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Abstract

We describe the structure of the subgroup of the general linear group defined over a

finite field that preserves two bilinear or sesquilinear forms of the same classical type, at

least one of which is non-degenerate. This description underpins an algorithm to construct

the intersection of two classical groups of the same type.

1 Introduction

A long-standing and difficult algorithmic problem is the following: if G andH are two finite

subgroups of a common parent groupP , determine explicitlyG ∩H.

If P is a permutation group, then no polynomial-time algorithm is known to solve the prob-

lem; indeed the problem was shown by Luks [9] to be polynomial-time equivalent to other hard

permutation group problems, such as set stabilizer. Existing algorithms to solve the problem

employ variations of “back track”. IfP ≤ GL(n,GF(q)), then the approach is practical only

for very modest values ofn andq. For a discussion of these techniques, see [13,§3.3].

In this paper we provide an explicit description of the groupof linear transformations that

preserves a pair of bilinear or sesquilinear forms of the same classical type (that is, alternating,

symmetric or hermitian) provided that at least one of them isnon-degenerate. This description is

inspired by the recent work of Goldstein & Guralnick [5]. Consequently we develop an efficient

algorithm to construct the intersection of two groups that preserve such forms.
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412. We thank Robert Guralnick for providing us with a preprint of [5] and Allan Steel for assistance with our
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Let M andN be matrices representing bilinear or sesquilinear forms ofthe same classical

type, withM nonsingular. LetG andH be the groups of linear transformations that preserve

M andN respectively. An elementary calculation (Theorem 2.5) shows thatG∩H is precisely

the subgroup ofG that centralises the matrixA = NM−1.

In Section 2 we demonstrate thatA has the special property relative toM of being self-

adjoint, and Proposition 2.7 describes the structure of the centraliser ofA in G. One conse-

quence of this description is that the centraliser computation reduces to finding centralisers of

the primary components of theF [x]-module determined by the action ofA in some correspond-

ing group of isometries.

In Section 3 we specialise to the case whereA determines a primary module – namely,A

has minimal polynomial of the formp(x)m for p(x) irreducible overF – and determine the

structure of the centraliser ofA in various cases.

In Section 4 we present an algorithm to construct the group ofinvertible matrices that pre-

serve bothM andN . This uses the general results obtained in Section 3 together with matrix

calculations to handle various special cases. The result isa practical procedure that will produce

the desired group for a very large proportion of input pairs of forms.

If the two forms have the same type but are both singular, thenthis approach does not apply.

Furthermore, the structures of the intersections are much more diverse; in [3] we present an

alternative algorithm to solve this problem.

2 Self-adjoint matrices

Let F be a field of sizeq = pk for primep and integerk ≥ 1, and letV = F n. Let M(n, F ) be

the set ofn× n matrices with entries inF . We will often regardM(n, F ) as an algebra overF ,

having group of unitsGL(n, F ). If k is even, letL be the subfield ofF fixed elementwise by the

involutory automorphismx 7→ x
√

q; otherwise letL = F . Letα be an automorphism ofF fixing

L. Let C(n, F ) denote the set of all matricesM ∈ M(n, F ) satisfyingM = ε(Mα)tr, where

ε ∈ {1,−1}, ε = 1 wheneverα is nontrivial, andX 7→ Xtr denotes transposition. Thus each

M ∈ C(n, F ) is the matrix representing a classical form onV . We say thatM hassymplectic

type if ε = −1, unitary typeif α is nontrivial, ororthogonal typeotherwise. The bilinear or

sesquilinear form associated withM is computed via the assignment(u, v) := uM(vα)tr for

u, v ∈ V .

ForM ∈ C(n, F ), letF0 denote the fixed field ofα. ThusF0 = L if M has unitary type, and
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F0 = F otherwise. We define theisometry group ofM to be the set

Isom(M) = {X ∈ GL(n, F ) : XM(Xα)tr = M}. (1)

We shall often denote the isometry group ofM bySp(M), GU(M) orGO(M) - the symplectic,

general unitary, or general orthogonal group ofM - if the type ofM is known. Observe that

our definition ofGO(M) coincides withSp(M) if char(F ) = 2; thus we considerGO(M)

only in odd characteristic. A matrixA ∈ M(n, F ) is self-adjoint relative toM ∈ C(n, F ) if

AM = M(Aα)tr. The following is an easy extension of [5, Lemma 2.3].

Lemma 2.1 LetM ∈ C(n, F ), letA be self-adjoint relative toM , and letf(x) ∈ F [x]. Then

f(A)M = Mf(Aα)tr. In particular, if M has symplectic or orthogonal type, thenf(A) is

always self-adjoint, whereas ifM has unitary type, thenf(A) is self-adjoint precisely when

f(x) has coefficients inF0.

The next two lemmas concern self-adjointness relative to nondegenerate forms of unitary type.

For convenience, denote the image ofξ ∈ F under the involutory automorphismα simply by

ξ. Also, for f(x) ∈ F [x], let f(x) denote the polynomial obtained fromf by applyingα to its

coefficients.

Lemma 2.2 LetM ∈ C(n, F ) be nonsingular of unitary type and letA be self-adjoint relative

toM . Then the minimal polynomial ofA overF has coefficients inF0.

Proof. SinceA is self-adjoint relative toM , andM is nonsingular, it follows thatA is similar to

A
tr

. However it is well known (see, for example, [14]) thatA
tr

is similar toA. In particularA

andA have the same minimal polynomial overF . Clearly ifmA(x) is the minimal polynomial

of A, thenmA(x) = mA(x), whencemA(x) = mA(x), as claimed.�

Lemma 2.3 LetM ∈ C(n, F ) be nonsingular of unitary type and letA be self-adjoint relative

to M having minimal polynomialmA(x) = p(x)c, wherep(x) is irreducible overF0 and has

even degree. ThenmA(x) factors overF [x] asmA(x) = f(x)f(x) and the nullspaces off(A)

andf(A) are complementary maximal totally isotropic spaces.

Proof. Suppose thatp(x) ∈ F0[x] has degree2l, and letω be a root ofp(x) in some extension

field K of F . If s =
√
q is the order ofF0, thenω, ωs, ωs2

, . . . , ωs2l−1

are the distinct roots of

p(x) in K. Since[F0(ω) : F0] = [F (ω) : F ] = l, it follows thatω is the root of some irreducible

polynomial r(x) ∈ F [x] of degreel. Hencer(x) = (x − ω)(x − ωq) . . . (x − ωql−1

) and

p(x)/r(x) = (x− ωs)(x− (ωs)q) . . . (x− (ωs)ql−1

) = r(x).
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Let f(x) = r(x)c, let U be the nullspace off(A) andW be the nullspace off(A). Fix

w0 ∈ W and letw be any vector inW . Since the restriction off(A) toW is nonsingular, there

existsw1 ∈ W with w = w1f(A). Now we compute

(w0, w) = w0Mwtr = w0Mw1f(A)
tr

= w0Mf(A)
tr
w1

tr = w0f(A)Mw1
tr = 0.

The penultimate equality follows from Lemma 2.1 applied tof(x) and the last follows from the

fact thatW is the nullspace off(A). HenceW is totally isotropic and, by symmetry, so isU .

SinceV = U+W andU andW are totally isotropic, it follows that they have equal dimension;

hence there are maximal totally isotropic spaces.�

Our next result gives a fundamental decomposition of the spaceV = F n into A-invariant

submodules (cf. [5, Theorem 2.6]).

Lemma 2.4 LetM ∈ C(n, F ) be nonsingular and letA be self-adjoint relative toM . Let

mA(x) = p1(x)
c1p2(x)

c2 . . . pt(x)
ct

be the decomposition of the minimal polynomial ofA into irreducibles overF0, and letVi be

the nullspace ofpi(A)ci (1 ≤ i ≤ t). ThenV1 ⊕ V2 ⊕ . . .⊕ Vt is anA-invariant decomposition

of V . Moreover, relative to the form associated withM , the subspacesVi are nonsingular and

mutually orthogonal.

Proof. It is a consequence of elementary linear algebra thatV is the direct sum of theA-

invariant subspacesVi. That these subspaces are mutually orthogonal follows froman argument

similar to that in the proof of Lemma 2.3; see also the proof of[5, Theorem 2.6]. Since the form

represented byM is nondegenerate, it follows immediately that theVi are nonsingular.�

The next result is the key to constructing intersections of classical groups (cf. [5, Lemma

2.2]).

Theorem 2.5 LetM,N ∈ C(n, F ) be of the same type withM nonsingular. ThenA := NM−1

is self-adjoint relative toM , andIsom(M) ∩ Isom(N) = CIsom(M)(A), the centraliser ofA in

Isom(M).

Proof. Let M,N ∈ C(n, F ) be of the same type and letA = NM−1. Then, sinceM andN

both satisfy the equation(Y α)tr = εY , we have

M(Aα)tr = M(M−α)
tr
(Nα)tr = ε2N = AM,

4



andA is self-adjoint relative toM . Next,X ∈ Isom(M) centralisesA if and only if

N = AM = XAX−1M = XAM(Xα)tr = XN(Xα)tr.

ThusX ∈ CIsom(M)(A) if and only ifX ∈ Isom(M) ∩ Isom(N). �

In our description ofIsom(M) ∩ Isom(N), and particularly in the algorithm that constructs

this group, we often find it convenient to change the basis ofV . The following result, whose

proof is an elementary calculation, facilitates this conversion.

Lemma 2.6 LetM ∈ C(n, F ), letA be self-adjoint relative toM , and letB ∈ GL(n, F ). Then

the following hold:

1. M ′ := BM(Bα)tr is an element ofC(n, F ) of the same type asM ;

2. A′ := BAB−1 is self-adjoint relative toM ′; and

3. CIsom(M)(A) = B−1CIsom(M ′)(A
′)B.

If M has symplectic type, then the self-adjoint matrixA in Theorem 2.5 has the stronger

property thatvAMvtr = 0 for all v ∈ V . (For fields of odd characteristic, however, this

property is equivalent to the conditionAM = MAtr.) The following result, which follows

from [5, Theorem 2.6] and [5, Lemma 4.1], describes the intersection of two symplectic groups.

Proposition 2.7 LetM ∈ C(2m,F ) be nonsingular of symplectic type, and letA be self-adjoint

relative toM . Then there is a change-of-basis matrixB ∈ GL(2m,F ) such that

A′ = BAB−1 =

(

J 0

0 J

)

and M ′ = BMBtr =

(

0 Σ

−Σ 0

)

, (2)

whereΣ is symmetric andJ is self-adjoint relative toΣ. Furthermore,CSp(M ′)(A
′) consists of

all invertible matrices of the form
(

P Q
R S

)

, where the block entriesP,Q,R, S all centraliseJ

and satisfy the constraints:
PΣQtr −QΣP tr = 0

RΣStr − SΣRtr = 0

PΣStr −QΣRtr = Σ

(3)

For the subspacesVi defined in Lemma 2.4, letAi (respectivelyMi) be the restriction ofA

(respectivelyM ) to Vi. ThenMi is nondegenerate andAi is self-adjoint relative toMi. Com-

bining Theorem 2.5 with Lemma 2.4 we see that the intersection of Isom(M) andIsom(N),

whereM is nonsingular, is the direct product of centralisers of theAi in the groupsIsom(Mi).

In the next section we examine these centralisers in more detail.
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3 Centralisers of primary components

Throughout this section we assume thatA is a self-adjoint matrix relative to someM ∈ C(n, F ),

and has minimal polynomial of the formp(x)c for some irreducible polynomialp(x) ∈ F0[x].

We will examine the structure ofCIsom(M)(A), the centraliser ofA in Isom(M). Since Proposi-

tion 2.7 describes centralisers of self-adjoint matrices in the symplectic case, we will restrict our

attention to matricesM that have orthogonal or unitary type. It is convenient to conjugateA to

its generalised Jordan normal form, and replaceM by a corresponding matrix as in Lemma 2.6.

Note that ifA is a scalar matrix, thenCIsom(M)(A) = Isom(M). Our first result deals with the

case whenA is cyclic.

Lemma 3.1 LetM be of unitary or orthogonal type and letA be a cyclic matrix self-adjoint

relative toM . Assume thatp(x) has odd degree ifM has unitary type (so thatp(x) is also

irreducible overF ). Then the following hold:

1. IfM has orthogonal type thenCIsom(M)(A) = {±1}.

2. IfM has unitary type thenCIsom(M)(A) is the group{X ∈ F [A] : XX = 1}.

Proof. SinceA is cyclic, any matrix that centralisesAmay be written in the formf(A) for some

polynomialf(x) ∈ F [x]. Let f (α)(x) denote the polynomial obtained fromf(x) by applying

α to its coefficients. Thusf (α)(x) = f(x) if M has orthogonal type, andf (α)(x) = f(x) if M

has unitary type. By Lemma 2.1 applied tof (α)(x), we havef(A) ∈ Isom(M) if and only if

f(A)M(f(A)α)tr = f(A)f (α)(A)M = M . If M has orthogonal type, thenf (α)(A) = f(A)

so thatf(A)2 = 1. If M has unitary type, thenA is a matrix defined overF0, so the condition

f(A)f (α)(A) = 1 asserts thatf(A)f(A) = 1, as required.�

We next consider the case where theF [x]-module defined by the action ofA is semisimple.

Lemma 3.2 LetM be of unitary or orthogonal type and letA have minimal polynomialp(x),

wherep(x) has degreee and is irreducible overF . ThenCIsom(M)(A) is isomorphic toIsom(M∗),

where, for an extension fieldK ofF of degreee,M∗ ∈ C(n/e,K) and has the same type asM .

Proof. The generalised Jordan normal form ofA is a block diagonal matrix of the form

diag(J, J, . . . , J), whereJ ∈ M(e, F0) is irreducible overF . As in Lemma 2.6, by apply-

ing a change-of-basis matrix that centralisesA, we may assume thatM also has block diagonal

form diag(M1, . . . ,Mn/e). (If n = e this is trivial; for the general case,A preserves a nonsingu-

lar e-space and its orthogonal complement, and the assertion follows by induction.) SinceA is
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self-adjoint relative toM , we haveJMi = Mi(J
α)tr = MiJ

tr for all i. SinceM is nonsingular,

eachMi conjugatesJ to J tr, so it follows from [14, Theorem 2] thatMi is symmetric. (This

tells us nothing new ifM has orthogonal type but, ifM has unitary type, it follows thatMi is

defined overF0.)

Write g ∈ GL(n, F ) in block form also, sayg = [[Xij]], whereXij ∈ M(e, F ). Theng

centralisesA if and only if eachXij centralisesJ . SinceJ is irreducible overF , it follows that

Xij = fij(J) for somefij(x) ∈ F [x].

LetM0 be any of the diagonal blocks ofM and setS := diag(M0,M0, . . . ,M0). Observe,

for all i, thatMiM
−1
0 centralisesJ and hence belongs to the fieldF [J ]. In the unitary case,

moreover,α induces an involutory automorphism ofF [J ] that fixes the subfieldF0[J ]; asM

andS are defined overF0, it follows thatα fixesMS−1. SinceM∗ := MS−1 is a block diagonal

matrix, it lies inC(n/e, F [J ]) as required.

Applying Lemma 2.1 tof (α), observe thatM0(X
α
ji)

tr = M0f
(α)
ji (Jα)tr = f

(α)
ji (J)M0. Since

J is defined overF0 we havef (α)
ji (J) = (fji(J))α = Xα

ji. It follows that (Xα
ji)

trM−1
0 =

M−1
0 Xα

ji. HencegM(gα)trS−1 = gMS−1h, whereh, regarded as an element ofM(n/e, F [J ]),

is equal togtr. It follows thatg ∈ GL(n/e, F [J ]) is in Isom(M∗) if and only if

MS−1 = M∗ = gM∗gtr = gMS−1h = gM(gα)trS−1,

which holds if and only ifgM(gα)tr = M . �

We conclude this section by examining the case whenM is of unitary type and the minimal

polynomial ofA splits overF . Recall thatA is already assumed to be in generalised Jordan

normal form.

Lemma 3.3 LetM have unitary type and letA be self-adjoint toM having minimal polynomial

p(x)c with p(x) irreducible overF0 of even degree. ThenA =
(

J 0
0 J

)

, M =
(

0 H

H
tr

0

)

and

CIsom(M)(A) consists of matrices of the formg = ( X 0
0 X∗ ), whereX centralisesJ andX∗ =

H−1X−1H
tr

.

Proof. As in the proof of Lemma 2.3, writep(x) = r(x)r(x), let U = ker(r(A)c) andW =

ker(r(A)c); thenU andW are complementary maximal totally isotropic spaces. The statements

aboutA andM now follow easily. The centraliser ofA in GL(n, F ) preserves bothU andW ,

so it follows that elements ofCIsom(M)(A) have the form( X 0
0 Y ), whereX andY centraliseJ

andJ respectively. The final condition onY follows directly from the fact thatgMgtr = M . �
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4 Constructing intersections

In this section we present an algorithm to construct the intersection of two classical groups

preserving bilinear or sesquilinear classical forms of thesame type.

In Section 4.1 we outline the main procedure that constructsthe intersection of the full groups

of isometries of two matricesM andN representing forms of the same type. In Section 4.2 we

describe the modifications that are necessary to obtain the intersection of two classical groups

of the same type (we exclude orthogonal groups in characteristic 2). Sections 4.3 and 4.4 deal

with the specifics of writing down a generating set forIsom(M) ∩ Isom(N).

4.1 The group preserving two forms

The input to the main procedure consists of matricesM,N ∈ C(n, F ) representing classical

forms of the same type, whereM , say, is nonsingular. The output is a generating set for the

subgroup ofGL(n, F ) that preserves both of these forms.

Intersection of Isometry Groups (M, N)

/* Input: MatricesM,N ∈ C(n, F ) of the same type, withM nonsingular */

/* Output: A generating set forIsom(M) ∩ Isom(N) */

Step 0. Let α denote the automorphism ofF associated with the type ofM andN , and letF0 be

the subfield ofF fixed byα.

Step 1. SetA := NM−1 and compute the minimal polynomialmA(x) overF .

Step 2. Obtain a factorisationmA(x) = p1(x)
c1p2(x)

c2 . . . pt(x)
ct, where eachpi(x) ∈ F0[x] is

irreducible overF0.

Step 3. For 1 ≤ i ≤ t, compute a basisBi for the nullspaceVi of the matrixpi(A)mi of di-

mensionni. The concatenation of the basesBi gives a change-of-basis matrixB such

thatBAB−1 is a block diagonal matrixdiag(A1, A2, . . . , As), andBM(Bα)tr is a block

diagonal matrixdiag(M1,M2, . . . ,Ms).

Step 4. For 1 ≤ i ≤ s, write down a generating setTi for the subgroupCIsom(Mi)(Ai) of

GL(ni, F ); obtain a subsetSi of GL(n, F ) whose elements induce the corresponding

element ofTi onVi and the identity onV1 ⊕ . . .⊕ Vi−1 ⊕ Vi+1 ⊕ . . .⊕ Vs.

Step 5. SetS := S1 ∪ S2 ∪ . . . ∪ Ss, and return the set{C−1XC : X ∈ S}.
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We now comment on the steps of the algorithm.

Step 1. Various algorithms exist to construct the minimal polynomial of a matrix defined over a

finite field; see, for example, [7, p. 226].

Step 2. Algorithms to factorise polynomials defined over finite fields are discussed in [12, Chap-

ter 14].

Step 3. The nullspace of a matrix is obtained readily by solving a system of linear equations over

F . For further details see [7, p. 223].

Step 4. If M (and thereforeN ) has symplectic type, the subgroupsCIsom(Mi)(Ai) are described

in Proposition 2.7; this description is used in Section 4.3 to write down generators.

If M has unitary or orthogonal type, the results of Section 3 may be used to write down

generators forCIsom(Mi)(Ai) for certain matricesAi. We describe how this is done in

more detail in Section 4.4 and give generating sets for otherspecific cases.

4.2 Intersections of general classical groups

We defineG to be aclassical subgroupof GL(V ) if it preserves a bilinear or sesquilinear form

onV having matrixM ∈ C(n, F ), and one of the following holds:

1. M has symplectic type, andG = Sp(M).

2. M has unitary type, andSU(M) ≤ G ≤ GU(M), whereSU(M) is the subgroup of

GU(M) consisting of determinant 1 matrices; thusGU(M)/SU(M) is a cyclic group of

orderq + 1.

3. M has orthogonal type, andΩ(M) ≤ G ≤ GO(M), where[GO(M) : SO(M)] = 2

(recallq is odd in this case) andΩ(M) is the derived group ofGO(M).

We now present an algorithm to solve the following algorithmic problem:

Given classical subgroupsG, H of GL(V ) of the same type, find generators for

G ∩H.

The algorithm of Niemeyer and Praeger [11] can be used to decide whether the given groups

G andH satisfy the necessary requirements. We note that kernels ofhomomorphisms can be

computed effectively in our limited context.
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Classical Intersection (G, H)

/* Input: Classical subgroupsG = 〈X〉 andH = 〈Y 〉 of GL(n, F ) of the same type */

/* Output: A generating set forG ∩H */

Step 0. Find matricesM andN for the forms preserved byG andH respectively.

Step 1. ComputeK := Isom(M) ∩ Isom(N) using the procedure in Section 4.1.

Step 2. If M andN have unitary type, setC := {ξ ∈ F ∗ : ξq+1 = 1}, and modifyK as follows.

(a) SetC0 := 〈det(x) : x ∈ X〉 ∩ 〈det(y) : y ∈ Y 〉 ≤ C.

(b) Construct a homomorphismψ : K → C/C0, sendinga 7→ det(a)C0.

(c) ReplaceK with ker(ψ).

Step 3. If M andN have orthogonal type, setC := {−1, 1} × {−1, 1}, where{−1, 1} is the

multiplicative groupZ2, and modifyK as follows.

(i) /* Construct the spinor mapσM : GO(M) → {−1, 1} with respect toM */

(a) SetC0 := 〈(det(x), σM(x)) : x ∈ X〉 ≤ C.

(b) Construct a homomorphismψM : K → C/C0, sendinga 7→ (det(a), σM(a))C0.

(c) ReplaceK with ker(ψM).

(ii) /* Construct the spinor mapσN : GO(N) → {−1, 1} with respect toN */

(a) SetC0 := 〈(det(y), σN(y)) : y ∈ Y 〉 ≤ C.

(b) Construct a homomorphismψN : K → C/C0, sendinga 7→ (det(a), σN(a))C0.

(c) ReplaceK with ker(ψN).

Step 4. ReturnK.

Commentary. In Step 0, the form for each group is obtained by constructingan isomorphism

between the natural module for that group and its dual; see [2, Section 4.2].

In general the subgroupK constructed in Step 1 will be an overgroup ofG ∩H.

In the unitary case, Step 2 modifiesK so that it contains only elements having determinant

equal to that of some element ofG ∩H.

In the orthogonal case, Step 3 modifiesK so that it contains only elements having appropriate

spinor norms relative toM andN . The spinor mapsσM andσN are constructed using Wall

forms; see [15, p. 163].
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4.3 Symplectic groups

Let A = Ai andM = Mi be the block matrices obtained in Step 3 of the main algorithmin

Section 4.1. By Proposition 2.7 we may assume thatA = ( J 0
0 J ) andM =

(

0 Σ
−Σ 0

)

, where

J,Σ ∈ M(m,F ) andΣ is symmetric. LetB be anyGF(p)-basis for the solution space of the

linear system{Q ∈ M(m,F ) : JQ = QJ, ΣQtr = QΣ}, and set

S :=

{ (

I Q

0 I

)

,

(

I 0

Q I

)

: Q ∈ B
}

(4)

The block entries of the matrices inS clearly satisfy equation (3), soS ⊆ CSp(M)(A).

If J is a cyclic matrix (one whose characteristic and minimal polynomials coincide) then

its centraliser inM(m,F ) is simplyF [J ], the subalgebra ofM(m,F ) generated byJ . In that

case, the block entriesP,Q,R, S in equation (3) are all polynomials inJ . Moreover, sinceJ is

self-adjoint relative toΣ, it follows from Lemma 2.1 thatP,Q,R, S are all self-adjoint relative

to Σ. Hence the conditions in equation (3) reduce to the single constraintPS −QR = 1, and it

follows thatg ∈ Sp(M) if and only if g ∈ SL(2, F [J ]). Hence, ifJ is cyclic, the elements of

S are analogues of transvections inSL(2, F [J ]), whereF [J ] is a local ring. It follows from [8,

Proposition 1.3.5] thatS generatesCSp(M)(A) in this case.

If J is a scalar matrix, it is well known thatS generatesCSp(M)(A) = Sp(M) (see, for

example, [2, Section 5]).

Recently, Goldstein and Guralnick [6] proved thatS always generatesCSp(M)(A).

4.4 Orthogonal and unitary groups

We now assume thatM ∈ C(n, F ) has orthogonal or unitary type and thatA ∈ GL(n, F ) is

self-adjoint relative toM having minimal polynomialp(x)c for somep(x) irreducible overF0.

We begin by describing generating sets for each of the cases considered in Section 3.

Lemma 3.1: HereA is cyclic andp(x) is irreducible overF . In the orthogonal case there

is nothing to do sinceCGO(M)(A) = {±1}. Suppose thatM has unitary type. IfA is

irreducible, thenF [A] is a field andCGU(M)(A) = GU(1, F [A]). In general, however,

constructing generators for the norm group of a given ring isa difficult problem; Lemma

4.3 describes such generators for the case whenp(x) is linear.

Lemma 3.2: This is the semisimple case in whichCIsom(M)(A) is the full group of isome-

tries of a suitable form over an extension field; it is trivialto write down generators here.
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Lemma 3.3: HereM has unitary type andp(x) splits overF as a product of an irreducible

polynomial and its conjugate. The key to constructing generators forCGU(M)(A) is to

construct the centraliser inGL(n, F ) of a given matrixJ . This can be done using methods

described in [10, Chapter 2], or using more general techniques for constructing the group

of units of a matrix algebra (see, for example, [3, Section 2]).

In the remainder of this section we assume that the minimal polynomial ofA has the form

(x − λ)c ∈ F0[x], wherec > 1. Assume further thatA is in Jordan normal form. We describe

generating sets forCIsom(M)(A) in three other important cases; the results are all readily verified

by direct calculation.

Lemma 4.1 Suppose thatc = 2 and thatA is a block diagonal matrix

diag(J2(λ), J2(λ), . . . , J2(λ)),

whereJ2(λ) denotes the2 × 2 Jordan block( λ 1
0 λ ). Then, relative to a suitable basis,A has

the form( λI I
0 λI ), whereI is the identity ofGL(n/2, F ), andM has the form

(

M1 M2

Mα

2
0

)

for

symmetric matricesM1,M2. Furthermore,CIsom(M)(A) is generated by matrices of the form

(

X Q

0 X

)

(5)

asX runs over a generating set forIsom(M2) and, for eachX, Q runs over a suitable subset

of matrices satisfyingQM2(X
α)tr +XM2(Q

α)tr = M1 −XM1(X
α)tr.

Lemma 4.2 Suppose thatc = 2 and A has the formλI + En−1,n, whereEij denotes the

elementary matrix with 1 in position(i, j) and 0 in all other positions. Then, relative to a

suitable basis,A andM have the form






λ 0 1

0 λIn−2 0

0 0 λ






and







0 0 1

0 M1 0

1 0 0






,

respectively, whereM1 ∈ C(n − 2, F ) has the same type asM . Furthermore,CIsom(M)(A) is

generated by matrices of the form






ν 0 0

0 In−2 0

0 0 ν






,







1 0 0

0 X 0

0 0 1






,







1 v λ

0 In−2 (wα)tr

0 0 1






, (6)
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where:ν = −1 if M has orthogonal type, andν generates the subgroup{ξ : ξξ = 1} of F ∗ if

M has unitary type;X runs over a generating set forIsom(M1); and v runs over a basis for

F n−2, w = −vM1, andλ satisfiesλ+ λα = −vM1(v
α)tr.

The final result in this section describes generators whenA is cyclic having minimal poly-

nomial(x− λ)n in the unitary case (recall that the analogous orthogonal case is covered by the

first part of Lemma 3.1).

Lemma 4.3 Suppose thatc = n and thatM has unitary type. Then

A =



















λ 1 0 . . . 0

0 λ 1
.. . 0

0 0
. .. .. .

...
...

... λ 1

0 . . . . . . 0 λ



















andCGU(M)(A) is a direct product of the cyclic group〈diag(ν, ν, . . . , ν) : νν = 1〉 of order

q + 1 and the subgroup consisting of all matrices of the form
























1 ξ1 ξ2 . . . ξn−2 ξn−1

0 1 ξ1 ξ2 . . . ξn−2

0 0
. . . . .. .. .

...
...

... 1 ξ1 ξ2
...

... 1 ξ1

0 0 . . . . . . 0 1

























,

where the dot product(ξ1, ξ2, . . . , ξn−1) · (ξn−1, ξn−2, . . . , ξ1) = 0. Furthermore, this group is

generated by a set of size(n− 1) logp(|F |) + 1.

5 Concluding remarks

We implemented the algorithm of Section 4 in MAGMA [1]; our implementation is publicly

available. Its effectiveness is limited only by the cost of computing and factorising minimal

polynomials. In practice, it constructs in at most one minute the intersection of classical groups

of dimension in the hundreds defined over moderate sized fields.
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Recall that, for orthogonal and unitary groups, we wrote downexplicit generating sets for the

intersection only for certain classes of matrices. By running over representatives of conjugacy

classes ofGL(d, q) we estimated, for smalld andq, the proportion of elements covered by our

analysis in Section 4.4; by one measure, more than 99% were covered. Typically the matrices

Ai induced on the primary modules are cyclic. This observationis supported by the analysis

of Fulman, Neumann & Praeger [4], who prove that, for fixedq, a matrix chosen uniformly at

random fromGL(d, q) is cyclic with probability approaching 1 asd → ∞. Furthermore, it is

possible to extend the case-by-case analysis to any outstanding case of interest.
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