that∆ is a Noetherian subring ofF , and ρ is a maximal ideal of∆ such
that char(∆/ρ) = p > nk + 1 . ThenΓρ is torsion-free.

Proof. This is a consequence of Proposition 2.1 and Lemma 3.2. �

Let p ∈ Z be a prime not dividingµ . We denoteφ2,p by Φ2 = Φ2,p if one of the following extra
conditions onp is satisfied:p is odd and does not divide the discriminant of the minimal polynomial
of α ; or p > nk + 1 . The preceding discussion shows thatΦ2 is an SW-homomorphism.

Example 3.4. Suppose thatF is a cyclotomic field, sayF = Q(ζ) whereζ is a primitive c th root
of unity, c > 2 . If p > 2 andp does not dividelcm(µ, c) , thenφ2,p is an SW-homomorphism by
Lemma 3.1.

3.3. Function fields. Let F = P(x1, . . . , xm) , m ≥ 1 , whereP is Q , a number field, orFq . We
haveR ⊆ 1

µP[x1, . . . , xm] for someµ = µ(x1, . . . , xm) determined byS ∪ S−1 .
Let a = (a1, . . . , am) be a non-root ofµ . If charF = 0 , thenai ∈ P for all i ; if F has positive

characteristic, then theai are inP or some finite extension. Defineφ3 = φ3,a to be the map that
substitutesai for xi , 1 ≤ i ≤ m . Corollary 2.2 (i) implies thatφ3 : GL(n,R) → GL(n,P) is a
homomorphism with torsion-free kernel ifcharF = 0 . We then obtain an SW-homomorphism in
zero characteristic by settingΦ3 = Φ3,a,p = Φi,p ◦ φ3,a , where i = 1 or 2 if P = Q or P is a
number field, respectively. IfP = Fq thenΦ3 = φ3 is an SW-homomorphism by Corollary 2.2 (iii).
Notice thatΦ3,a,p is defined for all but a finite number ofa andp whenm = 1 ; otherwise,Φ3,a,p

is defined for infinitely manya andp .

3.4. Algebraic function fields. For m ≥ 1 , let L = P(x1, . . . , xm) and L0 = P[x1, . . . , xm] ,
where againP is Q , a number field, orFq . We assume thatF = L(α) is a simple extension of
L of degreee > 1 . For instance, we can stipulate thatF is a separable extension ofL (e.g., in
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characteristicp this is assured ifp ∤ e). Let f(t) ∈ L0[t] be the minimal polynomial ofα . We have
R ⊆ 1

µL0[α] for someµ ∈ L0 determined in the usual way by the inputS .
Suppose thata = (a1, . . . , am) is a non-root ofµ , where theai are inP or a finite extension.

Denote byf̄(t) the polynomial obtained by substitution ofa in the coefficients off(t) . Define
c̄ = φ3,a(c) for c ∈ 1

µL0 similarly. Let ᾱ be a root off̄(t) . Define φ4 = φ4,a : R → P(ᾱ)

by φ4 :
∑e−1

i=0 ciα
i 7→ ∑e−1

i=0 c̄iᾱ
i . Therefore, ifcharF = 0 then we get an induced congruence

homomorphismφ4 : GL(n,R) → GL(n,P(ᾱ)) , whose kernel is torsion-free by Corollary 2.2 (i).
SetΦ4 = Φ4,a,p = Φi,p ◦ φ4,a , wherei = 1 if P(ᾱ) = Q , and i = 2 if P(ᾱ) is a number field. If
charF > 0 then we setΦ4 = φ4 . In all casesΦ4 is an SW-homomorphism. As withΦ3,a,p , the
homomorphismΦ4,a,p is defined for infinitely manya andp , and for all but a finite number ofa , p
whenm = 1 .

Remark3.5. FieldsF as in Sections 3.1–3.4 are the main ones supported byGAP and MAGMA .

Remark3.6. SW-homomorphisms are used in [11, Section 5.3] to test whetherG ≤ GL(n,F) is
central-by-finite; indeed, each ‘W-homomorphism’ defined in that paper isa special kind of SW-
homomorphism. They also feature in the nilpotency testing algorithm of [7].

3.5. Analyzing congruence homomorphisms.We now prove some results that will be helpful in
the analysis of our algorithms.

Lemma 3.7. Let∆ be a Dedekind domain, and letG be a finitely generated subgroup ofGL(n,∆) .
For all but a finite number of maximal idealsρ of ∆ , the following are true:

(i) if G is finite thenφρ is an isomorphism ofG ontoφρ(G) ;
(ii) if G is infinite, andν is a positive integer, thenφρ(G) contains an element of order greater

than ν .

Proof. (Cf. [24, p. 51] and [8, Lemma 3].) Note that a non-zero elementa of ∆ is contained in only
finitely many maximal ideals of∆ . To see this, leta∆ = ρe11 · · · ρecc , where theρi are maximal
ideals. Ifρ is a maximal ideal of∆ containinga , thenρe11 · · · ρecc ⊆ ρ , soρ = ρi for somei .

Next, letM = {h1, . . . , hd} ⊆ Mat(n,∆) , and for each pairl, k ∈ {1, . . . , d} , l 6= k , choose
(i, j) such thathl(i, j) − hk(i, j) 6= 0 . Denote the product of all differenceshl(i, j) − hk(i, j) by
aM . If ρ is an ideal of∆ not containingaM , then |φρ(M)| = |M | .

TakingM to be the set of elements ofG , part (i) is now clear.
If G is infinite thenG contains an elementg of infinite order, by a result of Schur [23, Theorem 5,

p. 181]. Thus, takingM to be{g, . . . , gν , gν+1} , we get (ii). �

To utilize Lemma 3.7 in our context, letF be one ofQ , a number field,P(x) , or a finite exten-
sion of P(x) . The relevant SW-homomorphismΦ on GL(n,R) is the restriction of a congruence
homomorphismφρ on GL(n,∆) , where∆ is a Dedekind domain with maximal idealρ . Hence
for G ≤ GL(n,R) and all but a finite number of choices in the definition ofφρ , the following
hold: (a) if G is finite, thenΦ is an isomorphism onG ; (b) if G is infinite, thenΦ(G) contains
an element of order greater than any given positive integerν . For the other fieldsF whereR may
not be contained in a Dedekind domain (function fields with more than one indeterminate or finite
extensions thereof), it is still true that there are infinitely many SW-homomorphisms Φ such that
(a) and (b) hold. This follows from the definition ofΦ in each case, and arguing as in the proof of
Lemma 3.7.
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4. FINITENESS ALGORITHMS FOR MATRIX GROUPS

4.1. Preliminaries: asymptotic bounds. We continue with the notation of the previous section:
|F : L| = e ≥ 1 , L = P(x1, . . . , xm) , m ≥ 0 , and |P : Q| = k ≥ 1 or P = Fq .

Suppose first thatcharF = 0 . Putn0 = nke .

Lemma 4.1. A finite subgroupG of GL(n,F) is isomorphic to a subgroup ofGL(n0,Q) .

Proof. Certainly G is isomorphic to a subgroup ofGL(ne,L) , and a subgroup ofGL(ne,P) is
isomorphic to a subgroup ofGL(nke,Q) . The lemma follows from [23, p. 69, Corollary 4]. �

It is well-known that the order of a finite subgroup ofGL(n,Q) is bounded by a function of
n (see, e.g., [12, 13]). Hence by Lemma 4.1 there are functionsν1 = ν1(n0) and ν2 = ν2(n0)

bounding the order of a finite subgroup ofGL(n,F) and the order of a torsion element ofGL(n,F) ,
respectively. Forn0 > 10 or n0 = 3, 5 we may takeν1 = 2n0(n0)! by [12, Theorem A]; for the
remainingn0 , values ofν1 are also listed there. A suitable functionν2 is given by the next lemma.

Lemma 4.2. If g is a torsion element ofGL(n,F) , then |g| ≤ 2s+13⌊n0/2⌋ where2s is the largest
power of2 dividing n0 .

Proof. Let F = Q . If |g| is odd then|g| ≤ 3⌊n/2⌋ by [13, p. 3519]. Suppose thatg is a 2-element.
Theng is conjugate to a monomial matrix overQ (see [20, IV.4]). Since the order of a2-element in
Sym(n) is bounded by the largest power2t of 2 dividing n , |g| ≤ 2t+1 . Lemma 4.1 now implies
the result in the general caseF ⊇ Q . �

Here is one more useful condition to detect infinite groups in characteristic zero.

Lemma 4.3. If G ≤ GL(n,F) is finite andp > n0 + 1 thenp ∤ |G| .

Proof. This follows from Lemmas 3.2 and 4.1. �

Now suppose thatcharF > 0 . The order of a finite subgroup ofGL(n,F) can be arbitrarily
large. On the other hand, the orders of torsion elements ofGL(n,F) are bounded. The next lemma
furnishes such a bound.

Lemma 4.4. Let n0 = ne . If g is a torsion element ofGL(n,F) then |g| ≤ qn0 − 1 .

Proof. The proof is essentially the same as that of [22, Theorem 3.3, Corollary 3.4]. We recap the
main points. It suffices to assume thatF = L . By [25], g is conjugate to a block upper triangular
matrix, where the (irreducible) blocks areFq -matrices. Hence the characteristic polynomial ofg has
Fq -coefficients. It follows that the dimension of〈g〉Fq

is at mostn , and so every invertible element
of this enveloping algebra has order at mostqn − 1 . �

4.2. Testing finiteness.Using Section 3, we can construct a congruence imageφρ(G) of G ≤
GL(n,F) over a finite field such that the torsion elements ofGρ := G ∩ Γρ are unipotent. Thus,
to decide finiteness ofG , we merely test whetherGρ is trivial (charF = 0), or whetherGρ is
unipotent (charF > 0). Both tasks can be accomplished using onlynormal generatorsof Gρ :
generators for a subgroup whose normal closure inG is Gρ—that is, we do not need to construct
the full congruence subgroup. Normal generators are found by a standard method [16, pp. 299–300]
that requires a presentation ofφρ(G) as input. Since it is a matrix group over a finite field, we can
compute a presentation ofφρ(G) using the algorithms described in [1, 21]. We refer to such an
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algorithm asPresentation . Let SWImage be an algorithm that constructs a congruence image
over a finite field. The congruence homomorphism in question is one of the SW-homomorphisms
Φ = Φi , 1 ≤ i ≤ 4 , defined in Sections 3.1–3.4. The following procedure tests finiteness along the
lines just explained (see Section 4.1 for definitions ofn0 andν1 ).

IsFiniteMatrixGroup

Input: S = {g1, . . . , gr} ⊆ GL(n,F) .
Output: true if G = 〈S 〉 is finite; false otherwise.

(1) H := SWImage(G) = 〈Φ(g1), . . . ,Φ(gr)〉 .
(2) If charF = 0 and either|H| > ν1 or p divides |H| for some primep > n0+1 , then return

false .
(3) Presentation(H) := 〈Φ(g1), . . . ,Φ(gr) | ωj(Φ(g1), . . . ,Φ(gr)) = 1; 1 ≤ j ≤ t〉 .
(4) K := {ωj(g1, . . . , gr) | 1 ≤ j ≤ t} .
(5) If charF = 0 andK = {1n} , or charF > 0 andIsUnipotent(〈K〉G) , then returntrue .

Else returnfalse .

Step (2) is justified by Lemma 4.3 and the comments before Lemma 4.2. For example, ifF is
a number field then Lemma 3.7 suggests that the initial check in this step will usually identify that
G is infinite. We test unipotency of the congruence subgroup〈K〉G in step (5) using the normal
generating setK . A procedure for doing this, based on computation in enveloping algebras, is given
in [11, Section 5.2]. Also note that we can apply a conjugation isomorphism asin [15] to write the
SW-image over the smallest possible finite field of the chosen characteristic.

Next we consider the special but very important case thatG is a cyclic group: testing whether
g ∈ GL(n,F) has finite order. Letν2 be an upper bound on the order of a torsion element of
GL(n,F) . See Lemmas 4.2 and 4.4 for values ofν2 .

IsFiniteCyclicMatrixGroup

Input: g ∈ GL(n,F) .
Output: true if g has finite order;false otherwise.

(1) h := SWImage(g) .
(2) d := Order(h) .
(3) If d > ν2 , or charF = 0 andp | d for some primep > n0 + 1 , then returnfalse .
(4) If charF = 0 andgd = 1n , or charF > 0 andIsUnipotent(gd) , then returntrue . Else

returnfalse .

Note thatgd is unipotent in characteristicp > 0 if and only if its order dividesp⌈logp n⌉ (see [23,
p. 192]). Also, if charF = 0 andIsFiniteCyclicMatrixGroup returnstrue , then the orderd
of g is calculated in step (2). In the situations covered by Lemma 3.7, if|g| is infinite thend > ν2
for all but a finite number of choices ofΦ . That is, we expect that infiniteness of|g| will be detected
at step (3) ofIsFiniteCyclicMatrixGroup .

Recall that an infinite groupG ≤ GL(n,F) has an infinite order element. Hence, as a precursor to
runningIsFiniteMatrixGroup , we check viaIsFiniteCyclicMatrixGroup whether ‘random’
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elements ofG , produced by a variation of the product replacement algorithm [4], have infinite order;
cf. [2, Section 8.2].

4.3. Recognizing finite matrix groups. Suppose thatG ≤ GL(n,F) is finite. We describe how to
find an isomorphic copy ofG in someGL(n, q) and carry out further computations withG .

If charF = 0 thenSWImage(G) = Φ(G) is isomorphic toG . If charF > 0 then the congruence
subgroup may be non-trivial. We repeat the construction of normal generators of the congruence
subgroup for different choices ofΦ , until we find aΦ for which all these generators are trivial.
By the discussion at the end of Section 3.5, ifm = 1 (there is just one indeterminate) then in a
finite number of iterations we will get an isomorphic copy ofG by Lemma 3.7. Otherwise, there
are infinitely many isomorphismsΦ , and the procedure will terminate if the set of maximal ideals
is recursively enumerable. In our many experiments the procedure always succeeded in finding an
isomorphic copy ofG .

Once we have an isomorphic copy, algorithms for matrix groups over finite fields (see [1] and [16,
Chapter 10]) are used to investigate the structure and properties ofG . In particular, we can

• compute a composition series and short presentation forG ;
• compute|G| ;
• compute the solvable and unipotent radicals, the derived subgroup, center, and Sylow sub-

groups ofG ;
• test membership ofx ∈ GL(n,F) in G .

Where feasible, the computation is undertaken directly in the isomorphic copy, and the result is
‘lifted’ by means of the known isomorphism toG . Sometimes this involves additional work. For
instance, membership testing requires that we construct a new isomorphic copy; namely, of〈G, x〉 .

5. IMPLEMENTATION AND PERFORMANCE

The algorithms have been implemented in MAGMA as part of our package INFINITE [10]. We use
machinery from the COMPOSITIONTREE package [1, 21] to study congruence images and construct
their presentations.

We implemented SW-homomorphisms in full, as per Sections 3.1–3.4. When selectinga prime
p subject to various conditions (see Sections 3.1 and 3.2), our default choice is the smallest
valid one. In Sections 3.3 and 3.4 we need to find a non-roota of a collection of polynomials
{f1, . . . , fs} ⊆ P[X1, . . . , Xm] . For example, ifP = Fq then we could choosea = (a1, . . . , a1)

where a1 ∈ Fql , l > maxj deg(fj) , and a1 does not lie in a proper subfield ofFql . To avoid
working with potentially large field extensions, we instead generate randomm-tuples of elements
of (increasing extensions of)Fq to obtaina . A similar strategy of generating randomm-tuples is
employed in characteristic0 .

The SW-homomorphisms are applied in INFINITE to solve specific problems, such as testing
finiteness, virtual properties, and nilpotency (the latter over an arbitraryfield, significantly enhancing
[7]). Here we report on the algorithms of Sections 4.2 and 4.3.

In our implementation ofIsFiniteMatrixGroup and IsFiniteCyclicMatrixGroup , we
construct (at least) two SW-homomorphisms and determine the orders of the images ofG under
these. IfG is finite andcharF = 0 , then the orders must be identical. In positive characteristic, the
least common multiple of the orders of two images of an element of finiteG must be at mostν2 .
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The single most expensive task is evaluating relations to obtain normal generators for the kernel of
an SW-homomorphism, since this may lead to blow-up in the size of matrix entries. Hence we first
check the orders of images under several SW-homomorphisms before weevaluate relations.

In [9] we proposed an alternative algorithm to decide finiteness for groups defined over function
fields of positive characteristic. This is an option in INFINITE; it avoids evaluation of relations over
the field of definition, and is sometimes faster thanIsFiniteMatrixGroup for such groups.

We now describe sample outputs that illustrate the efficiency and scope of our implementation.
The examples chosen cover the main domains and a variety of groups. Our experiments were per-
formed using MAGMA V2.17-2 on a 2GHz machine. All examples are randomly conjugated, so that
generators are not sparse, and matrix entries (numerators and denominators) are large. Since random
selection plays a role in some of the COMPOSITIONTREE algorithms, times stated are averages over
three runs. The complete examples are available in the INFINITE package.

(1) G1 ≤ GL(24,Q(ζ17)) is a conjugate of the monomial group〈ζ17〉 ≀ Sym(24) . It has order
172424! , the maximum possible for a finite subgroup ofGL(24,Q(ζ17)) by [12]. We decide
finiteness of this3-generator group and determine its order in1435s; compute a Sylow
3-subgroup in22s; and the derived group in57s.

(2) G2 ≤ GL(12,F) whereF = P(x) andP = Q(
√
2) . It is conjugate toH1 ≀H2 whereH1 is

RationalMatrixGroup(4, 2) andH2 = PrimitiveSubgroup(3, 1) , both from standard
MAGMA databases. We decide finiteness of this7-generator group in18s; compute its order
21637 in 1435s; its centre in3s; and its Fitting subgroup in3s.

(3) G3 ≤ GL(20,F) whereF is a degree2 extension of the function fieldQ(x) . It is conjugate
to the derived subgroup of the monomial group〈−1〉 ≀ Sym(20) in GL(20,F) . We decide
finiteness and compute the order of this31-generator group in1090s; and construct a Sylow
7-subgroup in5s.

(4) G4 ≤ GL(100,Q(ζ19)) . We prove that this14-generator group is infinite in9s.
(5) G5 ≤ GL(30,F) whereF is an algebraic function field of degree3 over Q(x) . We prove

that this4-generator group is infinite in1024s.
(6) G6 ≤ GL(6,F) whereF is an algebraic function field of degree2 overF9(x) . It is conju-

gate toGL(6, 32) . We find the order of this2-generator group in18s; its unipotent radical
in 15s; a Sylow3-subgroupH in 18s; and compute the normalizer inG6 of H in 42s.

(7) G7 ≤ GL(16,F) whereF is a degree3 extension ofF2(x) . It is conjugate to the Kronecker
product ofGL(8, 2) with a unipotent subgroup ofGL(2,F2(x)) . We decide finiteness of
this 8-generator group in16s; we compute its order16 · |GL(8, 2)| and an isomorphic copy
in 488s; and determine the Fitting subgroup in12s.

(8) G8 ≤ GL(12,F) whereF is a function field with two indeterminates overF5 . We prove
that this8-generator group is infinite in6s.

(9) G9 ≤ GL(12,F) whereF is a degree2 extension of a univariate function field overF5 .
We prove that this8-generator group is infinite in10s.
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