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(Received )

We describe the theoretical and practical details of an algorithm which can be used to de-
cide whether two given presentations for finite p-groups present isomorphic groups. The
approach adopted is to construct a canonical presentation for each group. A description
of the automorphism group of the p-group is also constructed.

1. Introduction

The isomorphism problem of determining whether two given presentations present the
same group was introduced by Tietze (1908) and later formulated by Dehn in a 1911
paper. Adian (1957) and Rabin (1958) showed that the isomorphism problem for finitely
presented groups is unsolvable by exhibiting its unsolvability for a particular class of
examples. This work was later extended by Boone (1968). However, Segal (1990) proves
that there is an algorithm available to decide the isomorphism of two polycyclic-by-finite
groups given by finite presentations.

There are practical approaches available to solving the problem within particular con-
texts. Sometimes, the easier task is to establish that two groups are non-isomorphic by
exhibiting invariants where the groups differ. However, it is frequently difficult to find
“natural” invariants which distinguish among similar groups. For example, to differenti-
ate among the 267 groups of order 64, the structure of the subgroup lattices of individual
groups is on some occasions required.

In a general approach to finitely-presented groups, Holt & Rees (1992) seek to establish
isomorphism by running a Knuth-Bendix procedure on the supplied group presentations,
in an attempt to generate a normal form/word reduction algorithm for words in the
generators. Concurrently, they attempt to establish non-isomorphism of the two groups
by finding the number of finite quotients each has of a particular order.

Wursthorn has adapted modular group algebra techniques, which were developed in
seeking counter-examples to the modular group algebra isomorphism conjecture, to work
for p-groups. His approach is described in Wursthorn (1993).
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In this paper, we describe an algorithm which, theoretically, provides an answer to
the problem for finite p-groups. The approach adopted here is to define a canonical
presentation for each p-group and to provide an algorithm which allows its construction.
Hence, given two p-groups presented by arbitrary finite presentations, the determination
of their isomorphism is essentially the same problem as the construction of their canonical
presentations and the comparison of these presentations.

A description of the automorphism group of the p-group is constructed concurrently
with the standard presentation for the group. We do not discuss the algorithm used to
construct the automorphism group in detail here; the interested reader is referred to
O’Brien (1994).

In Section 2, we discuss the use of power-commutator presentations in presenting p-
groups and the methods available for the construction of such presentations. In the three
subsequent sections, we describe the theory of the standard presentation algorithm used
to construct the canonical presentation, provide a top-level outline of the algorithm,
and give some details of a practical implementation. In Section 6, we present a detailed
calculation using the algorithm. In Section 7, we propose some refinements to the original
algorithm to enhance its performance. In the final section, we provide some information
on the performance of the implementation.

An earlier description and partial implementation of this algorithm is given in Schultz
(1988); another discussion can be found in Ascione (1979).

2. Group presentations

Let X be a non-empty set and let F' be the free group on X. A group presentation is
a set consisting of X and a set, R, of words in X. The presentation is written {X : R}.
The normal closure of R in F will usually be denoted by (R)¥’; the group defined by the
presentation is F//(R)F and is written (X : R ).

The generator number (or, equivalently, the number of defining generators) of a group
G is the cardinality of a smallest set X such that G is defined by a presentation {X : R},
where R is a set of words in X. In this paper, the generator number is usually denoted
by d.

2.1. POWER-COMMUTATOR PRESENTATIONS
Finite groups of prime-power order may be described uniformly using a special type of

presentation known as a power-commutator presentation. The generating set is a finite
set {a1,...,an}. The defining relations are:

n
@ = J[ ™", 0<BG.k)<p,1<i<n,
k=i+1
n ..
[aj,a] = [ """, 0<BG,5.k)<p, 1<i<j<n.
k=j+1

Such presentations were first defined by Sylow (1872) who proved that every group of
order p™ has a power-commutator presentation on n generators. If a presentation on n
generators defines a group of order p”, then the presentation is consistent.

A power-commutator presentation for a finite p-group may be constructed using a
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p-quotient algorithm. The first of such algorithms was described by Macdonald (1974).
Havas & Newman (1980) describe the algorithm in common usage today.

Their algorithm uses a variation of the lower central series known as the lower exponent-
p central series. This is the descending sequence of subgroups

G=F(G)>...> P1(G) > B(G) > ...

where R(G) = [Pifl(G),G]Pifl(G)p for 4 > 1.

If P.(G) =1 and c is the smallest such integer then G has exponent-p class c¢. A group
with exponent-p class ¢ is nilpotent and has nilpotency class at most ¢. In this paper,
the class of a group refers to its exponent-p class.

Given a description of a group G, a prime p, and a positive integer ¢, the p-quotient al-
gorithm constructs a consistent power-commutator presentation for the largest p-quotient
of G having class at most c.

Of course, the power-commutator presentation produced as output by a p-quotient
algorithm depends on the presentation or other description supplied as input. In no sense
can a power-commutator presentation produced by an arbitrary p-quotient algorithm
calculation be viewed as canonical.

2.2. THE p-GROUP GENERATION ALGORITHM

In this section, we give a brief description of the p-group generation algorithm. A
detailed description of the algorithm together with relevant proofs may be found in
O’Brien (1990) and in Newman (1977).

The p-group generation algorithm calculates (presentations for) particular extensions,
known as immediate descendants, of a finite p-group.

Let G be a finite p-group with generator number d and class ¢. A group H is a
descendant of G if H has generator number d and the quotient H/P.(H) is isomorphic
to G. A group is an immediate descendant of G if it is a descendant of G and has class
c+1.

The algorithm takes as input a d-generator p-group, G, defined as a quotient, F/R,
of the free group F on d generators. It also requires a description of the automorphism
group of G. It produces as output a complete and irredundant list of the immediate
descendants of G together with a description of their automorphism groups.

The group G is described by a power-commutator presentation computed using a p-
quotient algorithm. Using this presentation, a consistent power-commutator presentation
is written down for a p-covering group, F/R*, of G, where R* = [R, F|RP.

THEOREM 2.1. Every immediate descendant of G is isomorphic to a factor group of
F/R*.

The p-covering group has the following important property.
LEMMA 2.2. The isomorphism type of G* depends only on G and not on R.
A description of the algorithm used to construct the p-covering group, denoted by G*,

is provided in Havas & Newman (1980).
The factor group R/R* is elementary abelian and is known as the p-multiplicator of
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R* = [R, F]RP

Figure 1. Various subgroups of the p-covering group

G; the nucleus of G is P.(G*). An allowable subgroup is a subgroup of the p-multiplicator
which is the kernel of a homomorphism from G* onto an immediate descendant of G.
The allowable subgroups are characterised by the following theorem.

THEOREM 2.3. A subgroup is allowable if and only if it is a proper subgroup of the
p-multiplicator of G which supplements the nucleus.

Figure 1 illustrates the situation, where N/R* represents the nucleus and M/R* is an
allowable subgroup.

On taking factor groups of G* by allowable subgroups a complete list of immediate
descendants is obtained; this list usually contains redundancies. To eliminate these re-
dundancies, an obvious equivalence relation is defined on the allowable subgroups.

DEFINITION 2.4. Two allowable subgroups My /R* and Ma/R* are equivalent if and only
if their quotients F/M; and F/Ms are isomorphic.

A complete and irredundant set of immediate descendants of G' can be obtained by
factoring G* by one representative of each equivalence class. In practice, this definition
is useful only because the equivalence relation can be given a different characterisation
by using the automorphism group of G. An extension of each automorphism, a, of G
to an automorphism, a*, of G* is defined. The action of a* when restricted to the
p-multiplicator of G is uniquely determined by a, and o* induces a permutation of the
allowable subgroups.

THEOREM 2.5. The equivalence classes of allowable subgroups are exactly the orbits of
the allowable subgroups under the action of these permutations.

Thus, we designate one element of each orbit as its representative and factor the p-
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covering group by each representative in turn to obtain a complete and irredundant list
of immediate descendants of the starting group, G.

The choice of orbit representative determines the presentation obtained. Two elements
from the same orbit determine different power-commutator presentations for isomorphic
groups. On what basis do we choose the orbit representative? We associate with each
allowable subgroup a label — a unique positive integer which runs from one to the number
of allowable subgroups. The element with the smallest label, the leading term, is always
chosen as the orbit representative. The methods for representing the allowable subgroups
and assigning labels are described in detail in O’Brien (1990, §3.3).

An alternative view of the p-group generation algorithm is that it is a method for
constructing a particular power-commutator presentation for a given p-group, G.

Assume G has generator number d and class ¢. Then G/ P; (G) is the elementary abelian
group of order p? and, thus, G is a descendant of this elementary abelian group. It is
also clear, from a consideration of properties of the lower exponent-p central series, that
G/P;+1(G) is an immediate descendant of G/P;(G) for i < c.

Assume we construct the immediate descendants of G/P; (G). Among these immediate
descendants is the class two quotient, G/P(G), of G. It is now possible to calculate the
immediate descendants of G/P2(G) in order to obtain a power-commutator presentation
for the class three quotient of G. We may iterate this construction until we construct the
class ¢ quotient of G. Therefore, it is possible to construct G by iterating a method for
calculating immediate descendants, starting with the elementary abelian group of rank
d.

We designate the presentation obtained by constructing a power-commutator presen-
tation for a given p-group using the p-group generation algorithm in this way as the
standard presentation for this group.

3. Theory of the standard presentation algorithm

Let P = {a1,...,aq : R} be the supplied presentation. Let F' be the free group on
d generators; let R be the normal closure of R and G = F/R is a p-group of Frattini
quotient rank d. Since Py (F)R/P;(F) is the identity in F//P;(F'), R is a subset of P; (F).

Let S be a subset of P;(F) and let S be its normal closure in F'.

DEFINITION 3.1. R and S are presentation equivalent if, for all i > 1,

F/RF/S
F(F/R) P(F/S)

Now assume that the standard power-commutator presentation for the class k quo-
tient of the group, G/ Py (G), has been constructed on power-commutator presentation

generators aq, ..., an. It is straightforward, using Tietze transformations, to convert this
presentation into one whose relations involve only the defining generators, ai,...,aq. As
a result of this process, we obtain a new presentation {a1,...,aq: Rg}.

DEFINITION 3.2. Let Sy, be a subset of Py(F). Then Sy is a class k standard set of
defining relations for G if Sy, is presentation equivalent to R and (Ry)¥ = Py (F)(Si)F.
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The standard presentation for the class one quotient, G/P;(G), is
{ai,...,aq:[aj,a;) =1,a8 =1,1 <i < j<d}.

The supplied set of defining relations, R, is a class one standard set of defining relations.

At its kth iteration, the standard presentation algorithm takes as input the standard
presentation for G/P;(G) and a class k standard set of defining relations, Si. It produces
as output the standard presentation for G/Pj41(G) and a class k + 1 standard set of
defining relations, Sg41.

We introduce two sequences of subgroups. Let Py (F) = S; > S2 > ... > S be defined
by

S,’ = H(F)(Sk)F for i = 1, .. .,k.
Let Pl(F) =T1 ZTQ Z ... be defined by
T; = Py(F){S)F fori>1.

Then T; equals S; fori =1,... k.
We also define

R* =[Sy, F15%.
DEFINITION 3.3. Let a be an automorphism of F/Sy which maps a; Sy, tow;(ay,...,aq)Sk
for some choice of w;. Define a homomorphism & : F — F by a;& = w;(aq, - ..,aq) and

a homomorphism o* : F/R* — F/R* by a;R*a* = (a;&)R*.
LEMMA 3.4. The map a* is an automorphism.

A proof of this lemma appears in O’Brien (1990, Lemma 2.6). The automorphism, a*, is
an extension of a.

The set S, is a class k standard set of defining relations for G and is, by definition,
presentation equivalent to R. Hence, F/Tyy1 = G/P41(G). But G/Pj41(G) is an im-
mediate descendant of G/ P, (G) which is isomorphic to F/Ty.

Therefore, F/Ty1 is a quotient of the p-covering group, F/R*, of F/T} and Ty41/R*
is an allowable subgroup in the p-multiplicator. Let the leading term of the orbit which
contains Tyy1/R* be Spy1/R*. We factor F/R* by Si4+1/R* to obtain the standard
presentation for the class k + 1 quotient.

We have completed the first part of the construction — we now discuss how to obtain
a class k + 1 standard set of defining relations.

DEFINITION 3.5. An automorphism, §, of F/S) whose extension, 6*, maps Ty1/R* to
Sk+1/R* is a standard automorphism.

Let Spy1 = {wd : w € S} be the result of applying & to S. We claim that Siyq is a
class k + 1 standard set of defining relations for G.
To establish this, we define the following normal series:

P(F)=U >Uy>...

where U; = P;(F){(Sky1)T fori > 1.
We first show that U; = S; fori = 1,...,k+1 and then prove that Sk, is presentation
equivalent to R.
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LEMMA 3.6. U; = S; fori=1,...)k+ 1.

PRrROOF. First, consider the action of 6* on T;/R*:
TSR = (Pi(F)(St)")sR"
= (B(F)O)(Sk)"o)R"
= Pi(F){Sk1)" R*
= U;R".
Therefore,
(T;/R*)6* =U;/R*.
Now consider i € {1,...,k}. By definition, S; = P;(F)(Sk)¥". Since (Si)* is a subgroup
of S which is contained in S;, it follows that S; = P;(F)S. We deduce that S;/S is a

term of the lower exponent-p central series of F/Si. Each term of this series is invariant;
the p-multiplicator is characteristic; hence, S;/ R* is fixed under the action of the extended

automorphism, §*. Therefore, for i = 1,...,k,
U;/R* = (Ti/R*)6*
= (S;/R*)6* since S; =T;
= Si/R*.

We also have

Ui /R* = (Tips /RO)"
= Sky1/R* by the definition of 4.

This gives the desired result. O

In order to establish that Siy; is presentation equivalent to R, we introduce the
following series of subgroups. Let S = Rj > Rf > ... be defined by

R: = [R;—DF]( ;—1)p

for all ¢ > 1. We now define automorphisms o : F/R; — F/R}, by analogy with
Definition 3.3. Note that R7 is simply R* and af is a* as used earlier in this section.

LEMMA 3.7. Sky1 is a class k + 1 standard set of defining relations for G.

PRrOOF. Since P;(F'), a term of the lower exponent-p central series, is invariant, it con-
tains Sgy1.

We show that Siy1 is presentation equivalent to Si; since this is in turn presentation
equivalent to R, the result follows.

From Lemma 3.6, F/T; = F/U; for i = 1,...,k. In order to prove the presentation
equivalence, we must demonstrate that F/Tj4; = F/U; for all ¢ > 1.

Define a map v : F/Tj4; —> F/Ugyi by

Wiy = (W)U -

From the definition of §, we know that Tk+i5 < Ugyi- Therefore, v is well-defined. Also,
since R} < U4 and 67 is onto, vy is onto.
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‘We now establish that ~ is an isomorphism. Let wTk; be in the kernel of . Then
wd € Upy; implying that
(wR;)d; € Upyi/ Ry

But a generalisation of the proof given in Lemma 3.6 shows that (Tx1;/R})d; = Up+i/ R}
Therefore, wR} € Tyy;/ R}, showing that w € Tj4;. The isomorphism follows and so does
the result. O

4. The standard presentation algorithm

We now summarise a procedure which can be iterated to construct the standard pre-
sentation of a given p-group.

We assume that the standard presentation for the class k p-quotient of the group has
been constructed and that a generating set for the automorphism group of this quotient
is known. We now wish to construct the standard presentation for the class k41 quotient.

Let H = G/Py(G). The presentation P = {X : S}, where Sy, is a class k standard set
of defining relations for G, the standard presentation for H, and the generating set for
the automorphism group are the inputs to the procedure.

1 Use the standard presentation for H to write down a presentation for its p-covering
group, H*.
2 Use S as input to a p-quotient algorithm to compute a presentation for the class

k 4+ 1 quotient of G.
3 Recognise the allowable subgroup, M/R*, which must be factored from H* to give

the presentation computed for the class k + 1 quotient.
4 Extend the elements of the generating set for the automorphism group of H to act

on the p-covering group, H*.

5 Compute the orbit of M/R* under the action of these automorphisms and let L/R*
be its leading term. Factor L/R* from H* to obtain the standard presentation for
G/Pi+1(G).

6 Compute an automorphism whose extension maps M/R* to L/R*.

7 Modify the relations of Sy by applying this standard automorphism to each. The

resulting modified set is Sgy1-

The output of the procedure is the modified set of defining relations, Sg41, and the
standard presentation for G/ Pj11(G).

The group presented by {X : Sg4+1} has the standard presentation for its class k + 1
quotient.

Note that a generating set for the automorphism group of the class k quotient is
required as input to the procedure. In practice, at the kth iteration of the algorithm, a
description of the automorphism group of G/Pi+1(G) is computed at the same time as
the standard presentation for this quotient is computed. This generating set is used as
input to the next iteration of the procedure. For a description of the method used to
construct this generating set, see O’Brien (1994).

5. An implementation of the algorithm

A detailed description of the implementation of the p-group generation algorithm is
given in O’Brien (1990). Much of the subsequent discussion assumes some level of famil-
iarity with the details of that description.
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As a precursor to applying the standard presentation algorithm, the user’s presenta-
tion is first supplied as input to the p-quotient algorithm, and we obtain as output the
standard presentation for G/ Py (G).

At the kth iteration, the standard presentation for H = G/Py(G) is used by the
p-quotient algorithm to write down a presentation for the p-covering group, H*. We
next supply the class k standard set of defining relations, S, as input to the p-quotient
algorithm and determine a consistent power-commutator presentation for G/Py41(G).

Once this presentation has been computed, it is easy to determine which allowable
subgroup must be factored from H* in order to obtain G/Py4+1(G). The generators of
the last term of the lower exponent-p central series in the presentation for G/Py1(G)
form the definition set for this subgroup and hence we can obtain its label.

We now carry out a partial run of the p-group generation algorithm. First, we supply
a generating set for the automorphism group of G/P;(G). (When k£ = 1, we supply
simply a generating set for the appropriate general linear group.) These automorphisms
are extended to act on the p-covering group. The orbit of the allowable subgroup under
the action of these automorphisms is then computed and the representative of the orbit
noted.

An automorphism must now be determined whose extension maps an element of the
orbit to the representative of that orbit. In computing the orbit of the allowable subgroup,
the necessary information has already been computed which permits one to trace a word
in the defining automorphisms whose extension has this property. Once the word is
obtained, it is evaluated to give a standard automorphism.

The standard automorphism is now applied to Sk in order to obtain Sky;. A file
containing the class k + 1 standard set of defining relations together with a description
of the automorphism group of this quotient is created. This file contains the necessary
input for the next iteration of the algorithm.

If the algorithm is used to verify that two groups are isomorphic, it is easy to obtain
an explicit isomorphism between them by recording the standard automorphisms applied
at each class to bring each presentation to the single standard presentation.

A new implementation of the Havas and Newman p-quotient algorithm has been de-
veloped by the author. It builds on the previous implementation and provides a range
of new facilities. Some of these are described in Newman & O’Brien (in preparation).
The author’s implementations of the p-group generation and standard presentation al-
gorithms are combined with this to form the core components of the ANU p-Quotient
Program.

A facility is provided by the program which allows the user to save the computed
standard presentation of a group to file. The user may compare this presentation with
any other to determine whether the two presentations are identical. This comparison is
carried out by writing down a compact description of each group — a sequence whose
entries are the exponents which occur in the relations of each standard presentation —
and then comparing these integer sequences.

In summary, the program provides an interface which allows a user to compute the
standard presentation for a given group class by class, to save all relevant data, and carry
out comparisons of standard presentations constructed.

The ANU p-Quotient Program is written in C and is available on request from the
author. We provide additional access to all three implementations via both GAP (see
Schoénert et al., 1993) and MAGMA (see Butler & Cannon, 1989).



10 E.A. O’Brien

6. A sample calculation

In this section, we compute a standard presentation for the class two 3-quotient of the

group, G, having presentation
{z,y : (zyz)’}.

The class one 3-quotient, H = G/P;(G), has the standard power-commutator presen-

tation:
{ai,a2 : @} =1, a3 = 1,[az,a1] =1 }.

The supplied set of defining relations is a class one standard set of defining relations, S;.
We now apply the algorithm.

1 We use the standard power-commutator presentation as input to write down a
presentation for the 3-covering group of H. Subject to the convention that all
relations whose right-hand sides are trivial are not shown, this group, H*, has
presentation

{ai,...,a5: [a2,a1] = a3,a3 = a4,a3 = a5 }.
The nucleus is (a3, aq, a5 ).
2 We use S; as input to write down a presentation for the class two 3-quotient of G.
This quotient has presentation
{ay,...,a4 :[as,a1] = a3, a3 = ayq,a3 = a4 }.

3 The allowable subgroup, M/R*, which must be factored from H* to give this pre-
sentation for the class two quotient is {aZas).
4 A generating set for the automorphism group of H is

aq o a, +—r af , Q2 a CL% , Q3 a, alag
ay +H— a% as +H— a1 ay +——r afa% s
Oy : a +— a, Qs . a; +=—— a%
az — alas as +— as.

The automorphism matrices representing the action of a; on the 3-multiplicator of
H are, respectively:

100 100 100 100 2 0 0
o201}, (oo0oz2],lo12],(o1o0], 020
00 2 010 0 2 2 02 1 00 1

5 The orbit containing M/R* is

(as), (asas), (aias), (as).

The orbit representative, L/ R*, is {(as). We factor H* by (a5) to obtain the standard
presentation for the class two quotient:

{a1,...,a4: [a2,01] = as,a’ = a4 }.
6 A standard automorphism whose extension maps M/R* to L/R* is the following:

d: a1 +— aijasasay
az +— apal.
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7 We now modify the relations of S; by applying the standard automorphism to each.
Hence S; is

{(zyly, 2]’ zy’ayly, x]a®)?}.

7. Improving the performance of the algorithm

The limitations on the performance of the standard presentation algorithm are essen-
tially those inherent to the performance of the p-group generation algorithm.

Assume that we have constructed the standard presentation for the class k p-quotient
of G and we now wish to construct the standard presentation of the class k+1 p-quotient.

Let the rank of the p-multiplicator of G/P;(G) be ¢ and let the width of the kth
term, s, be log, | (G/Pk41(G))/(G/Pi(G)) |- In constructing the standard presentation
for G/ Px4+1(G), we compute an orbit of subspaces of dimension g — s in the g-dimensional
space. The number of such subspaces (and hence the potential size of this orbit) is largest
when s is half the value of ¢q. Of course, this number also depends on the prime, p. The
space required to represent the allowable subgroups and to calculate the desired orbit is
the most serious limitation. The time taken to compute the orbit is determined by its
length.

In O’Brien (1990, §4), a strategy involving the use of characteristic subgroups in the
p-multiplicator was described which significantly extends the range of application of the
p-group generation algorithm. A further extension to the algorithm was described in
O’Brien (1991).

The strategy of using characteristic subgroups has been incorporated into the standard
presentation algorithm.

This involves some modifications of the algorithm described in Section 4. The discussion
relies heavily on the concepts introduced in O’Brien (1990).

Steps 1 and 2 of the algorithm remain the same. Step 3 is split into two parts:

3a. We recognise the allowable subgroup which must be factored from the p-covering
group and hence determine the step size required for the class k + 1 construction.

3b. We choose the smallest initial-segment characteristic subgroup in the p-multiplicator
and all of our remaining calculations are performed relative to this subgroup. The
relative allowable subgroup is the intersection of the allowable subgroup with this
initial-segment characteristic subgroup. We determine the relative allowable sub-
group which must be factored from the p-covering group and hence obtain the
relative step size.

As before, we now find the representative of the orbit containing the relative allowable
subgroup.

If the characteristic subgroup is a proper subgroup of the p-multiplicator, then under
Step 5, the orbit representative is factored from the p-covering group to give, not the
standard presentation for the class k+ 1 quotient but instead, a presentation for a reduced
p-covering group. The relations are now modified under the action of a standard auto-
morphism. Steps 3b to 7 of the algorithm are now iterated taking as input the reduced
p-covering group and the modified set of defining relations.

When the characteristic subgroup chosen is the (reduced) p-multiplicator, the standard
presentation is obtained together with a class k£ + 1 standard set of defining relations.

As reported in O’Brien (1990), these intermediate stage computations significantly
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extend the range of applicability of the p-group generation algorithm. They have a similar
impact on the performance of the standard presentation algorithm.

The default strategy of the implementation is to choose the initial-segment characteris-
tic subgroup of the smallest permitted rank at each intermediate stage of the calculations
and perform all calculations relative to this subgroup.

7.1. OTHER STRATEGIES

In the discussion of the algorithm presented here, we have defined the standard presen-
tation of a group as that obtained by constructing the group using the p-group generation
algorithm. In checking whether two groups, say G and H, are isomorphic, we may choose
another definition for their standard presentations.

As an example, we may redefine the “standard presentation” of G to be simply the
power-commutator presentation obtained by using its given presentation as input to a p-
quotient algorithm. We may now seek to establish that H is isomorphic to G by verifying
that at each class, k, the quotient, H/Py(H), has a presentation which is identical to
that of G/Py(G). Assume that this is true for the class k p-quotients. Now consider
the construction of the class k + 1 p-quotient of each. Let M;/R* and M2/R* be the
allowable subgroups whose quotients provide the presentations for the class & + 1 p-
quotients, respectively. If G and H are isomorphic then these two subgroups are in the
same orbit. Hence, it is sufficient to find an automorphism whose extension maps M»/R*
to My /R* and to apply this automorphism to the relations of the presentation for H.
In this way, we reduce the problem of checking the isomorphism of H/Pyi1(H) and
G/ Pi+1(G) to building up the orbit of M,/R* until it is complete or we find M; /R*. In
practice, the saving in time is not significant using this approach but there may be some
reduction in the amount of space used.

It may be the case that the power-commutator presentations obtained by handing the
finite presentations for G and H to a p-quotient algorithm are identical up to some class
k. If this is so, we need only apply the standard presentation algorithm from class k£ + 1
onwards; however, we must supply a generating set for the automorphism group for the
class k quotient as input. If a generating set is known, the use of this feature may reduce
significantly the cost of testing for isomorphism.

8. Performance data

As already mentioned, the implementation of the algorithm is most effective when
the number of allowable subgroups is reasonably “small”. Another limiting factor is the
number of generators of the automorphism group.

A crude additional guide to the range of applicability of the implementation is obtained
by considering the rank of the Frattini quotient of the group. In practice, the performance
of the algorithm is best when the rank is at most five. In cases where the Frattini rank
is larger, but the ratio of the width of each term of the lower exponent-p central series
to the ranks of the associated smallest initial-segment characteristic subgroups is “close”
to either 0 or 1, the implementation may still be useful.

Consider the following groups:

Gl = (w,y:x4,y4=[y,x,x]);
G2 < T,y: [’rayayay]a [mayam] )7
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Class Order Time

1 22 -
2 25 0.1
3 28 0.1
4 A 0.2
5 215 0.4
6 219 0.4
7 225 0.9
8 232 1.5
9 242 4.5
10 255 32.7

Table 1. Constructing standard presentations for 2-quotients of G

G3 = <5U,y:3725>[y,377$,37]ay5:[9;37;37] )7
Gy = <$ail/3371171‘/11;2117[Z/:»’U,ivaxa%m];[Zam];[zay]a[yaway])-

Tables 1-4 list the times taken to compute the standard presentations for certain
quotients of these groups. All CPU times are in seconds and calculations were carried
out on a Sparc 10/31 machine. All computations were carried out using the default
implementation discussed in Section 7.

The time taken to compute the standard presentation is usually significantly greater
than that taken to compute an arbitrary power-commutator presentation for a given finite
p-group. For example, using the author’s implementation of the p-quotient algorithm,
a consistent power-commutator presentation was constructed for the largest quotient
of each of the sample groups in about one second of CPU time. Hence, the standard
presentation of a group should be constructed only when the canonical nature of this
presentation is a desired property.
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