Constructing the group preserving a system of forms

Peter A. Brooksbank E.A. O'Brien

Abstract

We present a practical algorithm to construct the subgroup of the gjdimeyar group
that preserves a system of bilinear or sesquilinear forms on a vecte dpéined over a
finite field. Components include efficient algorithms to construct the Janaiasiical and
the group of units of a matrix algebra.

1 Introduction

In this paper we consider the following algorithmic problefiven a system of symmetric,
alternating or hermitian forms on a vector space defined avinite field, find the subgroup of
the general linear group that preserves every form in théesys

In [2], an explicit description of this group is given wheretBystem contains precisely
two forms of the same classical type, at least one of whiclomglegenerate. This description,
heavily influenced by the recent work of Goldstein & Gurakig], underpins a highly effective

algorithm to write down generators for the group. The stretof the group preserving a
general system of forms is much more varied, and consequietlalgorithm for the general

case is more limited.

The motivation for an efficient solution to the general pesblof constructing the group
preserving a system of forms is two-fold.

First, as noted in [2], constructing the intersection of tvanore matrix groups is a difficult

algorithmic problem. Existing algorithms employ variatsoof “back-track”, their complex-

ity is exponential, and they have very limited range; see §B43] for a general discussion.
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this work was done. This work was supported in part by the Memd-und of New Zealand via grant UOA 412.
We thank Lajos Rnyai for drawing our attention to [13] and for comments onaftcbf the paper, and Derek Holt
for assistance with our implementation. 20@athematics Subject ClassificatioRrimary 20C20, 20C40.
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One outcome of this work is a significantly better algorittorconstruct the intersection of a
collection of matrix groups that preserve forms on the ulyttey space.

The group preserving a system of forms also arises naturathe study of finitep-groups.
To construct the automorphism group ofl-@eneratop-group of exponenp-class 2 and ex-
ponentp, we consider the action of the general linear gr@tip(1”) on the exterior square
A?(V) of V = GF(p)? and compute the stabiliser of a subspace in this action. s ds
k-dimensional subspad& of A?(V) defines a systeri(1/) consisting ofk alternating forms
onV. The subgroup oGL(V') preserving=(11) is the centraliser ofl/, a normal subgroup of
the desired stabiliser. For further discussion of this impfibn, see [6].

As a key component of this work, we describe effective athans to construct both the
Jacobson radical and the group of units of a matrix algebfiaetkover a finite field. We use
the unit group algorithm to write down an overgroup pthe group preserving the given system
of forms, and then use a variety of techniques to construdgthin this overgroup.

Our approach to the unit group problem was motivated by wéi&atwingel [15]. In her
PhD thesis she describes an algorithm to construct the supgsf GL(V) that stabilises a
lattice of subspaces df; it is obtained as the group of units of the algebra stahijsihe
lattice. While writing this paper, we learned thatf®ai [13], in solving a complexity question
about the orders of centralisers in the general linear grbag earlier suggested an identical
approach to the unit group problem.

We present optimised versions of the algorithms, aimed attimal implementation. We
demonstrate that our implementation of the Jacobson radigarithm significantly outper-
forms the algorithm of Coheaet al. [3], which applies to arbitrary fields.

The unit group algorithm is presented in Section 2, where la@identify those steps com-
prising the Jacobson radical algorithm. In Section 3 we maesdow to construct bases for
two important families of matrix algebras. The algorithnttmstruct the (full isometry) group
preserving a system of forms is described in Section 4, hayetith a summary of the modi-
fications needed to obtain the intersection of a collectiogroups preserving such a system.
Finally, in Section 5, we briefly describe an implementatidrour methods in MGMA [1],
indicating their practical limitations, and reporting dreir performance.

2 Thegroup of unitsof a matrix algebra

LetM(d, F') denote the algebra of allx d matrices with entries in the finite field, and letA be
a subalgebra d¥l(d, F'). We present an efficient algorithm to write down generatoré/f( A),



the group of units ofA. We assume that is described byX' C M(d, F'). HenceA = Env(X),
the enveloping algebra of, defined formally as thé'-linear span of the semigroup generated
by X.

In Section 2.1 we recall Wedderburn’s structure theorenséonisimple algebras [4, 26.4],
and its relationship to a composition series of the natdradoduleV = F?. This provides the
theoretical foundation for the algorithm, which is desedbn detail in Section 2.2.

2.1 Composition series and the Wedder burn decomposition

The Jacobson radical of, denoted/(A), is the intersection of the maximal left ideals 4f
and the quotient algebrd = A/J(A) is semisimple. IfF is a finite field, then Wedderburn’s
theorem states that = B, @ ... ® B,, whereB; is a minimal left ideal of4, isomorphic as
F-algebra taM(d;, F;) for some extension field; of /. Note thatl/(A), the unit group of4,
is isomorphic toaGL(dy, Fy) x ... x GL(d,, F}.).

The naturald-moduleV = F¢ has a composition serifis= 1, < V; < ... <V, =V and,
relative to a suitable basis &f, an element of A has the form

_al N -
0 ay *
0o . .. (1)
Sl T Al *
00 ... 0 a

Define an equivalence relation on the indi¢és. . . , s}, where: ~ j if and only if the quotients
V;/Vi_y andV;/V;_; are isomorphicd-modules. Denote the equivalence classesby. ., I';,
and lete; be the common dimension of the quotient spaces indexed Inyeals ofl";. For
1 <1 <t,distinguish an index; € I';. For eachy € I';, there exists., € GL(e;, F) such that

(y = CyQy,Cy L (2)

Forl < i < s, let A; be the algebra induced by on the quotient;/V;_;. Now 4; is a
simple matrix algebra and is therefore isomorphic to a futnw algebra over some extension
field of F. The mapa — (aq,as,...,as_1,as) is @ homomorphisnp: A — A; & ... ® A,,
whose image is isomorphic @._, A,,. Sincep(A) is semisimple, andter(y) is nilpotent,
ker(¢) = J(A) andp(A) = A. In particular,r = ¢ and, up to permutation of indiced,,, is
isomorphic toB;.



2.2 TheJacobson radical and unit group algorithms

In outline, the algorithm to construct generatorsigiA) is the following:

Step 1. Construct an algebra epimorphism A — B whose kernel is/(A), and obtain the
Wedderburn decomposition of the semisimple algebra

Step 2. Use the Wedderburn decomposition to write down a generaghiprU (B).

Step 3. Compute a preimageé,, of this generating set undet

Step 4. Compute a generating s&tfor the kernel of the induced map,: U(A) — U(B).
Step 5. ReturnS U T.

There are two important algorithmic issues to address. Thei$i how to construcp and
obtain the Wedderburn decomposition Bfinto simple algebras. To do this, we exploit the
composition series of the naturdtmoduleV/, as discussed in Section 2.1. The second is how
to definey effectively in particular, an efficient procedure is required to coreghe preimage
of an element o3 under.

We begin by defining a matrix algebrhas the solution to a system of linear equations. De-
fine an isomorphism of vector spagesM(d, F) — F% sending[z]] — (211, 12, - - - , Taa)-
Suppose thatl < M(d, F) is ak-dimensional algebra having basis. . ., b;. Define ak x d?
matrix 5 whose rows are the vectopéh, ), . .., p(bx). ThenB is a (left) F-linear map from the
column space”® to the column spacé&™*; let A be ad? x (d* — k) matrix whose columns
are a basis for the nullspace of this map. Eoe M(d, F'), we have the following test for
membership imA:

reA <= p(x)A=0. (3)

Next suppose that we have found a composition series forahegal module of a given al-
gebraAd = Env(X) < M(d, F'). Suppose further that we have a change-of-basis matrix that
conjugates the elements dfto matrices of the form in Equation (1). This defines a homemor
phismyp: A — Ay & Ay @ ... ® A,, where the algebrad; are as defined in Section 2.1.

The following result enables us to compute effectively vifth homomorphisnp.

Lemma2.1 There are deterministic algorithms usiiig(d®) field operations to solve each of
the following.

(i) Givenb = (a1, as,...,as) € p(A), finda € A such thatp(a) = b.



(i) Find a basis forker(¢p).
(iii) Find a generating set for the kernel of the induced map: U(A) — U(p(A)).

Proof. (i) Letb = (a4, ..., as) be a given element af( A) and suppose, far < [ < s, thata, is
ann; x n; matrix with entries inF’. Setn := >";_, nf. We augmenid to a(d*+1) x (d* —k+n)
matrix A and construct a suitable preimagebdfom the nullspace of this augmented matrix.
Initialise A® to be the(d? + 1) x (d*> — k) matrix obtained by appending a row of zeros to
A.Forz € [1,...,d*+1] and scalai € F, define a column vectar(z, \) € F¥+! as follows:
if A\ = 0, thenc(z, \) has 1 in coordinate and Os in all other coordinates; and\if# 0, then
c(z,\) has—\ in coordinatez, 1 in coordinated” + 1, and Os in all other coordinates. The
following loop now appends the additionakcolumns taA®.

Forle {1,...,s}do
my ::n%—l—...—i-n%
Fori,j € {1,...,n;} do
zi=my 4 (0 —Dng+ 4 A= (@)
Appendc(z, \) to A®)

For arow vectoy € F*, lety* denote the row vector i’ +! obtained fromy by appending 1
in coordinated? 4 1. An easy calculation now shows that M(d, F) satisfieso(a)*A®) = 0
if and only ifa € A andy(a) = b.

To find a preimage of the given= (a4, ..., as) in A, proceed as follows:

(@) Compute the augmented matdx®) associated with, as above.
(b) Compute a basis for the nullspace4t).

(c) Find avectof\y, ..., Az, A) in this basis having # 0.

(d) Puty := (A /A,..., A\p2/N) € F®, and returmu := p~'(y).

(ii) To construct the kernel op we proceed in a similar fashion, this time augmentihdgo a
d? x (d* — k + n) matrix A*r. We wish to compute the full preimage ihof the zero element
of B, namely(04,,04,,...,04,). Thus, foreach <! < sandl <i,j < n,;, append a column
to A having 1 in coordinater; + (¢ — 1)n; 4+ j and O in all other coordinates.

The kernel ofp is now obtained as follows:

(a) Compute the augmented matdxe as above.



(b) Compute a basi#3, for the nullspace ofd*".
(c) Returnthe sefp~'(y): y € B}.

(iii) Using the algorithm in (ii), obtain arF-basis forJ := ker(y), the Jacobson radical of.
Convert thisf-basis into a basis over the prime field as follows. teenote the degree df
over its prime field, and le be a primitive element of™*; now computeo!(¢’y) for y € B
andj € [0,...,e — 1]. Next exchange this arbitrary basis for another b&sispver the prime
field containing elements that project onto bases for therfay/ / Ji+! for 1 < i < d. (Thisis a
linear algebra computation in regarded as a vector space over the prime field.)/l.denote
the identity ofM(d, F'); then it is easy to see that the set

T = {I;+u:ueT*}, (4)

generates the kernel gf;.
The stated complexity is the time required to perform basidr algebra iF®. O

We now give a detailed description of the algorithm to cardtthe group of units of a
matrix algebra. The basic steps are numbered consisteithiythve outline given at the start of
the section.

Unit Group (A)
* Input: The enveloping algebra, of a setX C M(d, F') */
[* Output: A generating set fot/(A), the group of units ofl */

Step 1. (a) Determine a composition seriég < V; < ... < V; for the naturalA-module
V = F4, together with a change-of-basis matfix

(b) ReplaceA with the algebra&nv(C X C~!) so that elements ofl have matrix as in
Equation (1).

(c) Forl <i < s, construct4;, the algebra induced by onV;/V;_;.

(d) Definep: A — A; @ ... d A, sendinga — (aq,...,as); thenB := p(A) is a
semisimple subalgebra af; & ... ® A,.

(e) Construct a basis fot, and use it to obtain a matri4 as in Equation (3).

(f) Obtain the equivalence classEs, ..., I'; of indices, wherein ~ j if and only if
Vi/Vi_1 andV;/V;_, are isomorphicA-modules. Let the common dimension of the
modules indexed by elementsiof bee;, and lety; be a representative of. Also
find the conjugating matrices, for v € I'; as in Equation (2).
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Step 2. InitialiseY := (). For1 < i < t proceed as follows:

(a) Construct;, the centralising field oft,, in M(e;, ') and setl; := ¢;/[F;: F).

(b) Write down a generating set for the subgrougs@f(e;, F') isomorphic toGL(d;, F;)
contained withinA,,.

(c) Toeach generatarin (b), assigry, € U(B) as follows. Initialisey, := (14,,...,14,).
For~ € T, insertc%qc;1 in coordinatey of y,. Addy, to Y.

Step 3. ConstructS := {p~*(y): y € Y} using Lemma 2.1(i).
Step 4. Construct a generating sétfor ker(y ) using Lemma 2.1(iii).
Step 5. ReturnC~H(SUT)C.

Remark 2.2 The generating sets for the general linear group over firelddj used in Step
2(b), are well known. RBnyai [13] points out that, from a complexity viewpoint, theoblem
of constructing these sets is equivalent to constructingnaigpe element of the multiplicative
groupF*, and that there is no known polynomial time algorithm to edhe latter problem. We
assumehat F' has a known primitive element, which is the case in practice.

Theorem 2.3 The proceduréJnit Group is a Las Vegas algorithm which, given an arbitrary
matrix algebraAd = Env(X) < M(d, F'), constructs a generating set féf(A), the group of
units of A. The algorithm use®(td®) operations inF', wheret is the number of summands in
the Wedderburn decomposition4f.J(A).

Proof. The correctness of the algorithm is clear from Lemma 2.1 hadliscussion preceding
it. It remains to examine the complexity of each step of tigpathm.

Variations of the MEATA XE algorithm are used in the following places: in Step 1(a) td &n
composition series df’; in Step 1(f) to determine isomorphisms between the modylés_;
and in Step 2(a) to find the centralising fieltls These tasks are carried out using Las Vegas
algorithms that us®(d®) field operations; see [9, 11] for a detailed description.

The other steps are routine, typically involving lineareddea in the row spacE?’. The basis
in Step 1(e) is obtained using a standard transitive closig@ithm.[]

Remark 2.4 The Jacobson radical algorithm first constructs the contipasseries for the nat-
ural moduleV of the algebrad as described in Step (1), and then uses Lemma 2.1(ii) to con-
struct generators fay(A). Theorem 2.3 implies that this Las Vegas algorithm has theesa
complexity adJnit Group.



Remark 2.5 If V has a composition factor upon whichacts as 0, ther has no units.

Remark 2.6 Other algorithms having similar complexity could be emgdyo obtain the Wed-
derburn decomposition: see, for example, [5, 7, 10]. Howeve found our approach, exploit-
ing the composition series of the naturkimodule, both more straight-forward, and simpler to
implement.

The complexity of the unit group algorithm is determined hg tost of the techniques
outlined in Lemma 2.1. It may be that an alternative appragtich avoids such extensive use
of linear algebra has better complexity.

3 Basesfor two algebras

We sketchO(d®) algorithms to construct the following subalgebradvid, F):

(A) The algebra stabilising every subspace of a given katticsubspaces of = F.

(B) The algebra centralising each matrix in a givenJset M(d, F').

Both algebras are crucial to the algorithm in Section 4. Irhemsse we can readily construct
an F-basis for the algebra. Denote by the indeterminate entries of an arbitrary matyix
M(d, F). In (A), for a subspacél” of the lattice, the conditionVy C W is equivalent to
solving a system of linear equations in the unknowps A similar system arises in (B) from
the conditionzy = yx for x € X. Thus in each case, a basis fbiis obtained as the solution
space of a system of equationsfunknowns over-.

4 Thegroup preserving a system of forms

Let F' be a finite field of size, letd be a positive integer, and lét a vector space of dimension
d over F'. In this section we present an algorithm to solve the folfayyproblem:

Determine the subgroup, of GL(d, F') that preserves each form in a systEnof
bilinear or sesquilinear forms dn.

The basic approach is to construct a subalgebraf M(d, F') that containd as a subset. Thus
H := U(A) is an overgroup of. As one component of the construction 4f we obtain a
lattice of subspaces stabilised by bdthnd /. We next refinef{ so that the group it induces
on each subspace of the lattice preserves the restrictienesfy form inX to that subspace.
Finally, we construcf as a subgroup aff. A detailed description is given in Section 4.4.
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4.1 Bilinear and sesquilinear forms

In this section we summarise the basic notions concerniagsidal forms on a vector space;
see [16] for a comprehensive treatment of this subject.

Let (, ) denote an alternating, symmetric or hermitian formignwe refer to these three
possibilities collectively aglassical formson V. Each subspac& of V' has an associated
subspacé/+ = {v € V: (u,v) = 0 forallu € U} called theperpendicular space df relative
to (, ). Theradical of the form is the subspadé’. The form isdegeneratsf its radical is
nontrivial, andnondegeneratetherwise.

A classical form ispreserveddy g € GL(V) if (v9,w9) = (v,w) for all v,w € V. Each
type of classical form has an associated field automorpbism(: if the form is alternating or
symmetric ther{ = ¢; if it is hermitian then = (V4. We extend this automorphism 6 and
to M(d, F') in the obvious way.

Fix a basisvy,...,vg of V. It is convenient to identify a form with its associated matr
M = [[(v;,v;)]] wherel < i < dandl < j < s. Under this identification, the value of
(u,w) is uMw*, and the radical of the form is the nullspaceldf Furthermore; € GL(d, q)
preserved/ if (vg) Mwg™ = vMw"™ forall v, w € V. Thus theasometry groumf M is defined
as follows:

Isom(M) = { g€ GL(d,q): gMg™ = M }. (5)

Let> = {M,: w € Q} be a system of (matrices representing) classical formg onhere
Q2 is a finite set. Define
Isom(Y) = ﬂ Isom(M,), (6)
we
the subgroup ofsL(d, q) preserving all forms irk. The next result, a direct extension of [2,
Theorem 2.5], gives a useful descriptionledm(X) if X contains a nondegenerate form.

Lemmad4.l Let X be a system of classical forms, and gt and >, denote the partition of
Y into bilinear and sesquilinear forms. Assume that therstexonsingularM,, € ¥, and
M, € ¥, and set

X:={NM;" Ne%,} U {NM ' Nex}

Thenlsom(X) is contained in the centraliser of in M(d, F').

4.2 Building an invariant lattice

The following procedure takes as inptt a system of classical forms on a vector sp&ce
and constructs a lattice of subspaced/ofeach of which is stabilised bigom (). If Wis a
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subspace of andM/, € ¥, thenWW+ denotes the perpendicular spacéiofrelative to),,.

Invariant Lattice (X)
* Input: A systen® = {M,,: w € Q} of classical forms */
[* Output: A lattice of subspaces of stabilised bylsom(X) */

Step 0. Initialise £ := (.
Step 1. Forw € (), compute the nullspacé&,,, of M,,; if R, is a proper subspace, add itfo

Step 2. While there existdV € £ andw € € such thatiV+~ is a proper subspace &f not
contained ing, addW+~ to £.

Step 3. Returng.
Lemma 4.2 The lattice output binvariant L attice consists of subspaces stabiliseddym (X).

Proof. Let M, € ¥ and letg € Isom(X). Theng € Isom(M,,), and sog preservesk,,. Hence
Isom(X) stabilises each subspace in the initial lattitset up in Step 1.

It suffices to show that any new space added in Step 2 is sathibylsom(X). Let W be
anyIsom(X)-invariant subspace, and lete W1« for somew € Q. Then for allg € Isom(X)
andw € W we have

wM, 53" = wM,g" " = wg *M,7" = w M,o"

for somew’ € W. Sincew’ M, " = 0, it follows that\W -+~ is stabilised bylsom(Y). (]

4.3 Computing orbitson forms

The following procedure takes as input a classical farhon V. andG < GL(V'), and uses
permutation group techniques to construct generator§ forsom (M ).

Orbit Stabiliser (G, M)
/* Input: A matrix groupG and a classical form\/ */
[* Output: Generators folG N Isom (M) */

Step 1. Compute the orbi\ := {g"Mg: g € G}.

Step 2. Compute the subgrou@* of Sym(A) induced byG on A, and construct a group epimor-
phismv¥: G — G*.
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Step 3. Construct a generating s&t* for the stabiliser inrG* of the pointA/ of A.
Step 4. Construct a preimagey, of X* underV, and a generating s&t for the kernel ofl.

Step 5. Returnthe sefz"": z € X UY'}.

It is clear from its construction that the set returned bg firocedure generatésn Isom(M).
The computation of the point-stabiliser withi#* in Step 3 is carried out using standard per-
mutation group machinery; we refer to [14, Chapter 5] for a pmghensive treatment of these
methods. The construction &f andY” in Step 4 is discussed in Section 5.

4.4 Theisometry group algorithm

LetY = {M,: w € Q} be a system of classical forms. We now present a recursieguoe
to construct generators for the isometry grdsgpn (X).

| sometry Group (%)
I* Input: A systen® = {M,,: w € Q} of classical forms oV = ¢ */

[* Output: A generating set folsom(X) */

Step 1. Let, andX; denote the partition of into bilinear and sesquilinear forms.3f, contains
a nonsingular matrix/,, then setX,, := {NM,;l: N € %, }; otherwise sef), := {I,}.
Construct an analogous sEf usingX;. As in Section 3, construct a basis for the algebra
Aj centralisingX = X}, U X.

Step 2. Use the algorithm in Section 4.2 to construct a lattitetabilised bylsom(X). As in
Section 3, construct a basis for the algeHsastabilising L.

Step 3. SetA := A; N A, and use the algorithm in Section 2.2 to constrlict= U(A).
Step 4. For each subspad® in £, proceed as follows:

(a) Compute the subgroupy, induced byH onWW and amaply, : H — Hyy.
(b) Compute the systemy;, obtained by restricting the forms bto IV/.

(c) Recursively computéy, := Isom(Zy ), a subgroup o&GL(11).

(d) Construct generators for the intersectibn := Hy N Iy .

(e) Replaced by U} (Jw).
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Step 5. Use the algorithm in Section 4.3 to construct the subgrbup Isom (X)) within H.

Step 6. Return/.

Commentary. Steps 1, 2 and 3 construct an overgradipf the desired group = Isom(X).
Lemmas 4.1 and 4.2 imply thdtis contained in the algebra$, and A, respectively. Thus
I < U(A) for the algebrad in Step 3. The intersection of the two algebras in Step 3 can be
constructed readily using linear algebra.

Step 4 refineg{ so that the group it induces on each subspace mfeserves the restriction
of the forms inX to this subspace. In Section 5, we consider alternativebdadcursive
call in (c) and discuss the construction®f;’ (J-) in (e). Finally, Step 5 constructsas the
subgroup ofH which preserves each form ¥y The success of this step rests on our ability to
compute the orbit off on a formM € 3, which is determined by the magnitude of the index
of H NnIsom(M) in H. Again, an alternative to this approach is discussed ini@ebt

4.5 Constructing inter sections

In [2, Section 4.2] an algorithm is presented to descend fitwarfull isometry group of a pair
of forms of the same type, one of which is nondegenerate,aantfiersection of the various
pairs of classical groups that preserve those forms. The gmotedure applies to the present
setting. Thus, given a collection of group§,: w € Q}, whereG,, preserves an alternating,
symmetric or hermitian form (degenerate or nondegenerael) where this form is unique up
to scalar multiple one can first obtain the corresponding system {M,,: w € 2}, compute
Isom(X) using the algorithm in Section 4.4, and then refine this gtowgbtain the intersection

meQ Gw'

5 Implementation and performance

We implemented the algorithms presented in Section 2 anticBet.4 in MAGMA [1]; they
are publicly available. We now comment on aspects of thepéeimentations and their perfor-
mance.

5.1 Theunit group algorithm

The performance of the unit group algorithm is limited priityaby the dimension of the sys-
tems of equations that must be solved in order to computenaiges under the epimorphism
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ouv: U(A) — U(B). These systems have dimension rougilywhered is the dimension of
the input matrix generators. Linear systems having aboui00 unknowns over “moderate”
fields can be solved; thus we expect the unit group algorithbeteffective in dimensions up
to about 100 over such fields.

Performance. The computations reported in Table 1 were carried out usimgiva V2.13
on a Pentium IV 2.4 GHz processor. The input to the algoriththé centralising algebra of a
random invertible matrix ifMl(d, ¢) (thus the algorithm returns the subgroup@iL(d, ¢) that
centralises this matrix). In the column entitled “Time”, W& the CPU time in seconds taken
to construct the group of units of this algebra. The time eraged over five random selections.

Table 1. Performance of unit group algorithm

Input Time
M(5,5%) | 0.04
M(10,5%) | 0.05
M(20, 5°) 0.6
M(30, 5°) 3.8
M(40,51%) | 20.9
M(50,5) | 54.0
M(60, 51%) | 177.2
M(80,5'%) | 235.7

5.2 The Jacobson radical algorithm

The performance of the Jacobson radical algorithm is lieniemarily by the dimension of the
systems of equations that must be solved in order to conipute. Hence the commentary
from Section 5.1 applies.
Performance. The computations reported in Table 2 were carried out using A V2.13 on
a Pentium IV 2.4 GHz processor.

Each algebr&nv(X) is contained ifM(d, 5'°); its semisimple quotient is the direct product
of d/10 copies ofMI(10, 5'%); and X has a single nilpotent matrix havinig10 non-zero entries,
each in thgk, k + 1) position, wherg: = 0 mod 10.
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In the column entitled “New” and “CIW”, we list the CPU time in sews taken to construct
the Jacobson radical féinv(XX') using respectively our algorithm and the general-purpbse a
gorithm of [3].

Table 2: Performance of Jacobson radical algorithm

Input New | CIW
M(20,59) | 0.2 1.0
M(30,5%) | 05| 3.7
M(40,59) | 1.4| 8.8
M(50,59) | 3.6| 18.6
M(60,5'%) | 8.6| 34.4
M(70,5'%) | 16.4| 60.0
M(80,51%) | 29.5| 115.6
M(90,5'%) | 57.1| 195.9

5.3 Theisometry group algorithm

We discuss various aspects of the implementation; the st¢égrso the algorithm of Section 4.4.

Step 2: Building the invariant lattice. If 3 contains just two forms, then the lattice usually
has moderate size, typically containing fewer than 20 satesq Otherwise the lattice is much
larger, in which casésom(X) usually has small order, often containing only scalar rasi
We limit the size of the lattice to 100 subspaces, since addiore subspaces does not generally
refine the group preserving the lattice.

If > contains only nondegenerate forms, then the invariantéais empty and the algebra
A in Step 3 is just the algebrd; centralising the seX obtained in Step 1. In particular, X
contains precisely two nondegenerate forms, one bilinedttze other hermitian, thes is the
full matrix algebra. In such cases our method is not applecab

Step 4: Recursion. Following the recursive call in (c) to find generators for tireup Iy, =
Isom (X ), the algorithm proceeds in (d) to compute the intersecfign= Hy, N Iy, using
the standard back-track algorithm. To improve its chancgiotess, we ensure that the groups
Hy, andly, are as small as possible. In particular, we process the aoesfy € £ in order of
increasing dimension.
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The back-track can be refined in our context, taking as ingugtoupHy and a membership
test for Iy, (of courseg € GL(W) is in Iy, if and only if it preserves all of the forms ).
Hence we could avoid the recursive call, and instead sdiesketelements offy;, that lie in
Iy. Another alternative is to find the subgroup &f;, preserving the forms iy, via the
permutation action offy, on those forms, as in Step 5. We comment below on its practical
limitations.

Our experience indicates that the approach taken in the papsmely using a recursive call
to computelsom(Xy ) — is the most effective, but we have encountered examplesanthe
alternatives complete but the basic algorithm does not.

Steps 4 and 5: Constructing kernels and preimages. Suppose that we have a group homo-
morphism¥: L — S from a “large” groupL to a “small” groupS. If X = {z,...,2,}

is the given generating set fdr, then we assume thdlt is given by specifying the image,
X = {@1,...,Tn}, of X under¥. We also assume that we can efficiently computethe
image inS of an arbitrary element of.. SinceS is small, we may also assume that we can
compute effectively withirt using standard machinery.

In our context, we require efficient algorithms to compute pineimage of an arbitrary ele-
ment of S, and to construct a generating set for the kernelofSuch are needed in the main
algorithm in Step 4 (e) to construct the preimalgjgl(JW), and also in Step 5, where tk bit
Stabiliser algorithm of Section 4.3 is used repeatedly.

Preimages undeb are handled readily as follows. Write the givere S as a word inX,
says = wy(71,...,Tm). (This is the essential algorithmic task that we assume earatried
out within S.) A suitable preimage is then obtained by evaluatingr,, ..., z,,) in L.

The kernelK of ¥ may be constructed using, for example, the techniques ¢f [E2L
is a permutation or matrix group, then these assume tihaisa and strong generating sst
available forL. Although such can be computed using the Random Schreierithlgo[14,
Chapter 4], it is sometimes very expensive, particularlynfiaitrix groups.

Sincel is often a large matrix group in our setting, we instead useoat®lCarlo algorithm
to construct generators fdf. Choose random € L, and evaluate := V(l) € S. Write s =
wy(TT, . .., Tm) asaword inX. Thenl-w,(z1,...,,,)"" € K. Repeating this construction for
sufficiently many random elements bf with high probabilitywe obtain a generating set fér.
Our implementation can use either the deterministic oroarided algorithm to construét.

Step 5: Orbitson forms. The applicability of this algorithm depends on the size efadnbit of
H onaformM € ¥, or equivalently on the index d§om (M )N H in H. In ourimplementation,
we construct orbits of size at moK1°; if an orbit is larger, we retur#/ and report that it is an
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overgroup of the desired group.

Performance. In Table 3 we report on a number of computations of isometougs: the
input is a system of bilinear or sesquilinear forms contained¥f(d, ¢). Of ther forms, s are
non-degenerate. We list the CPU time in seconds to constredhtersection.

Table 3: Performance of isometry group algorithm

Input | r/s | Time

M(4,5%) | 3/3| 0.8
M(6,5%) | 4/0| 0.2
M(8,5%) | 3/2| 0.2
M(9,11) | 2/0 | 109.9

M(10,5%) | 3/2| 0.2
M(11,7) | 2/0| 806.7
M(12,5%) | 3/0| 2.4
M(14,5%) | 4/0| 225
M(16,5%) | 3/0| 3.8
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