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Abstract

We present a practical algorithm to construct the subgroup of the general linear group

that preserves a system of bilinear or sesquilinear forms on a vector space defined over a

finite field. Components include efficient algorithms to construct the Jacobson radical and

the group of units of a matrix algebra.

1 Introduction

In this paper we consider the following algorithmic problem: Given a system of symmetric,

alternating or hermitian forms on a vector space defined overa finite field, find the subgroup of

the general linear group that preserves every form in the system.

In [2], an explicit description of this group is given when the system contains precisely

two forms of the same classical type, at least one of which is nondegenerate. This description,

heavily influenced by the recent work of Goldstein & Guralnick [8], underpins a highly effective

algorithm to write down generators for the group. The structure of the group preserving a

general system of forms is much more varied, and consequently the algorithm for the general

case is more limited.

The motivation for an efficient solution to the general problem of constructing the group

preserving a system of forms is two-fold.

First, as noted in [2], constructing the intersection of twoor more matrix groups is a difficult

algorithmic problem. Existing algorithms employ variations of “back-track”, their complex-

ity is exponential, and they have very limited range; see [14, §3.3] for a general discussion.
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We thank Lajos Ŕonyai for drawing our attention to [13] and for comments on a draft of the paper, and Derek Holt
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One outcome of this work is a significantly better algorithm to construct the intersection of a

collection of matrix groups that preserve forms on the underlying space.

The group preserving a system of forms also arises naturallyin the study of finitep-groups.

To construct the automorphism group of ad-generatorp-group of exponent-p-class 2 and ex-

ponentp, we consider the action of the general linear groupGL(V ) on the exterior square

Λ2(V ) of V = GF(p)d and compute the stabiliser of a subspace in this action. A basis of a

k-dimensional subspaceW of Λ2(V ) defines a systemΣ(W ) consisting ofk alternating forms

onV . The subgroup ofGL(V ) preservingΣ(W ) is the centraliser ofW , a normal subgroup of

the desired stabiliser. For further discussion of this application, see [6].

As a key component of this work, we describe effective algorithms to construct both the

Jacobson radical and the group of units of a matrix algebra defined over a finite field. We use

the unit group algorithm to write down an overgroup ofI, the group preserving the given system

of forms, and then use a variety of techniques to constructI within this overgroup.

Our approach to the unit group problem was motivated by work of Schwingel [15]. In her

PhD thesis she describes an algorithm to construct the subgroup of GL(V ) that stabilises a

lattice of subspaces ofV ; it is obtained as the group of units of the algebra stabilising the

lattice. While writing this paper, we learned that Rónyai [13], in solving a complexity question

about the orders of centralisers in the general linear group, had earlier suggested an identical

approach to the unit group problem.

We present optimised versions of the algorithms, aimed at practical implementation. We

demonstrate that our implementation of the Jacobson radical algorithm significantly outper-

forms the algorithm of Cohenet al. [3], which applies to arbitrary fields.

The unit group algorithm is presented in Section 2, where we also identify those steps com-

prising the Jacobson radical algorithm. In Section 3 we describe how to construct bases for

two important families of matrix algebras. The algorithm toconstruct the (full isometry) group

preserving a system of forms is described in Section 4, together with a summary of the modi-

fications needed to obtain the intersection of a collection of groups preserving such a system.

Finally, in Section 5, we briefly describe an implementationof our methods in MAGMA [1],

indicating their practical limitations, and reporting on their performance.

2 The group of units of a matrix algebra

LetM(d, F ) denote the algebra of alld×d matrices with entries in the finite fieldF , and letA be

a subalgebra ofM(d, F ). We present an efficient algorithm to write down generators for U(A),
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the group of units ofA. We assume thatA is described byX ⊂ M(d, F ). HenceA = Env(X),

the enveloping algebra ofX, defined formally as theF -linear span of the semigroup generated

by X.

In Section 2.1 we recall Wedderburn’s structure theorem forsemisimple algebras [4, 26.4],

and its relationship to a composition series of the naturalA-moduleV = F d. This provides the

theoretical foundation for the algorithm, which is described in detail in Section 2.2.

2.1 Composition series and the Wedderburn decomposition

The Jacobson radical ofA, denotedJ(A), is the intersection of the maximal left ideals ofA,

and the quotient algebraA = A/J(A) is semisimple. IfF is a finite field, then Wedderburn’s

theorem states thatA = B1 ⊕ . . . ⊕ Br, whereBi is a minimal left ideal ofA, isomorphic as

F -algebra toM(di, Fi) for some extension fieldFi of F . Note thatU(A), the unit group ofA,

is isomorphic toGL(d1, F1) × . . . × GL(dr, Fr).

The naturalA-moduleV = F d has a composition series0 = V0 < V1 < . . . < Vs = V and,

relative to a suitable basis ofV , an elementa of A has the form


















a1 ⋆ . . . . . . ⋆

0 a2 ⋆ . . . ⋆
... 0

. .. . ..
...

...
...

. .. as−1 ⋆

0 0 . . . 0 as



















. (1)

Define an equivalence relation on the indices{1, . . . , s}, wherei ∼ j if and only if the quotients

Vi/Vi−1 andVj/Vj−1 are isomorphicA-modules. Denote the equivalence classes byΓ1, . . . , Γt,

and letei be the common dimension of the quotient spaces indexed by elements ofΓi. For

1 ≤ i ≤ t, distinguish an indexγi ∈ Γi. For eachγ ∈ Γi, there existscγ ∈ GL(ei, F ) such that

aγ = cγaγi
c−1
γ . (2)

For 1 ≤ i ≤ s, let Ai be the algebra induced byA on the quotientVi/Vi−1. Now Ai is a

simple matrix algebra and is therefore isomorphic to a full matrix algebra over some extension

field of F . The mapa 7→ (a1, a2, . . . , as−1, as) is a homomorphismϕ : A → A1 ⊕ . . . ⊕ As,

whose image is isomorphic to
⊕t

i=1 Aγi
. Sinceϕ(A) is semisimple, andker(ϕ) is nilpotent,

ker(ϕ) = J(A) andϕ(A) ∼= A. In particular,r = t and, up to permutation of indices,Aγi
is

isomorphic toBi.
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2.2 The Jacobson radical and unit group algorithms

In outline, the algorithm to construct generators forU(A) is the following:

Step 1. Construct an algebra epimorphismϕ : A → B whose kernel isJ(A), and obtain the

Wedderburn decomposition of the semisimple algebraB.

Step 2. Use the Wedderburn decomposition to write down a generatingset forU(B).

Step 3. Compute a preimage,S, of this generating set underϕ.

Step 4. Compute a generating setT for the kernel of the induced mapϕU : U(A) → U(B).

Step 5. ReturnS ∪ T .

There are two important algorithmic issues to address. The first is how to constructϕ and

obtain the Wedderburn decomposition ofB into simple algebras. To do this, we exploit the

composition series of the naturalA-moduleV , as discussed in Section 2.1. The second is how

to defineϕ effectively; in particular, an efficient procedure is required to compute the preimage

of an element ofB underϕ.

We begin by defining a matrix algebraA as the solution to a system of linear equations. De-

fine an isomorphism of vector spacesρ : M(d, F ) → F d2

sending[[xij]] 7→ (x11, x12, . . . , xdd).

Suppose thatA ≤ M(d, F ) is ak-dimensional algebra having basisb1, . . . , bk. Define ak × d2

matrixB whose rows are the vectorsρ(b1), . . . , ρ(bk). ThenB is a (left)F -linear map from the

column spaceF d2

to the column spaceF k; let A be ad2 × (d2 − k) matrix whose columns

are a basis for the nullspace of this map. Forx ∈ M(d, F ), we have the following test for

membership inA:

x ∈ A ⇐⇒ ρ(x)A = 0. (3)

Next suppose that we have found a composition series for the natural module of a given al-

gebraA = Env(X) ≤ M(d, F ). Suppose further that we have a change-of-basis matrix that

conjugates the elements ofA to matrices of the form in Equation (1). This defines a homomor-

phismϕ : A → A1 ⊕ A2 ⊕ . . . ⊕ As, where the algebrasAi are as defined in Section 2.1.

The following result enables us to compute effectively withthe homomorphismϕ.

Lemma 2.1 There are deterministic algorithms usingO(d6) field operations to solve each of

the following.

(i) Givenb = (a1, a2, . . . , as) ∈ ϕ(A), finda ∈ A such thatϕ(a) = b.
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(ii) Find a basis forker(ϕ).

(iii) Find a generating set for the kernel of the induced mapϕU : U(A) → U(ϕ(A)).

Proof. (i) Let b = (a1, . . . , as) be a given element ofϕ(A) and suppose, for1 ≤ l ≤ s, thatal is

annl×nl matrix with entries inF . Setn :=
∑s

l=1 n2
l . We augmentA to a(d2+1)×(d2−k+n)

matrixA(b) and construct a suitable preimage ofb from the nullspace of this augmented matrix.

InitialiseA(b) to be the(d2 + 1) × (d2 − k) matrix obtained by appending a row of zeros to

A. Forz ∈ [1, . . . , d2 +1] and scalarλ ∈ F , define a column vectorc(z, λ) ∈ F d2+1 as follows:

if λ = 0, thenc(z, λ) has 1 in coordinatez and 0s in all other coordinates; and ifλ 6= 0, then

c(z, λ) has−λ in coordinatez, 1 in coordinated2 + 1, and 0s in all other coordinates. The

following loop now appends the additionaln columns toA(b).

For l ∈ {1, . . . , s} do

ml := n2
1 + . . . + n2

l

For i, j ∈ {1, . . . , nl} do

z := ml + (i − 1)nl + j; λ := (al)ij

Appendc(z, λ) toA(b)

For a row vectory ∈ F d2

, lety∗ denote the row vector inF d2+1 obtained fromy by appending 1

in coordinated2 + 1. An easy calculation now shows thata ∈ M(d, F ) satisfiesρ(a)∗A(b) = 0

if and only if a ∈ A andϕ(a) = b.

To find a preimage of the givenb = (a1, . . . , as) in A, proceed as follows:

(a) Compute the augmented matrixA(b) associated withb, as above.

(b) Compute a basis for the nullspace ofA(b).

(c) Find a vector(λ1, . . . , λd2 , λ) in this basis havingλ 6= 0.

(d) Puty := (λ1/λ, . . . , λd2/λ) ∈ F d2

, and returna := ρ−1(y).

(ii) To construct the kernel ofϕ we proceed in a similar fashion, this time augmentingA to a

d2 × (d2 − k + n) matrixAker. We wish to compute the full preimage inA of the zero element

of B, namely(0A1
, 0A2

, . . . , 0As
). Thus, for each1 ≤ l ≤ s and1 ≤ i, j ≤ nl, append a column

toA having 1 in coordinateml + (i − 1)nl + j and 0 in all other coordinates.

The kernel ofϕ is now obtained as follows:

(a) Compute the augmented matrixAker as above.
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(b) Compute a basis,B, for the nullspace ofAker.

(c) Return the set{ρ−1(y) : y ∈ B}.

(iii) Using the algorithm in (ii), obtain anF -basis forJ := ker(ϕ), the Jacobson radical ofA.

Convert thisF -basis into a basis over the prime field as follows. Lete denote the degree ofF

over its prime field, and letζ be a primitive element ofF ∗; now computeρ−1(ζjy) for y ∈ B

andj ∈ [0, . . . , e − 1]. Next exchange this arbitrary basis for another basis,T ∗, over the prime

field containing elements that project onto bases for the layersJ i/J i+1 for 1 ≤ i ≤ d. (This is a

linear algebra computation inJ regarded as a vector space over the prime field.) LetId denote

the identity ofM(d, F ); then it is easy to see that the set

T := {Id + u : u ∈ T ∗}, (4)

generates the kernel ofϕU .

The stated complexity is the time required to perform basic linear algebra inF d2

. �

We now give a detailed description of the algorithm to construct the group of units of a

matrix algebra. The basic steps are numbered consistently with the outline given at the start of

the section.

Unit Group (A)

/* Input: The enveloping algebra,A, of a setX ⊂ M(d, F ) */

/* Output: A generating set forU(A), the group of units ofA */

Step 1. (a) Determine a composition seriesV0 < V1 < . . . < Vs for the naturalA-module

V = F d, together with a change-of-basis matrixC.

(b) ReplaceA with the algebraEnv(CXC−1) so that elements ofA have matrix as in

Equation (1).

(c) For1 ≤ i ≤ s, constructAi, the algebra induced byA onVi/Vi−1.

(d) Defineϕ : A → A1 ⊕ . . . ⊕ As, sendinga 7→ (a1, . . . , as); thenB := ϕ(A) is a

semisimple subalgebra ofA1 ⊕ . . . ⊕ As.

(e) Construct a basis forA, and use it to obtain a matrixA as in Equation (3).

(f) Obtain the equivalence classesΓ1, . . . , Γt of indices, whereini ∼ j if and only if

Vi/Vi−1 andVj/Vj−1 are isomorphicA-modules. Let the common dimension of the

modules indexed by elements ofΓi beei, and letγi be a representative ofΓi. Also

find the conjugating matricescγ for γ ∈ Γi as in Equation (2).
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Step 2. InitialiseY := ∅. For1 ≤ i ≤ t proceed as follows:

(a) ConstructFi, the centralising field ofAγi
in M(ei, F ) and setdi := ei/[Fi : F ].

(b) Write down a generating set for the subgroup ofGL(ei, F ) isomorphic toGL(di, Fi)

contained withinAγi
.

(c) To each generatorg in (b), assignyg ∈ U(B) as follows. Initialiseyg := (1A1
, . . . , 1As

).

Forγ ∈ Γi, insertcγgc−1
γ in coordinateγ of yg. Add yg to Y .

Step 3. ConstructS := {ϕ−1(y) : y ∈ Y } using Lemma 2.1(i).

Step 4. Construct a generating setT for ker(ϕU) using Lemma 2.1(iii).

Step 5. ReturnC−1(S ∪ T )C.

Remark 2.2 The generating sets for the general linear group over finite fields, used in Step

2(b), are well known. Ŕonyai [13] points out that, from a complexity viewpoint, theproblem

of constructing these sets is equivalent to constructing a primitive element of the multiplicative

groupF ∗, and that there is no known polynomial time algorithm to solve the latter problem. We

assumethatF has a known primitive element, which is the case in practice.

Theorem 2.3 The procedureUnit Group is a Las Vegas algorithm which, given an arbitrary

matrix algebraA = Env(X) ≤ M(d, F ), constructs a generating set forU(A), the group of

units ofA. The algorithm usesO(td6) operations inF , wheret is the number of summands in

the Wedderburn decomposition ofA/J(A).

Proof. The correctness of the algorithm is clear from Lemma 2.1 and the discussion preceding

it. It remains to examine the complexity of each step of the algorithm.

Variations of the MEATAXE algorithm are used in the following places: in Step 1(a) to find a

composition series ofV ; in Step 1(f) to determine isomorphisms between the modulesVi/Vi−1;

and in Step 2(a) to find the centralising fieldsFi. These tasks are carried out using Las Vegas

algorithms that useO(d5) field operations; see [9, 11] for a detailed description.

The other steps are routine, typically involving linear algebra in the row spaceF d2

. The basis

in Step 1(e) is obtained using a standard transitive closurealgorithm.�

Remark 2.4 The Jacobson radical algorithm first constructs the composition series for the nat-

ural moduleV of the algebraA as described in Step (1), and then uses Lemma 2.1(ii) to con-

struct generators forJ(A). Theorem 2.3 implies that this Las Vegas algorithm has the same

complexity asUnit Group.
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Remark 2.5 If V has a composition factor upon whichA acts as 0, thenA has no units.

Remark 2.6 Other algorithms having similar complexity could be employed to obtain the Wed-

derburn decomposition: see, for example, [5, 7, 10]. However, we found our approach, exploit-

ing the composition series of the naturalA-module, both more straight-forward, and simpler to

implement.

The complexity of the unit group algorithm is determined by the cost of the techniques

outlined in Lemma 2.1. It may be that an alternative approachwhich avoids such extensive use

of linear algebra has better complexity.

3 Bases for two algebras

We sketchO(d6) algorithms to construct the following subalgebras ofM(d, F ):

(A) The algebra stabilising every subspace of a given lattice of subspaces ofV = F d.

(B) The algebra centralising each matrix in a given setX ⊂ M(d, F ).

Both algebras are crucial to the algorithm in Section 4. In each case we can readily construct

anF -basis for the algebra. Denote byyij the indeterminate entries of an arbitrary matrixy ∈

M(d, F ). In (A), for a subspaceW of the lattice, the conditionWy ⊆ W is equivalent to

solving a system of linear equations in the unknownsyij. A similar system arises in (B) from

the conditionxy = yx for x ∈ X. Thus in each case, a basis forA is obtained as the solution

space of a system of equations ind2 unknowns overF .

4 The group preserving a system of forms

Let F be a finite field of sizeq, letd be a positive integer, and letV a vector space of dimension

d overF . In this section we present an algorithm to solve the following problem:

Determine the subgroup,I, of GL(d, F ) that preserves each form in a systemΣ of

bilinear or sesquilinear forms onV .

The basic approach is to construct a subalgebra,A, of M(d, F ) that containsI as a subset. Thus

H := U(A) is an overgroup ofI. As one component of the construction ofA, we obtain a

lattice of subspaces stabilised by bothI andH. We next refineH so that the group it induces

on each subspace of the lattice preserves the restriction ofevery form inΣ to that subspace.

Finally, we constructI as a subgroup ofH. A detailed description is given in Section 4.4.
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4.1 Bilinear and sesquilinear forms

In this section we summarise the basic notions concerning classical forms on a vector space;

see [16] for a comprehensive treatment of this subject.

Let ( , ) denote an alternating, symmetric or hermitian form onV ; we refer to these three

possibilities collectively asclassical formson V . Each subspaceU of V has an associated

subspaceU⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U} called theperpendicular space ofU relative

to ( , ). The radical of the form is the subspaceV ⊥. The form isdegenerateif its radical is

nontrivial, andnondegenerateotherwise.

A classical form ispreservedby g ∈ GL(V ) if (vg, wg) = (v, w) for all v, w ∈ V . Each

type of classical form has an associated field automorphismζ 7→ ζ: if the form is alternating or

symmetric thenζ = ζ; if it is hermitian thenζ = ζ
√

q. We extend this automorphism toV and

to M(d, F ) in the obvious way.

Fix a basisv1, . . . , vd of V . It is convenient to identify a form with its associated matrix

M = [[(vi, vj)]] where1 ≤ i ≤ d and1 ≤ j ≤ s. Under this identification, the value of

(u,w) is uMwtr, and the radical of the form is the nullspace ofM . Furthermoreg ∈ GL(d, q)

preservesM if (vg)Mwgtr = vMwtr for all v, w ∈ V . Thus theisometry groupof M is defined

as follows:

Isom(M) = { g ∈ GL(d, q) : gMgtr = M }. (5)

Let Σ = {Mω : ω ∈ Ω} be a system of (matrices representing) classical forms onV , where

Ω is a finite set. Define

Isom(Σ) =
⋂

ω∈Ω

Isom(Mω), (6)

the subgroup ofGL(d, q) preserving all forms inΣ. The next result, a direct extension of [2,

Theorem 2.5], gives a useful description ofIsom(Σ) if Σ contains a nondegenerate form.

Lemma 4.1 Let Σ be a system of classical forms, and letΣb and Σs denote the partition of

Σ into bilinear and sesquilinear forms. Assume that there exist nonsingularMb ∈ Σb and

Ms ∈ Σs, and set

X := {NM−1
b : N ∈ Σb} ∪ {NM−1

s : N ∈ Σs}.

ThenIsom(Σ) is contained in the centraliser ofX in M(d, F ).

4.2 Building an invariant lattice

The following procedure takes as inputΣ, a system of classical forms on a vector spaceV ,

and constructs a lattice of subspaces ofV , each of which is stabilised byIsom(Σ). If W is a
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subspace ofV andMω ∈ Σ, thenW⊥ω denotes the perpendicular space ofW relative toMω.

Invariant Lattice (Σ)

/* Input: A systemΣ = {Mω : ω ∈ Ω} of classical forms */

/* Output: A lattice of subspaces ofV stabilised byIsom(Σ) */

Step 0. InitialiseL := ∅.

Step 1. Forω ∈ Ω, compute the nullspace,Rω, of Mω; if Rω is a proper subspace, add it toL.

Step 2. While there existsW ∈ L andω ∈ Ω such thatW⊥ω is a proper subspace ofV not

contained inL, addW⊥ω to L.

Step 3. ReturnL.

Lemma 4.2 The lattice output byInvariant Lattice consists of subspaces stabilised byIsom(Σ).

Proof. Let Mω ∈ Σ and letg ∈ Isom(Σ). Theng ∈ Isom(Mω), and sog preservesRω. Hence

Isom(Σ) stabilises each subspace in the initial latticeL set up in Step 1.

It suffices to show that any new space added in Step 2 is stabilised byIsom(Σ). Let W be

anyIsom(Σ)-invariant subspace, and letv ∈ W⊥ω for someω ∈ Ω. Then for allg ∈ Isom(Σ)

andw ∈ W we have

wMωvgtr = wMωgtrvtr = wg−1Mωvtr = w′Mωvtr

for somew′ ∈ W . Sincew′Mωvtr = 0, it follows thatW⊥ω is stabilised byIsom(Σ). �

4.3 Computing orbits on forms

The following procedure takes as input a classical formM on V andG ≤ GL(V ), and uses

permutation group techniques to construct generators forG ∩ Isom(M).

Orbit Stabiliser (G, M)

/* Input: A matrix groupG and a classical formM */

/* Output: Generators forG ∩ Isom(M) */

Step 1. Compute the orbit∆ := {gtrMg : g ∈ G}.

Step 2. Compute the subgroupG∗ of Sym(∆) induced byG on∆, and construct a group epimor-

phismΨ: G → G∗.
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Step 3. Construct a generating setX∗ for the stabiliser inG∗ of the pointM of ∆.

Step 4. Construct a preimage,X, of X∗ underΨ, and a generating setY for the kernel ofΨ.

Step 5. Return the set{ztr : z ∈ X ∪ Y }.

It is clear from its construction that the set returned by this procedure generatesG ∩ Isom(M).

The computation of the point-stabiliser withinG∗ in Step 3 is carried out using standard per-

mutation group machinery; we refer to [14, Chapter 5] for a comprehensive treatment of these

methods. The construction ofX andY in Step 4 is discussed in Section 5.

4.4 The isometry group algorithm

Let Σ = {Mω : ω ∈ Ω} be a system of classical forms. We now present a recursive procedure

to construct generators for the isometry groupIsom(Σ).

Isometry Group (Σ)

/* Input: A systemΣ = {Mω : ω ∈ Ω} of classical forms onV = F d */

/* Output: A generating set forIsom(Σ) */

Step 1. LetΣb andΣs denote the partition ofΣ into bilinear and sesquilinear forms. IfΣb contains

a nonsingular matrixMb, then setXb := {NM−1
b : N ∈ Σb}; otherwise setXb := {Id}.

Construct an analogous setXs usingΣs. As in Section 3, construct a basis for the algebra

A1 centralisingX := Xb ∪ Xs.

Step 2. Use the algorithm in Section 4.2 to construct a latticeL stabilised byIsom(Σ). As in

Section 3, construct a basis for the algebraA2 stabilisingL.

Step 3. SetA := A1 ∩ A2 and use the algorithm in Section 2.2 to constructH := U(A).

Step 4. For each subspaceW in L, proceed as follows:

(a) Compute the subgroupHW induced byH onW and a mapΨW : H → HW .

(b) Compute the systemΣW obtained by restricting the forms inΣ to W .

(c) Recursively computeIW := Isom(ΣW ), a subgroup ofGL(W ).

(d) Construct generators for the intersectionJW := HW ∩ IW .

(e) ReplaceH by Ψ−1
W (JW ).
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Step 5. Use the algorithm in Section 4.3 to construct the subgroupI := Isom(Σ) within H.

Step 6. ReturnI.

Commentary. Steps 1, 2 and 3 construct an overgroupH of the desired groupI = Isom(Σ).

Lemmas 4.1 and 4.2 imply thatI is contained in the algebrasA1 andA2 respectively. Thus

I ≤ U(A) for the algebraA in Step 3. The intersection of the two algebras in Step 3 can be

constructed readily using linear algebra.

Step 4 refinesH so that the group it induces on each subspace ofL preserves the restriction

of the forms inΣ to this subspace. In Section 5, we consider alternatives to the recursive

call in (c) and discuss the construction ofΨ−1
W (JW ) in (e). Finally, Step 5 constructsI as the

subgroup ofH which preserves each form inΣ. The success of this step rests on our ability to

compute the orbit ofH on a formM ∈ Σ, which is determined by the magnitude of the index

of H ∩ Isom(M) in H. Again, an alternative to this approach is discussed in Section 5.

4.5 Constructing intersections

In [2, Section 4.2] an algorithm is presented to descend fromthe full isometry group of a pair

of forms of the same type, one of which is nondegenerate, to the intersection of the various

pairs of classical groups that preserve those forms. The same procedure applies to the present

setting. Thus, given a collection of groups{Gω : ω ∈ Ω}, whereGω preserves an alternating,

symmetric or hermitian form (degenerate or nondegenerate), and where this form is unique up

to scalar multiple, one can first obtain the corresponding systemΣ = {Mω : ω ∈ Ω}, compute

Isom(Σ) using the algorithm in Section 4.4, and then refine this groupto obtain the intersection
⋂

ω∈Ω Gω.

5 Implementation and performance

We implemented the algorithms presented in Section 2 and Section 4.4 in MAGMA [1]; they

are publicly available. We now comment on aspects of these implementations and their perfor-

mance.

5.1 The unit group algorithm

The performance of the unit group algorithm is limited primarily by the dimension of the sys-

tems of equations that must be solved in order to compute preimages under the epimorphism
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ϕU : U(A) → U(B). These systems have dimension roughlyd2, whered is the dimension of

the input matrix generators. Linear systems having about10, 000 unknowns over “moderate”

fields can be solved; thus we expect the unit group algorithm to be effective in dimensions up

to about 100 over such fields.

Performance. The computations reported in Table 1 were carried out using MAGMA V2.13

on a Pentium IV 2.4 GHz processor. The input to the algorithm is the centralising algebra of a

random invertible matrix inM(d, q) (thus the algorithm returns the subgroup ofGL(d, q) that

centralises this matrix). In the column entitled “Time”, welist the CPU time in seconds taken

to construct the group of units of this algebra. The time is averaged over five random selections.

Table 1: Performance of unit group algorithm

Input Time

M(5, 520) 0.04

M(10, 52) 0.05

M(20, 55) 0.6

M(30, 55) 3.8

M(40, 510) 20.9

M(50, 510) 54.0

M(60, 510) 177.2

M(80, 510) 235.7

5.2 The Jacobson radical algorithm

The performance of the Jacobson radical algorithm is limited primarily by the dimension of the

systems of equations that must be solved in order to computeker ϕ. Hence the commentary

from Section 5.1 applies.

Performance. The computations reported in Table 2 were carried out using MAGMA V2.13 on

a Pentium IV 2.4 GHz processor.

Each algebraEnv(X) is contained inM(d, 510); its semisimple quotient is the direct product

of d/10 copies ofM(10, 510); andX has a single nilpotent matrix havingd/10 non-zero entries,

each in the(k, k + 1) position, wherek ≡ 0 mod 10.
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In the column entitled “New” and “CIW”, we list the CPU time in seconds taken to construct

the Jacobson radical forEnv(X) using respectively our algorithm and the general-purpose al-

gorithm of [3].

Table 2: Performance of Jacobson radical algorithm

Input New CIW

M(20, 510) 0.2 1.0

M(30, 510) 0.5 3.7

M(40, 510) 1.4 8.8

M(50, 510) 3.6 18.6

M(60, 510) 8.6 34.4

M(70, 510) 16.4 60.0

M(80, 510) 29.5 115.6

M(90, 510) 57.1 195.9

5.3 The isometry group algorithm

We discuss various aspects of the implementation; the stepsrefer to the algorithm of Section 4.4.

Step 2: Building the invariant lattice. If Σ contains just two forms, then the lattice usually

has moderate size, typically containing fewer than 20 subspaces. Otherwise the lattice is much

larger, in which caseIsom(Σ) usually has small order, often containing only scalar matrices.

We limit the size of the lattice to 100 subspaces, since adding more subspaces does not generally

refine the group preserving the lattice.

If Σ contains only nondegenerate forms, then the invariant lattice is empty and the algebra

A in Step 3 is just the algebraA1 centralising the setX obtained in Step 1. In particular, ifΣ

contains precisely two nondegenerate forms, one bilinear and the other hermitian, thenA is the

full matrix algebra. In such cases our method is not applicable.

Step 4: Recursion. Following the recursive call in (c) to find generators for thegroupIW =

Isom(ΣW ), the algorithm proceeds in (d) to compute the intersectionJW = HW ∩ IW , using

the standard back-track algorithm. To improve its chance ofsuccess, we ensure that the groups

HW andIW are as small as possible. In particular, we process the subspacesW ∈ L in order of

increasing dimension.
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The back-track can be refined in our context, taking as input the groupHW and a membership

test forIW (of courseg ∈ GL(W ) is in IW if and only if it preserves all of the forms inΣW ).

Hence we could avoid the recursive call, and instead select those elements ofHW that lie in

IW . Another alternative is to find the subgroup ofHW preserving the forms inΣW via the

permutation action ofHW on those forms, as in Step 5. We comment below on its practical

limitations.

Our experience indicates that the approach taken in the paper – namely using a recursive call

to computeIsom(ΣW ) – is the most effective, but we have encountered examples where the

alternatives complete but the basic algorithm does not.

Steps 4 and 5: Constructing kernels and preimages. Suppose that we have a group homo-

morphismΨ: L → S from a “large” groupL to a “small” groupS. If X = {x1, . . . , xm}

is the given generating set forL, then we assume thatΨ is given by specifying the image,

X = {x1, . . . , xm}, of X underΨ. We also assume that we can efficiently compute theΨ-

image inS of an arbitrary element ofL. SinceS is small, we may also assume that we can

compute effectively withinS using standard machinery.

In our context, we require efficient algorithms to compute the preimage of an arbitrary ele-

ment ofS, and to construct a generating set for the kernel ofΨ. Such are needed in the main

algorithm in Step 4 (e) to construct the preimageΨ−1
W (JW ), and also in Step 5, where theOrbit

Stabiliser algorithm of Section 4.3 is used repeatedly.

Preimages underΨ are handled readily as follows. Write the givens ∈ S as a word inX,

says = ws(x1, . . . , xm). (This is the essential algorithmic task that we assume can be carried

out withinS.) A suitable preimage is then obtained by evaluatingws(x1, . . . , xm) in L.

The kernelK of Ψ may be constructed using, for example, the techniques of [12]. If L

is a permutation or matrix group, then these assume that abase and strong generating setis

available forL. Although such can be computed using the Random Schreier algorithm [14,

Chapter 4], it is sometimes very expensive, particularly formatrix groups.

SinceL is often a large matrix group in our setting, we instead use a Monte Carlo algorithm

to construct generators forK. Choose randoml ∈ L, and evaluates := Ψ(l) ∈ S. Write s =

ws(x1, . . . , xm) as a word inX. Thenl ·ws(x1, . . . , xm)−1 ∈ K. Repeating this construction for

sufficiently many random elements ofL, with high probabilitywe obtain a generating set forK.

Our implementation can use either the deterministic or randomised algorithm to constructK.

Step 5: Orbits on forms. The applicability of this algorithm depends on the size of the orbit of

H on a formM ∈ Σ, or equivalently on the index ofIsom(M)∩H in H. In our implementation,

we construct orbits of size at most106; if an orbit is larger, we returnH and report that it is an

15



overgroup of the desired group.

Performance. In Table 3 we report on a number of computations of isometry groups: the

input is a system ofr bilinear or sesquilinear forms contained inM(d, q). Of ther forms,s are

non-degenerate. We list the CPU time in seconds to construct the intersection.

Table 3: Performance of isometry group algorithm

Input r/s Time

M(4, 56) 3/3 0.8

M(6, 56) 4/0 0.2

M(8, 56) 3/2 0.2

M(9, 11) 2/0 109.9

M(10, 56) 3/2 0.2

M(11, 7) 2/0 806.7

M(12, 56) 3/0 2.4

M(14, 56) 4/0 22.5

M(16, 56) 3/0 3.8
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