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Abstract

We present an algorithm to reduce the constructive membership problem for a black-box
groupG to three instances of the same problem for involution centralisers inG. If G is
a simple group of Lie type in odd characteristic, then this reduction can be performed in
(Monte Carlo) polynomial time.

1 Introduction

A vital component of many group-theoretic algorithms is an efficient solution of theconstructive
membership problemwhich may be defined as follows: given a finite groupG = 〈X〉, and
g ∈ G, expressg as a straight-line program inX.

One may intuitively think of astraight-line program(SLP) forg as an efficiently stored group
word onX that evaluates tog. For a formal definition, we refer the reader to [30, p. 10]. While
the length of a word in a given generating set constructed inm multiplications and inversions
can increase exponentially withm, the length of the corresponding SLP islinear in m. Babai &
Szemeŕedi [5] prove that every element ofG has an SLP of length at mostO(log2 |G|) in every
generating set.

The concept of ablack-box groupwas also introduced in [5]. In this model, group elements
are represented by bit-strings of uniform length; the only group operations permissible are mul-
tiplication, inversion, and checking for equality with theidentity element. Permutation groups,
groups of words with a confluent rewriting system, and matrixgroups defined over finite fields
are covered by this model. Over the past decade, a major research project, initiated by Babai and
Beals, seeks to develop polynomial-time algorithms to determine the abstract group-theoretic
structure of a black-box group. We refer the reader to [7] foran excellent account of this work.

Seress [30, p. 17] defines ablack-box algorithmas one which does not use specific features
of the group representation, nor particulars of how group operations are performed; it can only
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use the operations listed above. However, a common assumption is thatoraclesare available to
perform certain tasks: for example anorder oracleto compute the order of an arbitrary element.
Babai & Beals [7] prove if the primes dividing the order of a black-box group are known, then
the order of an element can be computed in polynomial time.

Many of the algorithms developed for black-box groups rely on random selections. Babai [4]
presents a black-box Monte Carlo algorithm to construct in polynomial time nearly uniformly
distributed random elements of a finite group. An alternative is theproduct replacement algo-
rithm of Celleret al. [15]. That this also runs in polynomial time was establishedby Pak [28].
For a discussion of both algorithms, we refer the reader to [30, pp. 26–30].

In this paper, we show that the constructive membership problem in a black-box groupG with
order oracle can be reduced to three instances of the same problem for involution centralisers in
G. Our reduction algorithmapplies to all such groups. However, ifG has no non-central invo-
lutions, then the algorithm is not effective; even if it is successful, the reduction may run in time
exponential in the size of the input. We prove that the reduction algorithm runs in Monte Carlo
polynomial time for the finite simple groups of Lie type defined over fields of odd characteristic.

We establish some notation. If the elements of a black-box groupG are represented by bit-
strings of uniform lengthn, thenn is theencoding lengthof G and|G| ≤ 2n. If G also has Lie
rankr and is defined over a field of sizeq, thenr = O(

√
n) andlog q = O(n). Let µ, ξ andρ

denote the costs of a group operation, constructing a randomelement ofG, and an order oracle
respectively.

Our principal result is the following.

Theorem 1 Let G be a black-box group having an encoding of lengthn and equipped with
an order oracle. There is a black-box Monte Carlo algorithm which reduces the constructive
membership problem forG to three instances of the same problem for involution centralisers of
G. Let ε > 0 denote the probability that the algorithm fails. IfG is a simple group of Lie type
defined over a field of odd characteristic, then this reduction algorithm is polynomial and can be
carried out in timeO(n3/2(ξ + ρ) log(1/ε) + nµ).

Theorem 1 appears not to be true for groups of Lie type defined over fields of even character-
istic. In particular, a key component of its proof is Theorem8, which guarantees the abundance
of elements of even order. But the corresponding result does not hold in even characteristic: now
most elements are regular semisimple and have odd order, andthe proportion of elements of even
order isO(1/q). Hence the complexity of the reduction algorithm in these cases is at least linear
in q, and so is not polynomial in the size of the input.

Our reduction algorithm,Reduction, can readily be embedded into a constructive member-
ship algorithm,SLPViaCentralisers, which we present in Section 2. A critical decision is
how to solve each instance of the constructive membership problem for an involution centraliser.
These can be solved either by a recursive call toSLPViaCentralisers or to an arbitrary
constructive membership algorithm. However, our analysisof the cost ofReduction applies
only to simple groups of Lie type in odd characteristic. The fundamental difficulty in producing
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an analysis ofSLPViaCentralisers is that it appears to require knowledge of the compo-
sition factors of a black-box group. These are not known to becomputable in polynomial time.
The best results in this direction are those of [7].

We can however control to some extent the Lie ranks of the non-abelian composition factors
of the three involution centralisers. In particular we prove the following.

Theorem 2 Let G be a simple group of Lie type and rankr, defined over a field of odd char-
acteristic, having a black-box encoding of lengthn, and equipped with an order oracle. Letδ
be a constant where2/3 < δ < 1. If r is sufficiently large, then, at the cost ofO(n2) random
selections, we can choose the three involutions forReduction so that the Lie ranks of the
non-abelian composition factors of their centralisers areat mostδr.

Our principal motivation was a practical algorithm for constructive membership testing. As
we demonstrate, our algorithm works well in practice, and often succeeds in cases where other
constructive membership algorithms fail. The significanceof Theorem 2 is that it allows us to
direct the algorithm to choose involutions with relativelysmall centralisers, which ensures that
(in practice)SLPViaCentralisers completes as quickly as possible. If the obstructions to
a fully recursive algorithm could be overcome, then Theorem2 could also be used to bound the
depth of that recursion toO(log r), and the total number of recursive calls to a polynomial inr.

Black-box algorithms for constructive membership of the alternating groups have been devel-
oped by Bealset al. [9]. In various works, Brooksbank, Kantor, and Seress have also developed
black-box algorithms for the classical groups; see, for example, [14] and [21]. These algorithms
also computeconstructive isomorphismsbetween the input groupG and a “standard” (or natural)
representation ofG. Such an isomorphism is not a natural by-product of our work.Ambroseet
al. [2] develop another general framework for membership testing in black-box groups.

Constructive membership in a permutation group can be decided by constructing abase and
strong generating set(BSGS), a concept introduced by Sims [31]. For an analysis of the algo-
rithm, see [18] or [30, p. 64]. For a discussion of practical algorithms to decide constructive
membership in a soluble group described by a polycyclic presentation, see [32, Chapter 8].

Of course, the use of involution centralisers to obtain insight into group structure is not a new
concept. As is well known, they played a fundamental role in the classification of finite simple
groups. They were used extensively in early computations with sporadic groups; see [25] for a
survey. Altseimer & Borovik [1] used them as a central component of an algorithm to distinguish
betweenPSp2r(q) andΩ2r+1(q). Both Borovik [10] and Parker & Wilson [29] consider them in
the general context of black-box groups.

The structure of the paper is as follows. In Section 2 we present a constructive membership
algorithm which incorporates our reduction algorithm. In Section 3 we present and analyse an
algorithm to construct the centraliser of an involution. InSections 4 and 5 we prove Theorems 1
and 2. In Section 6 we report on a practical implementation inMAGMA [11] of the constructive
membership algorithm for quasisimple linear groups.
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2 The constructive membership algorithm

Our Monte Carlo constructive membership algorithm,SLPViaCentralisers, solves a slightly
more general problem than that stated in the introduction. It takes as input a black-box groupG
equipped with an order oracle, a subgroupH of G, andg ∈ G. If the algorithm concludes that
g ∈ H, then it returns an SLP forg in the generators ofH, else it returnsfalse. The algorithm
is the following.

1. Findh ∈ H with |gh| = 2ℓ. Now definez = (gh)ℓ.

2. Find an involutionx ∈ H with |xz| = 2m. Now definey = (xz)m.

3. ConstructX = CH(x).

4. Solve the constructive membership problem fory in X.

5. ConstructY = CH(y).

6. Solve the constructive membership problem forz in Y .

7. ConstructZ = CH(z).

8. Solve the constructive membership problem forgh in Z.

9. Compute and return an SLP forg.

In practice, we may wish to selecth andx carefully, so that the involutions have the property
identified in Theorem 2; we consider this in Section 5.

We now more precisely specifyReduction: it constructs the involutionsx, y, z and their
centralisers inH.

We make the following observations.

(a) Each instance of the constructive membership problem for an involution centraliser could
be solved by a recursive call toSLPViaCentralisers or to a different algorithm. If
any one of the constructive membership tests reportsfalse, thenSLPViaCentralisers
terminates, returningfalse. If SLPViaCentralisers is called recursively, then it
must also handlebase cases: those groups whereReduction is not effective.

(b) Observe that〈x, z〉 is D2m having central involutiony = (xz)m. Hencey is in the cen-
traliser ofx andz is in the centraliser ofy.

(c) It is easy to deduce that the method is constructive. After Step 1, we know an SLPwh for
h in the generators ofH. After Step 2 we similarly know an SLPwx for x. In Step 3 we
record SLPs for the generators ofX, and so the call in Step 4 will return an SLP fory.
Similarly, in Step 5, we record SLPs for the generators ofY and so in Step 6 obtain an
SLPwz for z. Finally in Step 7 we record SLPs for the generators ofZ; so in Step 8 we
find an SLPwgh for gh and hence an SLPwg = wghw

−1
h for g.
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(d) If g is an involution, then we can chooseh to be1H so thatz = g and hence we avoid Steps
1, 7 and 8. Bothy andz are involutions; ifSLPViaCentralisers is called recursively,
then this remark applies to the subproblems solved at Steps 4and 6.

The costs of bothReduction andSLPViaCentralisers depend on three central tasks:

• choose a suitable involution;

• given an involution, construct its centraliser;

• solve the constructive membership problem in this centraliser.

We consider these in detail in the remainder of the paper.

3 Constructing an involution centraliser

The centraliser of an involution in a black-box group havingan order oracle can be constructed
using an algorithm of Bray [12].

Theorem 3 [12] If x is an involution in a groupH, andw is an arbitrary element ofH, then
[x,w] either has odd order2k + 1, in which casew[x,w]k commutes withx, or has even order
2k, in which case both[x,w]k and [x,w−1]k commute withx.

Proof. In the first casexw[x,w]k = wx[x,w]k+1 = wx[x,w]−k = w[x,w]kx sincex is an
involution; in the second casex[x,w±1]k = x[x,w±1]−k = [x,w±1]−kx. ⊓⊔

This theorem is used to convert a supply of independent nearly uniformly distributed random
elements ofH into a supply of elements ofCH(x). While these are not, in general, nearly
uniformly distributed, we have the following result (due toRichard Parker).

Theorem 4 [12] With the above notation, ifw is uniformly distributed among the elements of the
group for which[x,w] has odd order, thenw[x,w]k is uniformly distributed among the elements
of the centraliser ofx.

Proof. If w′ = yw, wherey ∈ CH(x), then[x,w′] = [x,w] so thatw′[x,w′]k = yw[x,w]k; so
each element ofCH(x) occurs exactly once asw runs through any coset ofCH(x) in H. ⊓⊔

Thus if the odd order case occurs sufficiently often (with probability at least a positive rational
function of the input size), then we can construct nearly uniformly distributed random elements
of the involution centraliser in Monte Carlo polynomial time. Of course, in practice, we can also
use the output of the even-order case to obtain a generating set for the centraliser more rapidly.

We now restrict our attention to groups of Lie type over fieldsof odd characteristic. Here, the
structure of the involution centralisers is well-known; see, for example, [19, Table 4.5.1].

Parker & Wilson [29] prove the following for classical groups.
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Theorem 5 There is an absolute constantc > 0 such that ifH is a finite simple classical group
of Lie rankr defined over a field of odd characteristic, andx is an involution inH, then[x, h]
has odd order for at least a proportionc/r of the elementsh ∈ H.

They also prove the following result for the exceptional groups.

Theorem 6 There is an absolute constantc > 0 such that ifH is a finite simple exceptional
group, defined over a field of odd characteristic, andx is an involution inH, then[x, h] has odd
order for at least a proportionc of the elementsh ∈ H.

We now analyse the cost of constructing an involution centraliser C by generating elements
of C using Theorem 3.

Theorem 7 LetH be a simple group of Lie type defined over a field of odd characteristic, having
a black-box encoding of lengthn and equipped with an order oracle. The centraliser inH of an
involution can be computed in timeO(

√
n(ξ + ρ) log(1/ε) + µn) with probability of success at

least1 − ε, for positiveε.

Proof. By Theorems 5 and 6, we needO(
√

n) random elements to find a commutator of odd
order. The probability that two random elements of a cyclic groupG generateG is

∏
(1 − 1

p2
) >

6

π2
,

where the product is over all primesp dividing the order ofG. The structure of the involution
centralisers [19, Table 4.5.1] and the work of Liebeck & Shalev [23, Theorem] now imply that
a constant number of elements generates the centraliser of an involution with arbitrarily high
probability. These generators are obtained as powers of elements, each in timeO(n) group
operations, using the standard doubling algorithm. ⊓⊔

4 Finding the involutions

Let G be a simple group of Lie type in odd characteristic and Lie rank r. Our analysis of
Reduction assumes thatG and its subgroupH coincide. Recall thatReduction constructs
three involutions inG by powering up elements of even order. We need to estimate thesize of the
random samples required to obtain these elements. Observe that (sinceG = H) the involutions
z andx are powers of random elements of even order, buty = (xz)m is obtained as a power of
their product and soy is not a random element.

Parker & Wilson [29] prove the following.

Theorem 8 There exists a constantc > 0 such that for every simple groupG of Lie type in odd
characteristic, of Lie rankr, and every conjugacy classC of involutions ofG, the proportion of
elements ofG having a power inC is at leastc/r3.
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Indeed, they show that for the symplectic and orthogonal groups, this proportion is at leastc/r2.

Theorem 9 LetG be a simple group of Lie type defined over a field of odd characteristic, having
at least two conjugacy classes of involutions, and a black-box encoding of lengthn. In time
O(n3/2(ξ + ρ) log(1/ε) + nµ) we can construct the three involutionsx, y, z, with probability of
success at least1 − ε, for positiveε.

Proof. Theorem 5.2 of [20] implies that at least1/4 of the elements ofG have even order. Hence
we obtainz with probability at least1− ε by selecting at mostO(log(1/ε)) elementsh. Now we
need to obtain an involutionx such thatxz has even order. A sufficient condition for this is that
x andz are in different conjugacy classes. SinceG has at least two classes of involutions, and
by Theorem 8 the proportion of elements ofG which power into any given class of involutions
is at leastc/n3/2, it follows that, with probability at leastc/n3/2, the involutionsx andz are in
different conjugacy classes. Thus we need at mostO(n3/2 log(1/ε)) random elements before
we find one wherexz has even order. Powering up to construct the involution takes time at
mostO(µn). ⊓⊔

We now prove a similar result for groups having a unique classof involutions.

Theorem 10 Let G be a simple group of Lie type defined over a field of odd characteristic,
having a unique class of involutions, and a black-box encoding of lengthn. In time O((ξ +
ρ) log(1/ε) + nµ) we can construct the three involutionsx, y, z, with probability of success at
least1 − ε, for positiveε.

Proof. We deduce from [19, Table 4.5.1] that the relevant groups arePSL2(q), PSL3(q), PSU3(q),
PSU4(q) for q ≡ 3 mod 8, PSL4(q) for q ≡ 5 mod 8, G2(q), 2G2(q), and3D4(q).

The Baer–Suzuki theorem [3, 39.6] implies that there exist two conjugates of an involution
whose product has even order. We show that the proportion of pairs of involutions whose product
has even order is at least a positive constant.

We illustrate the method of proof with the example ofG = 2G2(q). Observe that|G| = (q3 +
1)(q − 1)q3 and the involution centraliser has orderq(q2 − 1). Hence the number of involutions
is a = q2(q2 − q + 1). We want to count the number of pairs of involutions whose product has
even order greater than 2 and dividingq + 1. Since the dihedral group they generate lies in the
centraliser2×PSL2(q) of another involution, its normaliser is contained inH = 2×Dq+1. The
number of conjugates ofH is b = q3(q − 1)(q2 − q + 1)/2. The number of such pairs inH is
c = (q + 1)(q − 3)/4. Moreover, no pair is in two distinct conjugates ofH. Hence the desired
proportion is

bc/a2 = (q − 3)(q2 − 1)/8q(q2 − q + 1) > (1 − 3/q)/8 ≥ 1/9

sinceq ≥ 27.

7



The other cases are similar. Since we need only an asymptoticresult, we may assume thatq
is large and consider only the leading terms of the various polynomials inq which arise.

In the case ofPSL2(q) we look inDq−1 or Dq+1 according asq ≡ 1 or 3 mod 4. The number
of such subgroups is of the order ofq2/2, and in each subgroup the number of pairs of involutions
generating a suitable subgroup is at least of the order ofq2/8. But the total number of involutions
is of the order ofq2/2, so the proportion of pairs whose product has even order is atleast of the
order of(q2/2)(q2/8)/(q2/2)2 = 1/4.

In PSL3(q) our two involutions negate a common1-space, and we can work inGL2(q) in-
stead. Similarly inPSU3(q), we may work inGU2(q). In G2(q) the involution centraliser is
2.(PSL2(q) × PSL2(q)).2, and there is a dihedral groupD2(q2−1) which has index2 in its nor-
maliser. Therefore there are approximatelyq8 involutions andq12/4 such dihedral groups, each
containing at least of the order ofq4/2 pairs of involutions whose product is regular semisimple
of even order. Thus the desired proportion is at least of the order of1/8 in this case.

Both PSL4(q) and PSU4(q) are most easily treated as orthogonal groups, so we work in
SO+

6 (q) or SO−
6 (q) and use the embedding ofGL2(q) into SO+

4 (q), as in Theorem 14. Indeed,
Theorem 14 proves a more precise version of the result in these cases. The case of3D4(q) is
similar toG2(q): we take the involution centraliser2.(PSL2(q) × PSL2(q

3)).2 and the dihedral
groupD2(q−1)(q3+1) inside it. ⊓⊔

Theorems 7, 9 and 10 now imply Theorem 1.

5 Prescribing the conjugacy classes of the involutions

Let G be a simple group of Lie type in odd characteristic and Lie rank r, having a black-box
encoding of lengthn. In Reduction we construct three involutions inG by powering up
elements of even order. If we simply choose the involutions as powers of random elements of
even order, then each centraliser may have a composition factor of Lie rankr−1. We now prove
Theorem 2: we canchooseour involutions so that the non-abelian composition factors of their
centralisers have Lie rank at most a proper fraction ofr.

Theorem 8 implies that at a cost of at mostO(r3) random selections we can choose precisely
the conjugacy class of bothx andz. In the proof of Theorem 2, we discuss how to identify the
class. We now consider the choice ofy = (xz)m in more detail. In particular, we consider the
case wherey lies in a conjugacy class of involutions whose eigenspaces on the natural module
have a prescribed dimension.

We first prove a preliminary lemma.

Lemma 11 Letp be an odd prime,k ≥ 2, and letC be the (unique) subgroup of orderpk + 1 in
the multiplicative group of the fieldF of orderp2k. Then the proportion of elements ofC which
lie in a proper subfield ofF is at most1/(2p − 1).
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Proof. We need only consider subfields of orderp2k/ℓ whereℓ is prime, so that the number of
elements ofC lying in the subfield ish := gcd(pk + 1, p2k/ℓ − 1). If ℓ = 2, clearlyh = 2. If ℓ is
odd, thenp2k/ℓ − 1 = (pk/ℓ + 1)(pk/ℓ − 1), and

pk + 1 = (pk/ℓ + 1)(pk−k/ℓ − pk−2k/ℓ + · · · − pk/ℓ + 1)
= (pk/ℓ + 1)((pk/ℓ − 1)(pk−2k/ℓ + · · · + pk/ℓ) + 1)

soh = pk/ℓ + 1. Therefore (counting±1 only once) the number of elements inC which lie in
proper subfields is at most

2 +
∑

ℓ|k

(pk/ℓ − 1)

whereℓ is an odd prime. If there are at least two odd primes dividingk, then

∑
pk/ℓ <

k−2∑

m=0

pm = (pk−1 − 1)/(p − 1) ≤ 1

2
(pk−1 − 1),

and so the stated proportion is at most

1
2
(pk−1 − 1)

pk + 1
<

1

2p
.

If there is a unique odd prime dividingk, then the stated proportion is at most

pk/3 + 1

pk + 1
<

1

2p
.

If k is a power of 2, then the stated proportion is

2

pk + 1
≤ 1

2p − 1
.

⊓⊔

In fact the same argument shows more.

Lemma 12 If q is an odd prime power andk ≥ 2, then the proportion of elements inCqk+1 that
are regular semisimple inGL2k(q) is at least1 − 1/(2q − 1) ≥ 4/5.

We also need the following order estimates for classical groups extracted from [29].

Lemma 13 If q ≥ 3 is a prime power, then

(i) 1
2
qd2 ≤ |GLd(q)| ≤ qd2

;

(ii) 1
2
qd2 ≤ |GUd(q)| ≤ 2qd2

;
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(iii) 1
2
qd(d+1)/2 ≤ |Spd(q)| ≤ qd(d+1)/2;

(iv) 1
2
qd(d−1)/2 ≤ |SOd(q)| ≤ 2qd(d−1)/2.

An involution g ∈ GLd(q) hastype−1a1b if its −1-eigenspace in the natural module has
dimensiona anda + b = d. We now prove the main result of this section.

Theorem 14 Let G be a quasisimple classical group in its natural representation of degreed,
defined over a field of odd characteristic. Suppose thatd > 4k for positivek. Let x be an
involution in G of type−12k1d−2k. There exists a constantc > 0 such that, with probability
at leastc/k, the product of two random conjugates ofx powers up to an involution of type
−14k1d−4k.

Proof. We prove this result forSLd(q) by looking inside the normaliser of a Singer cycle (namely,
a cyclic subgroup of orderq4k − 1) in GL4k(q). In SUd(q) we look at the normaliser of a Singer
cycle in GL2k(q

2), and in the symplectic groups we look at a Singer cycle inGL2k(q). The
orthogonal groups, as usual, are a little more complicated.

The normaliser of a Singer cycle inGL2k(q) contains a subgroupCq2k−1:C2, whose centre
has orderqk−1. There are involutions of type−1k1k inverting the subgroup of orderqk +1. (All
this can be seen already in the subgroupGL2(q

k).) By Lemma 12, there are at least(4
5
)2q2k pairs

of involutions whose product is a regular semisimple element in thisCqk+1, and in at least half of
these cases the product has even order. For brevity call suchpairs of involutionsgood. There are
at least1

2
(4

5
)2q2k > 1

4
q2k good pairs of involutions in the normaliser of a particular cyclic group

of orderqk + 1.

Now we estimate the numbers of these tori, and the numbers of pairs of involutions in the
given conjugacy class, in order to estimate the proportion of these pairs which are good: namely
those whose product powers up into the desired conjugacy class of involutions.

First look at the caseSLd(q). We embedGL4k(q) naturally in SLd(q), for d > 4k, and
observe that the normaliser ofCq2k+1 in SLd(q) is SLd−4k(q).Cq4k−1.C4k, so the number of such
tori is

|SLd(q)|
|SLd−4k(q)|(q4k − 1).4k

≥ 1

8k
q4k(2d−4k−1),

and the number of good pairs of involutions is at least1
32k

q8k(d−2k). Similarly an involution of
type−12k1d−2k has centraliserSL2k(q).GLd−2k(q) so the total number of involutions from this
conjugacy class is

|SLd(q)|
|SL2k(q)||GLd−2k(q)|

≤ 4q4k(d−2k).

Hence the proportion of good pairs of involutions is at least1/(29k).

Next consider the unitary groups. In this case we embedGL2k(q
2) into GU4k(q) and thence

intoSUd(q), for d > 4k. The centraliser of an involution of type−12k1d−2k isSU2k(q).GUd−2k(q).
Hence there are at most

|SUd(q)|
|SU2k(q)||GUd−2k(q)|

≤ 8q4k(d−2k)
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such involutions. The order of the normaliser ofCq2k+1 is (q4k − 1).|SUd−4k(q)|.4k so there are
at least

|SUd(q)|
|SUd−4k(q)|.(q4k − 1).4k

≥ 1

16k
q4k(2d−4k−1)

such groups, each with at leastq4k/4 good pairs of involutions. Thus the proportion of good pairs
of involutions from this class is at least1/(212k).

Next consider the symplectic groups. We embedGL2k(q) into Sp4k(q) and thence into
Spd(q), for d > 4k. The centraliser of an involution of type−12k1d−2k is Sp2k(q) × Spd−2k(q)
so the number of such involutions is at most

|Spd(q)|
|Sp2k(q)||Spd−2k(q)|

≤ 4q2k(d−2k).

The normaliser ofCqk+1 is GU2(q
k).C2k × Spd−4k(q), so the number of such cyclic groups is

|Spd(q)|
2k|GU2(qk)||Spd−4k(q)|

≥ 1

8k
q2k(2d−4k−1).

Thus the proportion of good pairs of involutions from this class is at least1/(29k).

Finally consider the orthogonal groups. The number of conjugates of an involution of type
−12k1d−2k is at most

|Od(q)|
|O2k(q)||Od−2k(q)|

≤ 4q2k(d−2k).

Now considerO4(q
k) < O4k(q). Independent of the sign of this orthogonal group, it contains a

dihedral groupD2(q2k−1). The normaliser of the corresponding cyclic group of orderq2k − 1 in
Od(q) is D2(q2k−1).Ck × Od−4k(q). Hence the number of conjugates of this dihedral group is at
least

|Od(q)|
2k.(q2k − 1)|Od−4k(q)|

≥ 1

8k
q4k(d−2k−1).

To complete the argument, we must estimate the number of elements in the cyclic group of order
Cq2k−1 which are regular semisimple inO4k(q). Again, this is bounded below by a positive
constant timesq2k and so the powers ofq cancel as required. ⊓⊔

Corollary 15 The same result holds for simple classical groups.

Proof. Working modulo scalars has no effect on the above argument. ⊓⊔

Theorem 8 implies that in Step 1 of the algorithm we need at most O(r3) trials to find an
involution in a particular conjugacy class. We now show, by allowing a range of dimensions for
the eigenspace, that we can reduce the cost of this step toO(r2).
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Lemma 16 Let 0 < κ < λ < 1 and letG be a simple classical group with natural module
of dimensiond > 2/(λ − κ) defined over a field of odd characteristic. Then the proportion of
elements ofG which power to an involution whose−1-eigenspace on the natural module has
dimension in the rangeκd to λd is at leastc/d2 for some constantc depending onκ andλ.

Proof. If r is the Lie rank ofG, thend is r +1 or 2r or 2r +1. Therefore by Theorem 8, for each
eigenspace dimension the proportion is at least a constant timesd−3. Since(λ − κ)d > 2, there
exists at least one even integer in the range(κd, λd). Hence there is at least one conjugacy class
of involutions with−1-eigenspace dimension in this range, and indeed the number of possible
dimensions is at least a constant timesd. ⊓⊔

Proof of Theorem 2. We may assumer > 8, so exceptional groups of Lie type do not arise. Let
d denote the dimension of the natural module forG. We chooseδ′ in the range(2/3, δ) and now
defineκ = 1− δ′ andλ = δ′/2. Sinceδ′ > 2/3 we haveκ < λ. If d > 2/(λ−κ) = 4/(3δ′ − 2),
then Lemma 16 implies that inO(n) attempts we can choose the involutionx and (its conjugate)
z to have−1-eigenspace of dimension2k where(1 − δ′)d < 2k < δ′d/2. Theorem14 implies
that among a sample ofO(

√
n) random conjugates ofx, we find two whose product powers up

to an involutiony of type−14k1d−4k.

It is easy to deduce that
(1 − δ′)d < d − 4k < δ′d

(1 − δ′)d < 2k < δ′d.

Hence both eigenspaces for each of the three involutions have dimension less thanδ′d.

Recall that the non-abelian composition factors of a centraliser of such an involution in a
classical group are of the same classical type (linear, unitary, symplectic or orthogonal) in smaller
Lie rank. Furtherr is d−1 (linear, unitary), or(d−1)/2 or d/2 (orthogonal, symplectic). Hence,
for sufficiently larger, the Lie ranks of the non-abelian composition factors are atmostδr.

For each involution in the sample, we must also identify its conjugacy class. We construct
its centraliserC using Theorem 7; using the algorithm of [6], we construct thelast term of
the derived series ofC, which is a product of at most two semisimple groups; we construct its
composition factors using the algorithm of [7, Claim 5.3]; weidentify the defining characteristic
using the algorithm of [24]; finally, we name the compositionfactors using the algorithm of [8].
All of these steps can be performed using a sample of at mostO(n) elements. ⊓⊔

One might hope that Theorem 2 would allow us to bound bylog r the depth of the recursion
tree arising in a recursive application ofSLPViaCentralisers to a simple group of Lie rank
r. However, Theorem 2 doesnot apply to the centralisers, since they need not be simple. Such
a result appears to require the ability to construct the composition factors of the centralisers:
then both the number of recursive calls and the number of basecases could be bounded by a
polynomial inr.
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6 A practical realisation for matrix groups

We now consider how the constructive membership algorithm can be realised in practice for
quasisimple linear groups.

We implemented a version ofSLPViaCentraliserswhich solves the constructive mem-
bership problem in each centraliser, by constructing its composition factors using thecomposition
treealgorithm (see [27]). If the Lie rank of a composition factoris too large for a direct solution
of the membership problem, then we recursively applySLPViaCentralisers to this factor.

Recall that a necessary component ofReduction is an order oracle. Celler & Leedham-
Green [16] present an algorithm to determine the order ofg ∈ GL(d, q). While it requires the
factorisation of certain large integers, a variation can, as discussed in [27], in polynomial time
determine a multiple of the order. From this multiple, we candetermine if the element haseven
order and if so, construct an involution. Knowledge of a multiple of the order also suffices for
Theorem 3. In practice, we use projective orders so that we can work in the simple group.

If the input group is classical in its natural representation, then we can determine the type of
an involution directly.

6.1 Applications to sporadic groups

The original application ofReductionwas as one step in the classification of conjugacy classes
of subgroups ofE7(5) isomorphic to the Rudvalis sporadic simple group (see [22]).

As we earlier observed, its performance depends criticallyon the proportions of elementsgh
(respectivelyxz) which power up to involutions of each class. For the sporadic groups, these
proportions are constants which can be calculated from the character tables. In some cases, these
proportions are zero: for certain choices of involution classesC1, C2, C3, there are no elements
x ∈ C1, z ∈ C2, with xz powering to an element inC3. Hence we do not have a completely free
choice of these three classes. In practice, we choosex, y andz all to be elements of the largest
class of involutions, in which case it turns out that the probabilities are all positive. Indeed, as
can be deduced from the character tables, the probability that gh powers to an element in this
class is at least5/64 = 0.078125, while the probability thatxz powers to an element in this class
is at least6181967/148341375 ≈ 0.041674.

For each sporadic group, we can calculate explicitly the proportion of [x, g] which have odd
order. For every class of involutionsx this proportion is always greater than 17%, and therefore
Bray’s algorithm to construct an involution centraliserC completes rapidly. We now construct
its composition tree and solve the membership problem forC directly.

Table 1 records some data supporting our claim that the algorithm works well for the sporadic
groups.

13



6.2 Implementation and performance

SLPViaCentralisers is implemented in MAGMA . One motivation for its development is to
solve the constructive membership problem for compositionfactors of matrix groups. The input
to our implementation is an irreducible representation of agroup of Lie type in odd defining
characteristic, or a sporadic group.

Reduction constructs (at most) three involution centralisers. A composition tree is con-
structed for each centraliser, whose leaves are its composition factors. For each factor, we may
generate further calls toSLPViaCentralisers until we construct a base case. Alternatively,
if the factor is sufficiently small, we invoke the Schreier–Sims algorithm [31] (or its variations)
to solve the problem.

Our implementation uses the following components:

• the product replacement algorithm [15] to generate random elements;

• the algorithm of Celler & Leedham-Green [16] to determine theorder of an element;

• the algorithm of Liebeck & O’Brien [24] to determine the defining characteristic of a group
of Lie type;

• the algorithms of Babaiet al. [8] to identify a simple group of Lie type in known defining
characteristic;

• the algorithm of Niemeyer & Praeger [26] to identify a classical group in its natural repre-
sentation.

• the algorithm of Conderet al. [17] to solve the constructive membership problem for
SL2(q) ∼= SU2(q) ∼= Sp2(q); Ω3(q) ∼= PSL2(q); Ω−

4 (q) ∼= PSL2(q
2); and Ω+

4 (q) ∼=
SL2(q) ◦ SL2(q).

A variation of Theorem 3 allows us to decide constructively if two involutionsx andy are
conjugate in a groupH. We construct random conjugatesxi of x, until we findxiy with odd
order2k + 1, say. In the dihedral groupD4k+2 = 〈xi, y〉, we can see that(yxi)

k conjugatesxi

to y. If two random conjugates ofx have a high enough probability of having a product of odd
order, this provides an effective method. Moreover, it is constructive in the sense that it provides
h ∈ H such thatxh = y, and henceCH(x)h = CH(y).

We exploit this observation in our implementation. If we repeatedly test for membership in
the same group, then we store the chosen involutions and their associated composition trees; as
a preliminary step in a new membership test, we decide if the new involutions are conjugate to
the known ones; if so, we do not need to construct a new composition tree.

Our constructive membership algorithm is competitive withthe standard BSGS machinery
for matrix groups of “moderate” dimension. If the matrix group has no subgroup of reasonable
index, then our algorithm is currently the only practical approach. For example, the largest proper
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Name d q Time

J4 112 2 8.5

SL20(5) 20 5 10.0

G2(3
5) 7 35 0.9

Ly 111 5 85.0

Th 248 3 2210

Sp10(9) 10 9 3.1

Ω+

12(7) 12 7 2.1

Table 1: Performance of implementation for a sample of groups

subgroup ofJ4 has index about108; our algorithm readily succeeds in the112-dimensional
representation overGF(2).

In Table 1, we report on the application ofSLPViaCentralisers to some of the larger
sporadic groups and to groups of Lie type. The strategy of Theorem 2 to direct the choice
of involution works well. For example, inSL20(5), the three involutions chosen have types
−18112,−11218, and−110110. A further recursion then reduces tod ≤ 6, and an invocation of a
Schreier–Sims algorithm now completes the task. None of these examples completed using the
existing machinery in MAGMA V2.12 on a Pentium IV 2.8 GHz processor with 2GB of RAM.
The input to the algorithm is an irreducible subgroup ofGLd(q). In the column entitled “Time”,
we list the CPU time in seconds (averaged over three runs) needed to solve the constructive
membership problem for a random element of the group.
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[5] Lászĺo Babai and Endre Szemerédi. On the complexity of matrix group problems, I. In
Proc.25th IEEE Sympos. Foundations Comp. Sci., pages 229–240, 1984.

15
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