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Abstract

We describe the structure of the subgroup of the general linear grefinged over a
finite field that preserves two bilinear or sesquilinear forms of the samdadhgge, at
least one of which is non-degenerate. This description underpins aitlahg to construct
the intersection of two classical groups of the same type.

1 Introduction

A long-standing and difficult algorithmic problem is thelwling: if G and H are two finite
subgroups of a common parent grofp determine explicitly= N H.

If P is a permutation group, then no polynomial-time algoritisrknown to solve the prob-
lem; indeed the problem was shown by Luks [9] to be polynoitimaé equivalent to other hard
permutation group problems, such as set stabilizer. Exjsigorithms to solve the problem
employ variations of “back track”. 1P < GL(n, GF(q)), then the approach is practical only
for very modest values of andq. For a discussion of these techniques, see{33].

In this paper we provide an explicit description of the grafipinear transformations that
preserves a pair of bilinear or sesquilinear forms of theesalassical type (that is, alternating,
symmetric or hermitian) provided that at least one of thenois-degenerate. This description is
inspired by the recent work of Goldstein & Guralnick [5]. Cegsently we develop an efficient
algorithm to construct the intersection of two groups thasprve such forms.

The first author thanks the Department of Mathematics at theddsity of Auckland for its hospitality while
this work was done. Both authors were supported in part byvtaesden Fund of New Zealand via grant UOA
412. We thank Robert Guralnick for providing us with a prapof [5] and Allan Steel for assistance with our
implementation. 200Mathematics Subject ClassificatioRrimary 20C20, 20C40.



Let M and N be matrices representing bilinear or sesquilinear formt®fsame classical
type, with M nonsingular. LetZ and H be the groups of linear transformations that preserve
M andN respectively. An elementary calculation (Theorem 2.5nshthatG N H is precisely
the subgroup of; that centralises the matrix = N/,

In Section 2 we demonstrate thdathas the special property relative 3d of being self-
adjoint, and Proposition 2.7 describes the structure of the césdgradf A in G. One conse-
guence of this description is that the centraliser compurtatduces to finding centralisers of
the primary components of th€[z]-module determined by the action dfin some correspond-
ing group of isometries.

In Section 3 we specialise to the case whdrdetermines a primary module — namely,
has minimal polynomial of the form(xz)™ for p(x) irreducible overF' — and determine the
structure of the centraliser of in various cases.

In Section 4 we present an algorithm to construct the groupwefrtible matrices that pre-
serve both)M/ and N. This uses the general results obtained in Section 3 togefitie matrix
calculations to handle various special cases. The resaftriactical procedure that will produce
the desired group for a very large proportion of input pafrooms.

If the two forms have the same type but are both singular, tthisrapproach does not apply.
Furthermore, the structures of the intersections are mumte miverse; in [3] we present an
alternative algorithm to solve this problem.

2 Sdf-adjoint matrices

Let F be a field of size; = p* for primep and intege > 1, and letV = F". LetM(n, F') be
the set ofz x n matrices with entries ii’. We will often regardVi(n, F') as an algebra ovéfr,
having group of unit&:L(n, F). If k is even, letL be the subfield of” fixed elementwise by the
involutory automorphism — xv4; otherwise lef. = F'. Leta be an automorphism df fixing
L. LetC(n, F) denote the set of all matriced € M(n, F) satisfyingM = ¢(M*)", where
e € {1,—1}, e = 1 whenever is nontrivial, andX — X' denotes transposition. Thus each
M € C(n, F) is the matrix representing a classical formdnWe say that\/ hassymplectic
typeif e = —1, unitary typeif « is nontrivial, ororthogonal typeotherwise. The bilinear or
sesquilinear form associated witli is computed via the assignmeft, v) := uM (v*)" for
u,v €V,

For M € C(n, F), let F;, denote the fixed field ot. ThusF, = L if M has unitary type, and



Fy = F otherwise. We define thisometry group of\/ to be the set
Isom(M) = {X € GL(n,F): XM (X*)" = M}. (1)

We shall often denote the isometry group\éfby Sp(M), GU(M ) or GO(M) - the symplectic,
general unitary, or general orthogonal group\éf- if the type of M is known. Observe that
our definition of GO(M) coincides withSp(M) if char(F) = 2; thus we consideGGO(M)
only in odd characteristic. A matrid € M(n, F) is self-adjoint relative toM € C(n, F) if
AM = M(A™)". The following is an easy extension of [5, Lemma 2.3].

Lemma2.l LetM € C(n, F), let A be self-adjoint relative td/, and letf(z) € F[z]. Then
f(AM = Mf(A*)". In particular, if M has symplectic or orthogonal type, thgiiA) is
always self-adjoint, whereas ¥/ has unitary type, therf(A) is self-adjoint precisely when
f(x) has coefficients id.

The next two lemmas concern self-adjointness relative tmlagenerate forms of unitary type.
For convenience, denote the imagefof F' under the involutory automorphismsimply by
£. Also, for f(z) € F[z], let f(z) denote the polynomial obtained frofnby applyinga to its
coefficients.

Lemma2.2 LetM € C(n, F) be nonsingular of unitary type and ldtbe self-adjoint relative
to M. Then the minimal polynomial of over F' has coefficients itk

Proof. SinceA is self-adjoint relative td//, andM is nonsingular, it follows thatl is similar to
A". However it is well known (see, for example, [14]) thaf is similar toA. In particularA

and A have the same minimal polynomial ovEr Clearly if m 4 (z) is the minimal polynomial
of A, thenm4(z) = ma(z), whencem(x) = ma(x), as claimed

Lemma 2.3 Let M € C(n, F) be nonsingular of unitary type and letbe self-adjoint relative
to M having minimal polynomiain 4(x) = p(x)¢, wherep(x) is irreducible overF, and has

even degree. Then 4(z) factors overF'[z] asma(z) = f(x)f(x) and the nullspaces gf(A)
and f(A) are complementary maximal totally isotropic spaces.

Proof. Suppose that(x) € Fy[z] has degreél, and letw be a root ofp(x) in some extension
field K of F. If s = /g is the order offy, thenw,w®,w*,...,w*" " are the distinct roots of
p(z)in K. Since[Fy(w): Fy] = [F(w): F| =, it follows thatw is the root of some irreducible
polynomial () € F[z] of degreel. Hencer(z) = (z — w)(z — w9)...(z —w? ') and

p(z)/r(z) = (z = w*)(x = (@)9)... (x = (W)") = T().



Let f(x) = r(z)°, let U be the nullspace of (4) and W be the nullspace of (4). Fix
wo € W and letw be any vector if?/. Since the restriction of (A) to W is nonsingular, there
existsw; € W with w = w; f(A). Now we compute

tr

(wo, w) = woMwW"™ = woMu f(A) = woMf(A)trw_l“ = wof(A) Mt = 0.

The penultimate equality follows from Lemma 2.1 applied'te) and the last follows from the
fact that!¥ is the nullspace of (A). HencelV is totally isotropic and, by symmetry, soli&
SinceV = U+ W andU andWW are totally isotropic, it follows that they have equal diraem;
hence there are maximal totally isotropic spaces.

Our next result gives a fundamental decomposition of theespa= F™ into A-invariant
submodules (cf. [5, Theorem 2.6]).

Lemma24 LetM € C(n, F') be nonsingular and lel be self-adjoint relative td/. Let

ma(x) = pi(x)pa(x)? ... pyx)”

be the decomposition of the minimal polynomialdointo irreducibles overr;, and letV; be
the nullspace op;(A)“ (1 <1i <t). ThenV; &V, @ ... &V, is an A-invariant decomposition
of V. Moreover, relative to the form associated with, the subspacek; are nonsingular and
mutually orthogonal.

Proof. It is a consequence of elementary linear algebra thas the direct sum of thed-
invariant subspacdg. That these subspaces are mutually orthogonal follows &or@rgument
similar to that in the proof of Lemma 2.3; see also the pro¢gbpTheorem 2.6]. Since the form
represented by/ is nondegenerate, it follows immediately that theare nonsingular]

The next result is the key to constructing intersectionslagsical groups (cf. [5, Lemma
2.2]).

Theorem 2.5 LetM, N € C(n, F) be of the same type witlf nonsingular. Them := NM !
is self-adjoint relative ta\/, andIsom(M) N Isom(N) = Cisom(a)(A), the centraliser ofd in
Isom(M).

Proof. Let M, N € C(n, F) be of the same type and lgt = NAM~!. Then, since\/ and N
both satisfy the equatioft ®)" = ¢V, we have

M(AY)"™ = M(M~*)"(N*)" = 2N = AM,



andA is self-adjoint relative tal/. Next, X € Isom(M) centralisesA if and only if
N = AM = XAX'M = XAM(X*)"™ = XN(X*)".
ThusX € Ciomay(A) if and only if X € Isom (M) N Isom(N). O

In our description ofsom(M ) N Isom(/NV), and particularly in the algorithm that constructs
this group, we often find it convenient to change the basig .ofl he following result, whose
proof is an elementary calculation, facilitates this cosian.

Lemma2.6 LetM € C(n, F), let A be self-adjoint relative td/, and letB € GL(n, F). Then
the following hold:

1. M':= BM(B*)" is an element of (n, F) of the same type ai/;
2. A’ .= BAB™!is self-adjoint relative ta\/’; and

3. OIsom(]\/[)(A) - B_lolsom(M/)(Al)B.

If M has symplectic type, then the self-adjoint matdxn Theorem 2.5 has the stronger
property thatvAMov*™ = 0 for all v € V. (For fields of odd characteristic, however, this
property is equivalent to the conditiohd/ = M A™.) The following result, which follows
from [5, Theorem 2.6] and [5, Lemma 4.1], describes the ggtetion of two symplectic groups.

Proposition 2.7 LetM € C(2m, F') be nonsingular of symplectic type, andiebe self-adjoint
relative toM. Then there is a change-of-basis mathxe GL(2m, F’) such that

A’—BAB‘1—<3 2) and M’-BMB“-( 02 i), (2)

wherel is symmetric and is self-adjoint relative ta:. Furthermore Cs,(y7)(A’) consists of
all invertible matrices of the fornf £ %), where the block entrie®, Q, R, S all centralise J
and satisfy the constraints:

PYQ"™ — QXP"™ = 0

RY.S™ — SYRY™ = 0 3)

PYS"™ — QLR = %

For the subspacédg defined in Lemma 2.4, let; (respectivelyM;) be the restriction oA
(respectivelyM) to V;. ThenM; is nondegenerate andl is self-adjoint relative tal/;. Com-
bining Theorem 2.5 with Lemma 2.4 we see that the interseafdsom(A/) andIsom (),
whereM is nonsingular, is the direct product of centralisers of aén the groupdsom(/;).
In the next section we examine these centralisers in moegldet
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3 Centralisersof primary components

Throughout this section we assume tHas a self-adjoint matrix relative to sonié € C(n, F'),
and has minimal polynomial of the forpiz)¢ for some irreducible polynomial(z) € Fy[z].
We will examine the structure @fisom(ar)(A), the centraliser oft in Isom(M). Since Proposi-
tion 2.7 describes centralisers of self-adjoint matricgbé symplectic case, we will restrict our
attention to matriced/ that have orthogonal or unitary type. It is convenient tojegate A to

its generalised Jordan normal form, and repl&atey a corresponding matrix as in Lemma 2.6.
Note that if A is a scalar matrix, the@'im (A) = Isom(M). Our first result deals with the
case whem is cyclic.

Lemma 3.1 Let M be of unitary or orthogonal type and let be a cyclic matrix self-adjoint
relative to M. Assume thap(z) has odd degree i/ has unitary type (so thai(z) is also
irreducible overF’). Then the following hold:

1. If M has orthogonal type the@som ) (A) = {£1}.
2. If M has unitary type thefisomr)(A4) is the group{X € F[A]: XX = 1}.

Proof. SinceA is cyclic, any matrix that centralisesmay be written in the fornf(A) for some
polynomial f(z) € F[z]. Let f(®(x) denote the polynomial obtained frofifz) by applying
a to its coefficients. Thug(®)(z) = f(x) if M has orthogonal type, anti®) (z) = f(z) if M
has unitary type. By Lemma 2.1 applied t6" (), we havef(A) € Isom(M) if and only if
FAM(f(ANT = fF(A)f(A)M = M. If M has orthogonal type, thefi*)(A) = f(A)
so thatf(A)? = 1. If M has unitary type, ther is a matrix defined oveF,, so the condition
f(A)f@(A) =1 asserts thaf (A) f(A) = 1, as required]

We next consider the case where fig:|-module defined by the action daf is semisimple.

Lemma 3.2 Let M be of unitary or orthogonal type and let have minimal polynomig(x),
wherep(x) has degree and is irreducible oveF'. ThenCryom (i) (A) is isomorphic tdsom(M™),
where, for an extension field of F’ of degree:, M* € C(n/e, K) and has the same type A$.

Proof. The generalised Jordan normal form 4fis a block diagonal matrix of the form
diag(J, J,...,J), whereJ € M(e, Fy) is irreducible overF. As in Lemma 2.6, by apply-

ing a change-of-basis matrix that centralisesve may assume that’ also has block diagonal
formdiag(M, ..., M,,.). (If n = e this is trivial; for the general casd, preserves a nonsingu-
lar e-space and its orthogonal complement, and the assertilmuviby induction.) Sincel is
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self-adjoint relative ta\/, we haveJM; = Mi(Ja)“ = M;J* for all .. SinceM is nonsingular,
eachM; conjugates/ to J', so it follows from [14, Theorem 2] that/; is symmetric. (This
tells us nothing new if\/ has orthogonal type but, ¥/ has unitary type, it follows that/; is
defined overry.)

Write g € GL(n, F') in block form also, say) = [[X;;]], whereX;; € M(e, ). Theng
centralisesi if and only if eachX;; centralises/. SinceJ is irreducible over”, it follows that
X;j = fi;(J) for somef;;(z) € F|x].

Let M, be any of the diagonal blocks af and setS := diag(My, My, ..., My). Observe,
for all 4, that M; M, ' centralises/ and hence belongs to the field.J]. In the unitary case,
moreover,« induces an involutory automorphism 61./] that fixes the subfield[./]; as M
andsS are defined oveFy, it follows thata fixes M S—!. SinceM* := M S~ is a block diagonal
matrix, it lies inC(n/e, F'[.J]) as required.

Applying Lemma 2.1 tof*), observe thaf/,(X3)" = ]\Iof;f‘)(J‘”‘)tr = J(?)(J)MO. Since
J is defined overF, we havef](f)(J) = (fiu(J))* = X§. It follows that (X]?;.)“Mgl =
My ' X%, HencegM (g*)" S~ = gMS~'h, whereh, regarded as an elementMf(n/e, F[.J]),
is equal tog™. It follows thatg € GL(n/e, F[J]) is in Isom(M*) if and only if

MS™ = M* = gM*g" = gMS™'h = gM(g*)"S™",

which holds if and only iflgM (¢*)" = M. O

We conclude this section by examining the case wheris of unitary type and the minimal
polynomial of A splits overF'. Recall thatA is already assumed to be in generalised Jordan
normal form.

Lemma 3.3 LetM have unitary type and let be self-adjoint ta\/ having minimal polynomial
p(x)¢ with p(x) irreducible overF, of even degree. TheA = (7 9), M = () and
Crsom(m)(A) consists of matrices of the form= (¥ 2. ), whereX centralises/ and X* =
H X H"

Proof. As in the proof of Lemma 2.3, writg(z) = r(z)7(x), letU = ker(r(A)°) andW =
ker(7(A)°); thenU andIV are complementary maximal totally isotropic spaces. Tatestents
aboutA and M now follow easily. The centraliser of in GL(n, F') preserves botly andV,
so it follows that elements af'om(ar)(A) have the form(¥ ), whereX andY centralise]
and.J respectively. The final condition oxi follows directly from the fact thag Mg = M. O



4 Constructing inter sections

In this section we present an algorithm to construct thersetion of two classical groups
preserving bilinear or sesquilinear classical forms ofdame type.

In Section 4.1 we outline the main procedure that constthetstersection of the full groups
of isometries of two matriced/ and N representing forms of the same type. In Section 4.2 we
describe the modifications that are necessary to obtaimtbesection of two classical groups
of the same type (we exclude orthogonal groups in charatitefl). Sections 4.3 and 4.4 deal
with the specifics of writing down a generating setfarm(M) N Isom(N).

4.1 Thegroup preserving two forms

The input to the main procedure consists of matriggsNV € C(n, F') representing classical
forms of the same type, wherd, say, is nonsingular. The output is a generating set for the
subgroup ofGL(n, F') that preserves both of these forms.

Inter section of |sometry Groups (M, N)
[* Input: Matrices M, N € C(n, F’) of the same type, with/ nonsingular */
/* Output: A generating set folsom(M) N Isom (V) */

Step 0. Let o denote the automorphism éf associated with the type aff and N, and letF;, be
the subfield off’ fixed by a.

Step 1. SetA := NM~! and compute the minimal polynomiad 4(z) over F.

Step 2. Obtain a factorisatiom 4 () = pi(z)“pa(x) ... p(z)%, where eachy;(z) € Foylz] is
irreducible overry,.

Step 3. For1 < i < t, compute a basi#; for the nullspacé/; of the matrixp;(A)™ of di-
mensionn,;. The concatenation of the basBsgives a change-of-basis matrix such
that BAB~! is a block diagonal matridiag(A;, A, ..., A,), andBM (B*)" is a block
diagonal matrixdiag(M;, M, ..., Mj).

Step 4. For1 < i < s, write down a generating séf; for the subgroupCisom(as,)(A;) of
GL(n;, F); obtain a subses; of GL(n, /') whose elements induce the corresponding
element of7; onV; and the identityoV; & ... @V, 1 ® V1 & ... V..

Step 5. SetS =S US U...US,, and return the setC~'XC": X € S}.
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We now comment on the steps of the algorithm.

Step 1. Various algorithms exist to construct the minimal polynahaf a matrix defined over a
finite field; see, for example, [7, p. 226].

Step 2. Algorithms to factorise polynomials defined over finite feelsre discussed in [12, Chap-
ter 14].

Step 3. The nullspace of a matrix is obtained readily by solving daesysof linear equations over
F. For further details see [7, p. 223].

Step 4. If M (and thereforeV) has symplectic type, the subgrouigom s, (A;) are described
in Proposition 2.7; this description is used in Section 4.@tite down generators.

If M has unitary or orthogonal type, the results of Section 3 neayd®ad to write down
generators folCsom(ar,)(A;) for certain matricesd;. We describe how this is done in
more detail in Section 4.4 and give generating sets for apecific cases.

4.2 Intersectionsof general classical groups

We defineG to be aclassical subgroupf GL(V) if it preserves a bilinear or sesquilinear form
onV having matrix\/ € C(n, F'), and one of the following holds:

1. M has symplectic type, an@ = Sp(M).

2. M has unitary type, anU(M) < G < GU(M), whereSU(M) is the subgroup of
GU(M) consisting of determinant 1 matrices; thwi& (M) /SU (M) is a cyclic group of
orderg + 1.

3. M has orthogonal type, and(M) < G < GO(M), where|[GO(M): SO(M)] = 2
(recallg is odd in this case) and (M) is the derived group oa&O(M).

We now present an algorithm to solve the following algoritbproblem:

Given classical subgroups, H of GL(V') of the same type, find generators for
GNH.

The algorithm of Niemeyer and Praeger [11] can be used taldeghether the given groups
G and H satisfy the necessary requirements. We note that kernélsrabmorphisms can be
computed effectively in our limited context.



Classical Intersection (G, H)
* Input: Classical subgroup&’ = (X) and H = (Y') of GL(n, F') of the same type */
/* Output: A generating set fofz N H */

Step 0. Find matrices\/ and NV for the forms preserved b and H respectively.
Step 1. ComputekK := Isom(M) N Isom(N) using the procedure in Section 4.1.
Step 2. If M andN have unitary type, set := {£ € F*: (77! = 1}, and modifyK as follows.

(a) SetCy := (det(x): z € X)N(det(y): y€Y) < C.
(b) Construct a homomorphisth: K — C'/Cy, sendingz — det(a)Cp.
(c) Replacek with ker(v)).

Step 3. If M and N have orthogonal type, sét := {—1,1} x {—1,1}, where{—1,1} is the
multiplicative groupZ,, and modify K" as follows.

(i) /* Construct the spinor map,,: GO(M) — {—1, 1} with respect ta\/ */
(@) SetCy := ((det(x),opn(z)): x € X) < C.
(b) Constructa homomorphism,: K — C/Cy, sending: — (det(a), oar(a))Co.
(c) Replace with ker(¢y).

(i) /* Construct the spinor mapy: GO(N) — {—1, 1} with respect taV */
(@) SetCy := ((det(y),on(y)):yeY) < C.
(b) Constructa homomorphismy : K — C/Cy, sendingy — (det(a), on(a))Co.
(c) Replacel with ker(¢y).

Step 4. Returnk.

Commentary. In Step 0, the form for each group is obtained by construaimgsomorphism
between the natural module for that group and its dual; segdeétion 4.2].

In general the subgroufy constructed in Step 1 will be an overgroup®f H.

In the unitary case, Step 2 modifiéSso that it contains only elements having determinant
equal to that of some elementGfnN H.

In the orthogonal case, Step 3 modifi€so that it contains only elements having appropriate
spinor norms relative td/ and N. The spinor maps;; andoy are constructed using Wall
forms; see [15, p. 163].
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4.3 Symplectic groups

Let A = A, and M = M, be the block matrices obtained in Step 3 of the main algorithm
Section 4.1. By Proposition 2.7 we may assume that (§9) andM = ( % %) , where
J, % € M(m, F') andX is symmetric. LetB3 be anyGF(p)-basis for the solution space of the
linear system{Q € M(m, F): JQ = QJ, XQ" = X}, and set

S (N

The block entries of the matrices &hclearly satisfy equation (3), s& C Csp,ar)(A).

If J is a cyclic matrix (one whose characteristic and minimalypomials coincide) then
its centraliser inVI(m, F') is simply F'[J], the subalgebra d¥l(m, F') generated by/. In that
case, the block entrie3, ), R, S in equation (3) are all polynomials ih. Moreover, since/ is
self-adjoint relative t@;, it follows from Lemma 2.1 thaP’, @, R, S are all self-adjoint relative
to 3. Hence the conditions in equation (3) reduce to the singhsttaintPS — QR = 1, and it
follows thatg € Sp(M) if and only if g € SL(2, F[J]). Hence, ifJ is cyclic, the elements of
S are analogues of transvectionsSih(2, £'[.J]), whereF'[.]] is a local ring. It follows from [8,
Proposition 1.3.5] tha$ generateg’s,( ) (A) in this case.

If J is a scalar matrix, it is well known that generate<’s,/)(4) = Sp(M) (see, for
example, [2, Section 5]).

Recently, Goldstein and Guralnick [6] proved tiSaalways generateSg,a(A).

4.4 Orthogonal and unitary groups

We now assume that/ € C(n, F') has orthogonal or unitary type and thate GL(n, F) is
self-adjoint relative tal/ having minimal polynomiap(x)¢ for somep(x) irreducible overry.
We begin by describing generating sets for each of the casesdered in Section 3.

Lemma3.1: HereA is cyclic andp(z) is irreducible ovel'. In the orthogonal case there
is nothing to do sinc&co(A) = {£1}. Suppose thad/ has unitary type. If4 is
irreducible, thenF[A] is a field andCqur)(A) = GU(1, F[A]). In general, however,
constructing generators for the norm group of a given rirgydsficult problem; Lemma
4.3 describes such generators for the case whenis linear.

Lemma3.2: This is the semisimple case in whiCh,m (i) (A) is the full group of isome-
tries of a suitable form over an extension field,; it is trivialwrite down generators here.
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Lemma 3.3: Here M has unitary type angl(x) splits overF' as a product of an irreducible
polynomial and its conjugate. The key to constructing gatees forCqua)(A) is to
construct the centraliser L (n, F') of a given matrix/. This can be done using methods
described in [10, Chapter 2], or using more general techsifpreconstructing the group
of units of a matrix algebra (see, for example, [3, Sectign 2]

In the remainder of this section we assume that the minimighpanial of A has the form
(x — \)¢ € Fylz], wherec > 1. Assume further thatl is in Jordan normal form. We describe
generating sets fal'i,m (1) (A) in three other important cases; the results are all readiijied
by direct calculation.

Lemma4.1l Suppose that = 2 and thatA is a block diagonal matrix
diag(Jo(A), J2(A), ..., J2(N)),

where J5()\) denotes the x 2 Jordan block(j 1). Then, relative to a suitable basid, has
the form (% L), where[ is the identity ofGL(n/2, F'), and M has the form( I ]%2> for
symmetric matrices/;, M,. Furthermore Crom(ar) (A) is generated by matrices of the form

X Q
(0 X) ©)

as X runs over a generating set fdsom(/,) and, for eachX, @ runs over a suitable subset
of matrices satisfying) M, (X )" + X My (Q*)"™ = My — X My (X*)".

Lemma4.2 Suppose that = 2 and A has the form\/ + E,,_,,, where E;; denotes the
elementary matrix with 1 in positiofi, j) and 0 in all other positions. Then, relative to a
suitable basisA and M have the form

A 0 1 0 0
0 M, 0 and 0 M O |,
0 0 A 1 0 0

respectively, wher@/, € C(n — 2, F') has the same type ad. Furthermore,Cigomnr)(A) is
generated by matrices of the form

v 0 0 1 00 1w A
0 I,o 0 |, 0 X 0|, 0 Iy (w)™ |, (6)
0 0 v 00 1 0 0 1



where: v = —1 if M has orthogonal type, and generates the subgroujs : £ = 1} of F* if
M has unitary type;X runs over a generating set fasom(/;); and v runs over a basis for
Fn=2 w = —vM;, and )\ satisfies\ + \* = —v M, (v™)".

The final result in this section describes generators whéncyclic having minimal poly-
nomial (z — A\)™ in the unitary case (recall that the analogous orthogorss tsacovered by the
first part of Lemma 3.1).

Lemma 4.3 Suppose that = n and thatM has unitary type. Then

A1 0 ... 0
0 X 1 .0
A= 10 0 :
. A1
0 ... ... 0 X

and Ceun(A) is a direct product of the cyclic groupliag(v,v,...,v): v = 1) of order
q + 1 and the subgroup consisting of all matrices of the form

gl 52 gn—Q gn—l

01 & & ... &

1 & & |
P 1 &
00 ... ... 0 1

where the dot produdty, &, ..., &n—1) - (§n—1,&n—2,...,&) = 0. Furthermore, this group is
generated by a set of size — 1) log,(| F']) + 1.

5 Concluding remarks

We implemented the algorithm of Section 4 inAEMA [1]; our implementation is publicly
available. Its effectiveness is limited only by the cost ofmputing and factorising minimal
polynomials. In practice, it constructs in at most one nerthe intersection of classical groups
of dimension in the hundreds defined over moderate sizedfield
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Recall that, for orthogonal and unitary groups, we wrote deMplicit generating sets for the
intersection only for certain classes of matrices. By rugraver representatives of conjugacy
classes ofzL.(d, ¢) we estimated, for small andg, the proportion of elements covered by our
analysis in Section 4.4; by one measure, more than 99% weszexh Typically the matrices
A; induced on the primary modules are cyclic. This observasasupported by the analysis
of Fulman, Neumann & Praeger [4], who prove that, for figed matrix chosen uniformly at
random fromGL(d, ¢) is cyclic with probability approaching 1 as— oo. Furthermore, it is
possible to extend the case-by-case analysis to any odistacase of interest.
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