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Abstract

We classify the radical subgroups and chains of the Harada-Norton simple
group HN and verify the Alperin weight conjecture and the refined Dade con-
jecture due to Uno for the group. This implies the Isaacs-Navarro and Dade
reductive conjectures for the group.

1 Introduction

Applying the local subgroup strategy of [2] and [3], we have previously classified the
radical subgroups and radical chains for the sporadic simple groups Fiy, Figz, Cog, O'N,
Ru and Coq, and verified the Alperin and Dade reductive conjectures for these groups,
(see [2], [3], [4], [5] and [6]). In this paper, we use the strategy to verify the Alperin
weight conjecture and the refined Dade conjecture due to Uno for the Harada-Norton
simple group HN. This implies the Isaacs-Navarro and Dade reductive conjectures for
HN. The principal challenge is to construct the maximal p-local subgroups of HN.

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [11] generalized the Knérr-Robinson version of the Alperin weight conjecture
and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values
for p-blocks of some p-local subgroups of G. Dade [13] announced that his reductive
conjecture needs only to be verified for finite non-abelian simple groups; in addition, if
a finite group has a trivial Schur multiplier and cyclic outer automorphism group, then
the invariant conjecture is equivalent to the reductive conjecture. Recently, Isaacs and
Navarro [17] proposed a new conjecture which is a refinement of the Alperin-McKay
conjecture, and Uno [20] proposed an alternating sum version of the Isaacs-Navarro
conjecture which is a refinement of the Dade conjecture.

We verify the Alperin weight conjecture and Uno’s refinement of Dade’s invariant
conjecture for HN. This implies the Isaacs-Navarro conjecture and Dade’s inductive
(and augmented inductive) conjecture for HN, since the Schur multiplier of HN is
trivial.
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The paper is organized as follows. In Section 2, we fix notation, state the conjectures
in detail and show that the refinement of the invariant conjecture holds for all blocks
with cyclic defect groups. In Section 3, we recall our modified local strategy and explain
how we applied it to determine the radical subgroups of HN. In Section 4, we classify
the radical subgroups of HN up to conjugacy and verify the Alperin weight conjecture.
In Section 5, we do some cancellations in the alternating sum of Dade’s conjecture,
and then determine radical chains (up to conjugacy) and their local structures, and in
the last section, we verify the refined invariant conjecture of Dade for HN.

2 The conjectures

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R, where
O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) = Ng(R). Denote
by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set
of p-blocks, B € Blk(G) and ¢ € Irt(N(R)/R). The pair (R, ¢) is called a B-weight if
d(¢) = 0 and B(p)¢ = B (in the sense of Brauer), where d(¢) = log,(|G|,)—log,(¢(1),)
is the p-defect of ¢ and B(¢p) is the block of N(R) containing ¢. A weight is always
identified with its G-conjugates. Let W(B) be the number of B-weights, and ¢(B) the
number of irreducible Brauer characters of B. Alperin conjectured that W(B) = ¢(B)
for each B € BIk(G).
Given a p-subgroup chain

C:Ph<P<---<P, (2.1)
of G, define |C|=n,Cy: < P, < --- < P, C(C) = Cg(P,), and
N(C)= Ng(C)=N(P)NN(P)N---NN(P,). (2.2)

The chain C' is said to be radical if it satisfies the following two conditions:
(a) Pp=0,(G) and (b) Py = O,(N(Cy)) for 1 <k < n.
Denote by R = R(G) the set of all radical p-chains of G.

Let E be an extension of G, F = E/G, C € R(G), ¥ € Irr(Ng(C)) and Ng(C,v)
the stabilizer of (C,v) in E. Then Np(C,v) = Ng(C,v)/Ng(C) is a subgroup
of F. For a subgroup U < F, denote by Irr(Ng(C), B,d,U) the set of charac-
ters v in Irr(Ng(C)) such that d(v)) = d, B(¥)® = B and Np(C,¢) = U. Set
k(Ng(C),B,d,U) = |Irr(Ng(C), B,d,U)|. In the notation above the Dade invariant
conjecture is stated as follows.

Dade’s Invariant Conjecture [13]. If O,(G) =1 and B is a p-block of G with defect
group D(B) # 1, then for any integer d > 0,

3 (—1)I€K(Ng(C), B,d,U) =0
CeR/G

where R/G is a set of representatives for the G-orbits of R.



Let H be a subgroup of a finite group G and ¢ € Irr(H). The p-remainder r(p) =
rp(p) of ¢ is the integer 0 < r(¢) < (p — 1) such that the p’-part (|H|/¢(1)), of
|H|/p(1) satisfies
i

(1)
Given integer 1 < r < (p — 1)/2, let Irr(H, [r]) be the subset of Irr(H) consisting of
characters ¢ such that r(¢) = £r(mod p), and let Irr(H, B, d, U, [r]) = Irr(H, B,d,U)N
Irr(H, [r]) and k(H, B,d, U, [r]) = |Irr(H, B, d, U, [r])|.

Let B € BIk(G) with a defect group D = D(B) and the Brauer correspondent
b € Blk(Ng(D)). Then

)y = () (mod p).

k(Ng(D), B,d(B),[r]) = 3_ k(Ng(D), B,d(B),U,[r])

U<F

is the number of characters ¢ € Irr(b) such that ¢ has height 0 and 7(¢) = £r(mod p),
where d(B) is the defect of B.

Isaacs-Navarro Conjecture [17, Conjecture B]. In the notation above,

k(G7 B7d(B)’ [T]) = k(NG(D)aB7d(B)7 [T])

The following refinement of Dade’s conjecture is due to Uno.

Uno’s Conjecture [20, Conjecture 3.2]. If O,(G) =1 and if D(B) > 1, then for any
integers d >0 and 1 <r < (p—1)/2,

> (=1)I9k(Ng(C), B,d, U, [r]) = 0. (2.3)
CER/G

Note that if p = 2 or 3, then the conjecture is equivalent to Dade’s invariant conjecture.

Proposition 2.1 Uno’s refinement of the Dade invariant conjecture holds for all blocks
with cyclic defect groups.

Proor: By Dade [11, Corollary 3.12], we can replace the family of radical chains
R by that consisting of elementary abelian chains € of G. Since D = D(B) = () is
cyclic, it follows that £/G = {1,1 < Q(D)}, where Q(D) < D is the unique subgroup
of order p. Thus Ng(1 < Q(D)) = Ng(Q(D)) = G and (2.3) is equivalent to

k(G, B,d,U,[r]) = k(G, B,d, U, [r]). (2.4)

Following the notation of [12, Section 4], let Bp € Blk(Ng(D)) be the Brauer corre-
spondent of B, and B the block of G = Ng(Q(D)) with BIG; —= B. Then D is a defect
group of B and Bp is the Brauer correspondent of B.

By [17, Theorem (2.2)] there is a bijection x — ¢ = 1, of Irr(B) onto Irr(Bp) such
that

x(zy) = & (zy), (2.5)



for any y € L,, where ¢, = 1 and L, is the set of p-regular elements of L
Cg(z). As shown in the proof of [17, Theorem (2.1)] (2.5) implies that x(1),
+|G: Ng(D)|py(1), (mod p) and in particular,

r(x) =4r(¥)  (mod p). (2.6)

Replace G by G and B by B. It follows that there exists a bijection ® : x — ¥ of
Irr(B) onto Irr(B) such that r(x) = £r(%) (mod p).

Let Irr(B, [r]) = Irr(G, [r]) N Irx(B), x € Irr( [r]) and ¢ = 9, € Irr(Bp,[r]). If
T € Np(B), then 7 normalizes D and so ' = 27 is also a generator of D. Thus
Yy =y e L, and (cf. [10, Corollary 1.9])

X' (zy) = x(2'y") = (2'y) = Y7 (2y). (2.7)

Similarly, X and " satisfy (2.7) with x replaced by ®(x) = X. It follows by the defini-
tion of ® that ®(x") = ®(x)7, so that Irr(B, [r]) and Irr(B, [r]) are Np(B)-isomorphic.
This implies (2.4). O

Lemma 2.2 Let 0 : Op(G) < P < ... < Py 1 < Pp=Q < Ppy1 < ... < P be a
fized radical p-chain of a finite group G, where 1 < m < £. Suppose

0 i O0p(G)<Pi<...<Pp1<Ppy<..<DP

is also a radical p-chain such that Ng(o) = Ng(o') and Ng(o) = Ng(o'). Let R~ (0, Q)
be the subfamily of R(G) consisting of chains C whose (¢ — 1)-th subchain Cy 1 is
conjugate to o' in G, and R°(o,Q) the subfamily of R(G) consisting of chains C
whose (-th subchain Cy is conjugate to o in G. Then the map g sending any O,(G) <
P <...<Pp1<Ppu<...<P<...inR (0,Q) to Op(G) <P, <...< Py <
Q < Py < ...< P, < ...induces a bijection, denoted again by g, from R~ (o, Q)
onto R%(0, Q). Moreover, for any C in R™ (0, Q), we have |C| = |g(C)| + 1,

Ng(C) = Na(9(C)) and  Ng(C) = Ng(9(C)).

PRrROOF: Straightforward. O

Suppose G is the Harada-Norton simple group and F is the automorphism group
of G. Then E/G is cyclic of order 2, so that U is determined uniquely by its order |U|.
We set

k(NG(C)a B,d,U, [T’]) = k(NG(C)a B, d, ‘U|’ [7”])

3 A local subgroup strategy

The maximal subgroups of HN were classified by Norton and Wilson [19]. Using this
classification and its proof, we know that when p = 2, 3 or 5, there are respectively 5,
4 or 3 maximal p-local subgroups M up to conjugacy. Thus each radical p-subgroup R
of HN is radical in one of the subgroups M and further Nyn(R) = Ny(R).
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In [2] and [3], a (modified) local strategy was developed to classify the radical p-
subgroups R. We review this method here. Suppose M is a subgroup of G satisfying
Ne(R) = Nu(R).

Step (1). We first consider the case where M is a p-local subgroup. Let Q = O, (M),
so that ¢ < R. Choose a subgroup X of M. Using MAGMA, we explicitly compute
the coset action of M on the cosets of X in M; we obtain a group W representing this
action, a group homomorphism f from M to W, and the kernel K of f. For a suitable
X, we have K = () and the degree of the action of W on the cosets is much smaller
than that of M. We can now directly classify the radical p-subgroup classes of W,
and the preimages in M of the radical subgroup classes of W are the radical subgroup
classes of M.

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a subgroup K of M such
that Nx(R) = Ny (R) for each radical subgroup R of M. If K is p-local, then we apply
Step (1) to K. If K is not p-local, we can replace M by K and repeat Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
we list subgroups R satisfying Ny (R) = Nun(R), so these are the radical subgroups
of HN. Possible fusions among the resulting list of radical subgroups can be decided
readily by testing whether the subgroups in the list are pairwise HN-conjugate.

In our investigations of the conjecture for HN, we used the minimal degree repre-
sentation of HN as a permutation group on 1140000 points. The maximal subgroups
of HN were constructed using the details supplied in [9] and the black-box algorithms
of Wilson [22]. We also made extensive use of the procedures described in [2] and [3]
for deciding the conjectures.

The computations reported in this paper were carried out using MAGMA V2.8-3 [8]
on a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights

Let ®(G,p) be a set of representatives for conjugacy classes of radical p-subgroups of
G. For HK < G, we write H <¢g K if z7'Hz < K; and write H € ®(G,p) if
7 Hx € ®(G,p) for some z € G. We follow the notation of [9]. In particular, if p
is odd, then pi**” is an extra-special group of order p't?7 with exponent p; if § is +
or —, then 2;77 is an extra-special group of order 2'*2? with type 6. If X and Y are
groups, we use X.Y and X : Y to denote an extension and a split extension of X by
Y, respectively. Given a positive integer n, we use E,» or simply p" to denote the
elementary abelian group of order p", 7, or simply n to denote the cyclic group of
order n, and D,, to denote the dihedral group of order 2n.
Let G be the Harada-Norton simple group HN. Then

|G| =2"-3%.5%.7.11-19,

and we may suppose p € {2, 3,5}, since both conjectures hold for a block with a cyclic
defect group by [12, Theorem 7.11] and Proposition 2.1.

We denote by Irt°(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number log,(|H|,). Given R € ®(G,p), let C(R) =
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Cg(R) and N = Ng(R). If By = By(G) is the principal p-block of G, then (c.f. (4.1)
of [2])
W(B,) = 3 [l (N/C(R)R)], (4.1)
R

where R runs over the set ®(G,p) such that d(C(R)R/R) = 0. The character ta-
ble of N/C(R)R can be calculated by MAGMA, and so we find [Irr®(N/C(R)R)|. If
d(C(R)R/R) # 0, then we leave the entries of the last column blank in Tables 1-2,
since they do not contribute weights for the principal block.

Proposition 4.1 Let G = HN. The non-trivial radical p-subgroups R of G (up to
conjugacy) and their local structures are given in Tables 1 and 2 according as p is odd
or even, where H* denotes a subgroup of G such that H* ~ H and H* #g H, Sy, s
a Sylow p-subgroup of G and SD:g is the semidihedral group of order 16. Moreover,
if E is the automorphism group Aut(G) of G, then Ng(R) = N(R).2 for each radical
subgroup R.

R C(R) N I’ (N/C(R)R)|
5 5 X U3(5) (Dlﬂ X U3(5))2
52.5412 52 525112 4 A; 2
pit 5 5Lt glti 5 4
Sys 5 Sys.(2 x 4) 8
3 3 X Ag (3 X Ag)Z 2
32 32 X AG (322 4 x AG)-22
34 3t 31:2(As x Ay) 4 4
3.3 32 34.3.29, 2
3L+ 3 3L+ 445 6
Sys 3 Sys.(4 x 2) 8

Table 1: Non-trivial radical p-subgroups of HN with p odd

PROOF: (1) Suppose p = 5. By [19, Section 3.3], HN has 3 maximal 5-subgroups,
M, = N(5A) = (D10 X U3(5))2, My = N(5B) = 5}|_+4221_+4.5.4 and M3 = N(5B2) =
52,542 1 445.

Using MAGMA we first get a Sylow 5-subgroup S = Sys, then a faithful permutation
representation p of S on 625 points, and then calculate the subgroup classes of p(S).
Thus we get all the subgroups of S, and so construct each maximal subgroup M;.

Since a Sylow 5-subgroup @); of each M; is the only radical 5-subgroup of M; other
than O5(M;), it follows that the radical 5-subgroups of HN are as claimed.

(2) Suppose p = 3. As shown in [19, Section 3.2], HN has 4 maximal 3-local
subgroups, M; = N(3%) = (32 : 4 x Ag).2%, My = N(3*) = 3%:2(A44 x Ay)4, M3 =
N(3B) =3 :4A5 and My, = N(3A) = (3 x Ag) : 2.

We use a method similar to the case when p = 5 to get all subgroup classes of a
Sylow 3-subgroup, and then construct each maximal 3-local subgroup M;.
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Let R be a non-trivial radical 3-subgroup of G. Then N(R) is 3-local, so that we
may suppose N(R) < M; for some i and hence R € ®(M;,3) with N(R) = N, (R).
We apply the local strategy of [2] or the modified local strategy [3] to each M,;.

If M = M, or Ms, then a Sylow subgroup of M is the only radical 3-subgroup of
M other than O3(M). Thus we may take

{32,3} ifi =1,

( ) {{3£r+4,5y3} if i = 3,

and in addition, Ny, (3*) = 3%.42.22.
Let 3 = O3(M,) and S" a Sylow 3-subgroup of Ag. Then we may take
®(M,,3) = {3,3%,3% 34,3 x 5.
Moreover, N(R) # N, (R) for each R € ®(M,,3)\{3} and

3.(Sy x Sg)  if R=32
33 : 25, if R =32,

N B) =9 34 (2xS,) if R=3%
(3x98):22 ifR=3x9"
R | CR) | N(R) | [’(N/C(R)R)] |

2 2.HS 2.HS.2

22 22 x Ag (Ag x Ag) : 2

Ds | 2x Ag.2 Dg. Ag.2

Qs 2x5:4 (Qs x 5:4).53

SDg 2 x 5:2 (SDyg x 5:2).2
26 26 26.U,4(2) 1
2L+8 2 21P8(A5 x As).2 0
21+8.2 2 218245 1
21+8 22 2 21+8.22.(3 x Aj) 3
23,2226 23 23.22.26.(3 x L3(2)) 3
22.2.22.24 21 22 222222424 (3 x S3) 3
21+8 24 2 214824 (3 x S3) 3
Sya 2 SYs.3 3

Table 2: Non-trivial radical 2-subgroups of HN
If 3* = O3(M,), then we may take
®(My,3) = {34,343, Sys}

and moreover, for R € ®(M,,3), Ny, (R) = Nux(R), so we may suppose ®(Ms,3) C
®(HN, 2). This classifies the radical 3-subgroups of HN.
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(3) Suppose p = 2. As shown in [19, Section 3.1] the maximal 2-local subgroups
of HN are M; = N(2A) = 2.HS.2, M, = N(2B) = 2178 (A5 x A5) : 2, M3 = N(2°%) =
26.U,(2), My = N(2B3) = 23.22.26(3 x L3(2)) and M5 = N(2A4?) = (A, x Ag) : 2.

Using MAGMA we first fix a Sylow 2-subgroup S, then get a faithful permutation
representation p of S on 128 points and then get the conjugacy classes of p(S). Thus
we can obtain the conjugacy classes of S, and construct the subgroups M; and Ms.
Similarly, using p(S) we can get all the normal subgroup classes of S and 23 = Oy(M,)
is the only elementary abelian normal subgroup of S of order 22, up to conjugacy. Thus
we can construct Mjy.

Suppose HN is given by the permutation representation on 1140000 points. Then
the stabilizer of HN on any point is a maximal subgroup M =~ A;, of HN. Using a
faithful representation of M on 12 points, we can construct the subgroups M; < M
and 2% = 0,(M3) < M, and so M3 = N(2°).

Similarly, we may suppose each non-trivial radical 2-subgroup R of GG is radical in
some M; with N(R) < M;. We apply the local strategy of [2] or the modified local
strategy [3] to each M,;.

(3.1) We may take
®(My,2) = {2,2% Dg,Qs, SDyg,2°,2%.25 2%.2% 22.2%.2% 22.9% 25 23 2% 2% §'},

and moreover, N(R) # Ny, (R) for precisely R € ®(My,2)\{2, Ds, Qs, SD1s}, where
S’ is a Sylow 2-subgroup of M;. Note that if a non-abelian 2-group @ has no non-cyclic
normal abelian subgroup, then by [15, Theorem 5.4.10], @ is dihedral, semidihedral or
generalized quaternion, and a generalized quaternion group has no non-cyclic abelian
subgroup, and in addition, by [15, Theorem 5.4.3], a dihedral group has no quaternion
subgroup. Moreover,

(22 x Ag)2 if R =22,
26 .S if R =26,
22 96 G, if R =225,
2494 [5(2) if R = 2424,

Naay (R) = 1 929493 G, if R = 22.24.93,
929395 G, if R = 22.93.95,
239394 5, if R = 232324,

| fR=9"

(3.2) We may take
(Mo, 2) = {2178 21182 2118 22 2118 2% Gyo},

and moreover, N(R) = Ny, (R) for each R € ®(M>,2), so that we may suppose
®(M2,2) C 9(G,2).

(3.3) We may take

®(Ms,2) = {2°,20.2* 22.23.25 §"}



and moreover, N(R) # Ny,(R) for each R € ®(Ms,2)\{2°}, where S” is a Sylow
2-subgroup of Mj3. In addition,

26,94 A if R =26.2%,
Ny (R) = 222326322 if R = 22.23.26,
5”3 if R=5".

(3.4) 1If 23.22.2 = Oy(My,), then we may take
(M, 3) = {2°.22.26,22.2.22.24.2% 2118 2 Gy},

and moreover, N(R) = Ny, (R) for each R € ®(M,y,2), so that we may suppose
2(My,2) € 9(G,2).

(3.5) If 22 = Oy(Ms3), then we may take
®(Ms,2) = {22, Dg,2°,2%,23.24 2423 (2%.2%)* 22.23.2% 2322 23 2223232},
and moreover, N(R) # Ny (R) for R € ®(Mj5,2)\{2?}. In addition,

¢ Dg x S if R = Dy,
Ay x 21 Ly(2)  if R= 25,
26.(3x S3x S3).2 if R=2°
23.91.(Sy x S5)  if R=23.24,

Nu,(R) = 4 2%.23.3.5, if R =2%.2%
(24.2%)".9, if R = (21.2%)",
22,93 93 Gy if R =22.23.23,
23,92 933, if R =23.22.23,
(22 93 93 9 if R =22.23.23.2.

Thus the radical 2-subgroups are as claimed.
The centralizers and normalizers of R can be obtained by MAGMA, and by the local
structures of R € ®(M;,p), Ng(R) = Ng(R).2. O

Lemma 4.2 Let G = HN and By = By(G), and let Bkt (G, p) be the set of p-blocks
with a non-trivial defect group and Irr™(G) the characters of Irr(G) with positive p-
defect. If a defect group D(B) of B is cyclic, then Irr(B) is given by [16, p. 248|.

(a) If p = 5, then BIk"(G,p) = {By, B,} such that D(B;) ~ 5, so that Irr(By) =
Irrt (G)\Irr(By). Moreover, £(By) = 4 and £(B,) = 16.

(b) If p = 3, then Bk (G,p) = {B; | 0 < i < 2} such that D(B;) ~ 32 and
D(By) ~ 3. In the notation of [9, p. 164],

ITI"(B1) = {XsaX10,X19,X32,X33,X37aX43,X49,X50}

and Trr(By) = Trrt (G)\ (UL Irr(B;)). Moreover, £(By) = 2, £(By) = 7 and



(¢) If p =2, then BIk"(G,2) = {By, B1} such that D(B;) ~ SDys. In the notation
of [9, p.- 164],

II‘T(B1) = {X17, X345 X355 X365 X375 X44) X455 X49}

and Irr(By) = Irrt (G)\Irr(By). Moreover, £(B;) = 3 and £(By) = 17.

ProoF: If B € BIk(G,p) is non-principal with D = D(B), then Irt®(C(D)D/D)
has a non-trivial character # and N(6)/C(D)D is a p'-group, where N(f) is the
stabilizer of § in N(D). By [16, p. 248], we may suppose D is non-cyclic. Thus
D € {32,2%2 Ds,Qs,SDis}. If D = 22 Dg or Qg, then Irt’(C(D)D/D) = {6} and
IN(D) : C(D)D|y = 2, so that there is a 2-element in N(D)\C(D)D stabilizing 6 and
D is not a defect group. Thus D € {32, SD;}. In the former case [Irr’(C(D)D/D)| = 1
and in the later case |Irr’(C(D)D/D)| = 2 with only one N(D)-orbit. It follows that
in both cases G has exactly one block with defect D.

Using the method of central characters, Irr(B) is as above. If D(B) is cyclic, then
¢(B) is given by [16, p. 248|.

If p=3and B = By, then D(B) =¢ 3? and the non-trivial elements of D(B) are
of type 34, and Cg(34) = 3 x Ag. It follows by [18, Theorem 5.4.13] that k(B) =
¢(B) + £(b), where b € Blk(3 x Ag) such that each b = B. In addition, b = By(3) x V'
with o' € Blk(Ag) and D(d') ~ 3, so that £(b') is the number of b'-weights, which is 2
since Ny, (D(b')) = (3 x Ag).2. Thus ¢(B) =9—-2=1T.

If p=2and B = By, then D(B) =¢ SD;4 and by [21], W(B) = ¢(B). Since HS
has no irreducible character of 2-defect 0, it follows that there is no B-weight of the
form (2,¢). If R = Dg, then N(D)/C(D)D has order 2 and C(D)D/D contains a
unique irreducible character 6 of 2-defect 0. Thus # has two extensions to N(D) with
positive 2-defect. So there is no B-weight of the form (R, ). If Q = 22, Qg or SDjs,
then there exists exactly one B-weight of the form (Q, ¢), so that ¢(B) = 3.

If ¢,(G) is the number of p-regular G-conjugacy classes, then ¢5(G) = 24, 5(G) = 38
and f5(G) = 21. Thus £(By) can be calculated by the following equation due to Brauer:

L(G)= > UB)+|I’(G)|.

BeBIk(G,p)

This completes the proof. O

Theorem 4.3 Let G = HN and let B be a p-block of G with a non-cyclic defect group.
Then the number of B-weights is the number of irreducible Brauer characters of B.

PROOF: If B = By, then Theorem 4.3 follows by Lemmas 4.1, 4.2 and (4.1). If D
is cyclic or SDsg, then Theorem 4.3 follows by [12, Theorem 7.11] and [21].

If p=3and B = By, then D(B) = 32, N(D)/C(D)D =~ 4.2? = SDy has exactly 7
irreducible characters, so that W(B) = 7. O

10



5 Radical chains of HN

Let G = HN, C € R(G) and N(C) = Ng(C). In this section we do some cancellations
in the alternating sum of the refined Dade’s conjecture. We first list some radical p-
chains C(7) and their normalizers for certain integers i, then reduce the proof of the
conjecture to the subfamily R%(G) of R(G), where R°(G) is the union of G-orbits of
all C'(i). The subgroups of the p-chains in Tables 3-5 are given either by Proposition
4.1 or by its proof. Moreover, if E = Aut(G), then Ng(C(7)) = Ng(C(i)).2 for each
C (7).

Lemma 5.1 Let R%(G) be the G-invariant subfamily of R(G) such that

{C():1<i<6} with C(i) given in Table 3 if p =5,
RYG)/G =1 {C(i):1<i <12} with C(i) given in Table 4 if p =3,
{C(i):1<i<32} with C(3) given in Table 5 if p = 2.

Then

Z (_1)|C|k(N(C)>B0’d7 u, [T]) = Z (—1)‘C|k(N(C),B0,d, u, [T]) (51)

CeR(G)/G CeRY(G)/G

for all integers d,u,r > 0.

C N(CO)
C(1) 1 HN
C(2) 1<5 | (D x Us(5)).2
C(3) | 1<5<5 x5 | (Dyg x 52:8).2
C(4) 1 < 525112 52.542 1 4 A5
C(5)| 1<5i < Sys Sys.(2 x 4)
C(6) 1 <bhitt | 5.2l 54

Table 3: Some radical 5-chains of HN

ProOOF: Case (1) Suppose p is odd and C’ is a radical chain such that
C':1<P<...<Py,. (5.2)
Let C' € R(G) be given by (2.1) with P, € ®(G,p). If p =5, then C': 1 < 52512 <
Sys and g(C") : 1 < Sys have the same normalizers N(C') = N(g(C")) = Sys.(2x4) and
Ng(C") = Ng(g(C")) = N(C").2, so that for any B € Blk(G) and integers d,u,r > 0,
k(N(C"), B,d,u,[r]) = k(N(g(C"), B,d, u, [r]) (5.3)
and we may suppose C' #gn C' and g(C"). The remaining chains are given by Table 3.

Suppose p = 3. Let R € {3.3,Sys} C ®(3%:2(A4; x Ay).4,3), and let o(R) :
1 < 3* < R with Q = 3%, so that o(R)’' : 1 < R. Then o(R) and o(R)' are radical
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chains of HN satisfying the conditions of Lemma 2.2. Thus there is a bijection g
from R~ (c(R),3*) onto R°(c(R),3*) such that N(C') = N(g(C')) and Ng(C') =
Ng(g(C") = N(C").2 for any C' € R (c(R),3%), so that (5.3) holds and we may
suppose

c¢ U R (e(R),3)UR(a(R),3).

Re{34.3,Sy3}

Thus P, ¢ {3%.3, Sy3}, and if P, = 3*, then C' = C(2). We may suppose
P € {3,3%,3.""} C ®(HN, 3).

Let C':1<3<3x 5 and g(C") : 1 <3< 3*<3x 5" As shown in the proof (2) of
Proposition 4.1 N(C') = N(g(C")) = (3 x §').2? and Ng(C") = Ng(g(C")) = N(C").2,
so that (5.3) holds and we may suppose C #g C' and g(C"). Thus if P, = 3, then
C €un {C(’l) 5 <1 < 10} If P = 3}:_4, then C' €xn {0(3),0(4)} and if P, = 32,
then C €xn {C(ll),C(lQ)}.

C N(C)
C(1) 1 |HN
C(2) 1<3t | 3%2(4s x Ay)4
C(3) 1 <3 < Sy; | Sys.(2x4)
C(4) 1< 34| 3144,
C(5) 1<3<3? 3.(S3 x Se)
C(6) 1<3 | (3xAy):2
C(7) 1<3<3 |3%28,
CiB) | 1<3<32<3" |3%(2x Dy)
C(9) 1<3<3 |34(2x 8y
C(10) |1<3<33 <333 |33322
C(11) 1<32<3t |314222
C(12) 1<32 | (32:4x Ag).22

Table 4: Some radical 3-chains of HN

Case (2) Suppose p = 2. We first consider the radical subgroups of G contained in
M,. Let R € ®(M,,2)\{2}"®} and let o(R) : 1 < @ = 21"® < R, so that o(R)"': 1 < R.
A similar proof to that in the case p = 3 shows that we may suppose

C¢ U (R™(o(R), 2*) UR (0 (R), 217)),

Re®(M»,2)\{2,7°}
so Py ¢q {278.2,21%8.22 21¥8.24 Syo} and if P, = 2478, then C =g C(2). Thus

Py € {2,2%, Dg, Qg, SDyg,2°,23.22.25 22.2.9% 2% 2%,
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C N(C)
C(1) 1 HN
C(2) 1< 28 | 218 (A5 x Ag):2
C(3) 1 <26 <2628 2024 As
C(4) 1< 26 26.17,(2)
C(5) 1< 20 < 229396 9293 96 32 2
C(6) 1 <20 <20.2% < 2223202 22.23.26.2.3
C(7) 1 < 23.22.26 < 9148 24 214824 (3 x S3)
C(8) 1< 23.22.26 | 23.92.95 (L3(2) x 3)
C(9) 1<2<28 AN

C(10) 1<2<20 <2623 26.23.5,
C(11) 1<2<2228 92,965,
C(12) 1<2< 2220 < 92949 92,9423 G
C(13) | 1 <2< 2220 <2224.93 < 2224232 92,2493 2
C(14) 1<2< 202t < 222325 22.23.25.5;
C(15) 1<2<2424 24,24 L3(2)
C(16) 1<2 2.HS.2
C(17) 1<2<2? (22 x Ag).2
C(18) 1<2<22<2 25 : L3(2)
C(19) 1<2<22 <20 <2028 24.23.5;
C(20) 1<2<22<2° <242 <2°.Dg 25Dy
C(21) 1<2<2?2 <25 <232 23.24.5;
C(22) 1<2<22<25 26.(S3 x S3).2
C(23) 1<2<2?2<20<222%2%2 22.23.23.2
C(24) 1< 22 (As x Ag).2
C(25) 1<22 <2 Ay x 2% : L3(2)
C(26) 1<2?2 <20 <2828 23.24.(3 x S3)
C(27) 1<22 <20 25(3x9;5x%8S3).2
C(28) 1<2? <20 <2428 24.23.3.5;
C(29) 1 <22 <26 <2028 <2232 24.23.2.3
C(30) 1 <22 <2828 < 222323 22.23.23.5;
C(31) 1 <22 <232 23.2%.(S3 x S3)
C(32) 1 <22 <222t <239293 23,9293 8,

Table 5: Some radical 2-chains of HN

Case (2.1) Let 0 : 1 < Q = 23.22.26 < 22.2.22.2* 2% 5o that o' : 1 < 22.2.22.24.2*. A
similar proof shows that we may suppose

C ¢ (R (0,2%.22.2°) UR"(0, 2%.22.25)).
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Let C': 1 < 2%.22.2° < Sy, and ¢g(C") : 1 < 23.22.26 < 2148.2% < Sy,. Then N(C') =
N(g(C")), Ng(C") = Ng(¢(C')) and we may delete C' and g(C’). Thus may suppose
Py #£522.2.22.24 2% and if P, = 23.22.2% then C =5 C(7) or C(8).

Case (2.2) If 8" € ®(Mj3,2), then by the proof (3.3) of Proposition 4.1, we may
suppose S” € ®(Np,(22.2%.2%),2), and moreover, Ny, (S") = Ny, (22.23.26)(S") and
NM3_2(S,I) = NNM3_2(22.23.26)(S”)’ where M32 = NE(M3) Let 0 : 1 < 26 < Q =
22,2326 < 8" so that o' : 1 < 25 < §”. Then o and ¢’ satisfy the conditions of Lemma
2.2. A similar proof to Case (1) shows that we may suppose

C ¢ (R (0,2%.23.2°) UR"(0,2%.23.25)).

It follows that if P, = 25, then we may assume that C €5 {C(3),C(4),C(5),C(6)}.
Case (2.3) Let R € {Dg,Qs,SD1s} C ®(M1,2) N ®(G,2) and let o(R) : 1 < Q =
2 < R. A similar proof shows that we may suppose

C ¢ (R™(0(R),2) UR(0(R), 2)),
so P, #¢ R and if P; = 2, then P, #¢ R. In particular, we may suppose
P, € {2%,26,22.25 2%.2% 2224 23 929325 23232 SV C ®(M,2).

Let P € {26,22.26,24.2*} C ®(My,2). Then Ny, (P) is given in the proof (3.1) of
Proposition 4.1 and Ng(M;) = M;.2. We may take

{26,26.23 92,9423 2224232} if P =26
O(Nyp, (P),2) =< {22.2622.24.23 222325 §'}  if P =22.25,
{24.24,23.23.94 92,2325/ §'}  if P =2%.2%

and Ny, (W) = Ny, (p)(W), Na 2(W) = Ny, ) (W) for each W € ®(Nay, (P),2),
except when W = 20.2% or 22.2*.23.2. In the former case Ny, (p)(W) = 2°.2°.55 and
in the latter case Ny,, (p)(W) = 22.2%.2°.2.

Let R € ®(Nyy (Q), 2) such that R = 22.2%.2% when Q = 2°, R = 22.23.2% or S’ when
Q = 22.2% and R = 23.23.2* when Q = 2*.2*. In addition, let o(R) : 1 <2 < Q < R,
so that 0'(R) : 1 < 2 < R. A similar proof shows that we may suppose

C ¢ (R (0(R),Q)UR(0(R),Q)). (5.4)

Thus we may suppose P, #5 R and if P, = @), then P; #5 R.

Let C":1<2<20<2229232 and g(C") : 1 <2< 25 < 26,23 < 2220232, Then
N(C") = N(g(C")), Ng(C") = Ng(g(C")) and we may delete C" and ¢g(C"). Similarly,
we may delete C' : 1 <2 <242 < § and g(C") : 1 <2 <2024 < 222325 < §'.

Thus if P, = 2 and P, #¢ 2%, then C € {C(j) : 9 < j < 16}.

Case (24) Let P1 = 2 and P2 = 22. Then ]V]\/[1 (22) = (22 X Ag)? and NM1_2(22) =
N, (22).2. We may take

®((22 x Ag).2,2) = {22, Dg, 2°,25,2%.23 (2%.2%)* 22.23.2% 2223 23 2} C ®(M;,2)
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and moreover, for R € ®((2% x Ag).2,2),

( Ds x S if R = Ds,
25 : L3(2) if R =25,
2.(Sy x S5).2 if R = 26,
Nor (R) = { 24.2%.5, if R = 24.2%,

(20.23)%.8;  if R = (24.2%)",
922303 G, if R = 222323,
[ 22.23.23.2 if R=2223232

and Ny, 2(R) = Ny, (R).2. In particular, if W € {Dg, (24.23)*,22.23.23 22.23.23 2},
then Ny, (W) = Nezyagy2(W) and Nyg, o(W) = Ny (W).2. Let o(W):1< Q=2 <
2?2 < W, so that o' : 1 < 22 < W. A similar proof to Case (1) shows that we may
suppose

C ¢ (R™(c(W),2) UR(c(W),2)).
It follows that if P, = 2 and P, = 22, then we may assume P; #g W, and if P, = 22,

then we may suppose P, #g W.
Let P € {2°,25} C ®((2? x Ag).2,2). We may take

{25,24.93 23,24 25 Dy} if P =25,

P(Niz2xa2(P), 2) = {{26 9193, (21.23)*,22.23.23.2) if P =26

and Nezxaq2(W) = Ny, (W) for each W € {2%.23,(24.2%)*,22.23.23.2}, in
addition, NN(22><A8).2(25)(23'24) = 23.34.53.

Let C':1<2<22<2°<2.Dgand g(C') : 1 <2< 2?2 <25 <2324 < 25Dy
Then N(C') = N(g(C")) = 25.Dg, Ng(C") = Ng(g(C")) = 2°.Dg.2 and we may delete
C" and ¢(C").

Let 0:1<2<22<Q=20<2'2% sothato':1<2<22<2%2%and o, o
satisfy the conditions of Lemma 2.2. A similar proof to Case (1) shows that we may
suppose

C ¢ (R (0,2%) UR"(o,2°).
Thus if P, =2 and P, = 22, then C € {C(j) : 17 < j < 23}.

Case (2.5) Let P, = 2% and P € {25,26,23.2*} C ®(M5,2). Then Ny (P) is given
in the proof (3.5) of Proposition 4.1 and Ng(Ms) = M;.2. We may take

{25,23.24 2423 25 Dy} if P =25,
(N, (P),2) = { {26,24.93, (24.23),28.22.23 2223232} if P = 26,
{23.24 922323 239293 9293232} if P = 2324

and Ny (W) = Ny (p) (W), Nagz2(W) = Np,,_ o) (W) for each W € ®(Na, (P), 2),
except when W = 2%.2% or 2°.Dg. In the former case Ny,, p)(W) = 2%.2%.(3 x S3) and
in the latter case Ny,, (p)(W) = 2°.Ds.

Let R € ®(Ny, (Q),2) such that R = 2%.2% when Q = 2°, and R = 23.22.23 when
Q = 25. In addition, let o(R) : 1 < 22 < Q < R, so that o’ : 1 < 22 < R. A similar
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proof shows that we may suppose (5.4) holds. Thus we may suppose P, #¢ @ and if
P, = P, then P; #5 (). We may suppose

P, € {2°,25,23.2'} C &(M;,2).

Case (26) Let 0 : 1 < Q =2 < 22 < 20 < (22.2%)* so that 0’ : 1 < 2?2 < 20 <
(2%.23)*. A similar proof to Case (1) shows that we may suppose

C ¢ (R (0,2) UR(0,2)).

Let C" : 1 < 2?2 < 25 < 2°.Dg and ¢g(C") : 1 < 2?2 < 2° < 2.2 < 25.Dg. Then
N(C") = N(g(C")) = 2°.Dg, N(C'") = Ng(g(C")) = 2°.Dg.2 and we may delete C’ and
g(C"). Similarly, we may delete C' : 1 < 22 < 26 < 2223232 ¢(C'"):1 <22 <2324 <
22,9393 < 9293902 and ' : 1 < 22 < 28.20 < 22.23.932, g(C") 1 1 < 2% < .24 <
93,92 93 < 92.93.942. Thus if P, = 22, then C € {C(i) : 24 < i < 32}. =

6 The proof of Uno’s version of Dade’s conjecture

Let L = N(C) or Ng(C) be the normalizer of a radical p-chain. If L is a maximal
subgroup of HN or F = Aut(HN), then the character table of L can be found in the
library of character tables distributed with GAP [14] except when L = 4.HS.2. We
calculate the degrees of the irreducible characters of 4. HS.2 as follows: first for each
maximal 2-local subgroup M of Ng(C(16)), determine the fusions of conjugacy classes
of M in Ng(M) = M.2; then get the fusions of conjugacy classes of Nyn(C(16)) =
2.HS.2 in 4.HS.2; and finally obtain the fusions of irreducible characters of 2.HS.2
using Brauer’s permutation lemma (cf. [18, Lemma 3.2.19]). The character table of
2.HS.2 is in the library of character tables distributed with GAP.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 6.1 are available electronically [7].

Theorem 6.1 Let B be a p-block of G = HN with a positive defect. Then B satisfies
Uno’s refinement of the invariant conjecture of Dade.

PrROOF: By Proposition 2.1 and [21], we may suppose D(B) is non-cyclic and
D(B) # SDxg, so that B = By is principal, except when p = 3, in which case B = By or
By. We set k(¢,d,u,r) = k(N(C(¢)), By, d,u,[r]) and k(¢,d,u) = k(N(C(¥)), By, d, u)
for integers ¢,d,u and 1 <r < (p—1)/2.

Case (1) Suppose p = 5. The values k(i,d, u,r) are given in Table 6.
It follows that

6
> (1) “O(N(C(i)), By, d, u, [r]) = 0
i—1

and Theorem 6.1 follows. Since k(1,6,u,r) = k(5,6,u,r) = 10 and since Ng(C(5)) =

Ng(Sys), it follows that the Isaacs-Navarro conjecture holds for B, which already
follows by [17].

16



Defect d 6| 6| 5|5 5| 5| 4(4(4|4| 3| otherwise
Value u 2 1 212 1 1 212111 2 | otherwise
Value r 21 1 2|1 2| 1| 2]1(2|1]| 2| otherwise
k(l,d,u,r) |10 10|10 |4| 4| 2| 0|0|0|2]| 3 0
k(2,d, u,r) =k(3, d, u, r) 0| O 0|]0| O| 0(22]9|4]2]10 0
k(4,d,u,r) || 10| 10| 4|0 |16 |18 002 O 0
k(5,d,u,r) || 10| 10| 4|0 |16 |18 0810 O 0
k(6,d,u,r) || 10|10 |10 |4 | 4| 2 0[8|0| 3 0
Table 6: Values of k(i,d, u,r) when p =15
Case (2) Suppose p = 3. Let B = B; and
Blk(N(C(i))|B) = {b € Blk(N(C(3))) : b“ = B}.
Then BIk(N(C(i))|B) = 0 except when i € {1,5,6,12}; in these cases
K(N(C(0), By duy = {2 1 0 =2 mdu=2
0 otherwise.
This proves the theorem when B = B;.
Suppose B = By. The values k(i,d, u) are given in Table 7.
Defect d 66| 55| 4|4]3| 3| otherwise
Value u 211 211 2(1]2]|1] otherwise
k(1,d,u) =k(4,d,u) | 12]6| 0[6| 42|12 0
k(2,d,u) =k(3,d,u) || 126 6|0| 4[2|0|0 0
k(5, d, u) = k(8, d, u) 0|0l 0|0|40]2|010 0
k(6, d, u) = k(9, d, u) 0(0(|13|2]19]2|010 0
k(7, d, u) = k(10, d, u) 0|0l 010|126 |310 0
k(11, d, u) = k(12, d, u) 0|0l 0|]0|25|8|010 0

Table 7: Values of k(i,d, u) when p =3

It follows that
12

> (~1)DK(N(C(0)), Bo, d,u) = 0

i=1
and Theorem 6.1 follows.
Case (3) Suppose p = 2. We first consider the chains C' with d(N(C')) = 8, so that
C € {C(18),C(19),C(20),C(21),C(25),C(26),C(28),C(29)}. Then N(C) has only
the principal block and the values k(7, d, u) are given in Table 8.
It follows that
> (1) 9K(N(C), By, d, u) = 0.

d(N(C))=8
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Defect d | 8 7| 716|6]5|5 | otherwise
Valueu | 2| 1] 2| 1|2|1]|2]|1]| otherwise
k(18,d, u) = k(25,d,u) | 16 |16 | 4| 4|0 |0 |22 0
k(19, d, u) = k(28,d, u) | 16 | 16 | 12 [ 12| 0 [0 |0 |0 0
k(20,d, u) = k(29,d,u) | 16 |16 [ 12|12 |4 |4 |0 |0 0
k(21,d, u) = k(26,d,u) | 16 | 16 | 4| 4|4 [4|2]|2 0

Table 8: Values of k(i,d, u) when p =2 and d(N(C(i))) =8

Next we consider the chains C' such that d(N(C)) =9, so that
C e{C(17),C(22),C(23),C(24),C(27),C(30),C(31),C(32)}.

Then N(C) has only the principal block except when C' = C(17) or C(24), in which
cases N(C) contains exactly two blocks by and by such that each b$ = Bj, and
4 ifd=3and u=2,
k(N(C(17)), By,d,u) = k(N(C(24)), By,d,u) = { 1 ifd=2and u=2,
0 otherwise.

The values k(i, d, u) are given in Table 9 with [ € {17,24,30,31} and j € {22, 23,27, 32}.

Defect d 91 8|8| 7|76/ 5| otherwise
Value u 21 211] 211|122/ otherwise
k(l,d,u) 16 |16 |4 |10 |0 |6 |1 0
k(j,d,u) |16 |16 |4 |14 |4 [2]|0 0

Table 9: Values of k(i,d, u) when p =2 and d(N(C(i))) =9

It follows that
S (=1)K(N(C), Bo,d, u) =0.
d(N(C))=9
Suppose C' = C(7) is a chain with d(N(C)) = 10. Then

C € {C(9),C(10),C(12),C(13)}

and N(C) has only the principal block. The values k(i,d, u) are given in Table 10.
It follows that
> (=1)K(N(C), By, d,u) = 0.

d(N(C))=10
Suppose C' = C(7) is a chain with d(N(C)) = 11. Then

C € {C(11),C(14), C(15), C(16)}

18



Defect d || 10| 9| 8| 87| 7|6 | otherwise
Valueu | 2| 2| 2| 1|2]|1]| 2] otherwise
k(9,d,u) |32 8| 4| 40|44 0
k(10,d,u) | 32| 812|120 |40 0
k(12,d,u) || 32|24 | 4| 4|8]0|4 0
k(13,d,u) 3224|1212 (8|00 0

Table 10: Values of k(i,d, u) when p =2 and d(N(C(¢))) = 10

and N (C) has only the principal block except when C' = C'(16), in which case N(C(16))
contains exactly two blocks by and b; such that each bjC-" = Bj, and

4
1
K(N(C(16)), By, d,u) = 4 2
1
0

ifd=4and u =2,
if d=3and u = 2,
ifd=3and u=1,
ifd=2and u =2,

L otherwise.
The values k(i, d, u) are given in Table 11.
Defect d || 11| 10| 9| 8| 8| 7| 6 | otherwise
Value u 21 2| 2] 2| 1|2 2] otherwise
k(ll, d, u) 16 |12 |10 | 12 6|24 0
k(14,d, u) || 16 [ 12|10 12| 6|20 0
k(15,d,u) |16 | 12| 2| 4]10|1 |0 0
k(16,d,u) |16 | 12| 2| 4]10]|1 |4 0

Table 11: Values of k(i, d, u) when p =2 and d(N(C(7))) = 11

It follows that

S (=1)K(N(C), By, d,u) = 0.

d(N(C))=11

Now suppose C' = C(i) is a chain with d(NV(C)) = 12. Then

C e{C(3),C(4),C(5),C(6)}

(6.1)

and N(C) has only the principal block. The values k(i,d, u) are given in Table 12.

It follows that

S (=1)°K(N(C), By, d,u) = 0.

d(N(C))=12

Finally, suppose C = C(7) is a chain with d(N(C)) = 14. Then

Ce{C(1),C(2),C(1),C08)}
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Defect d || 12 |12 |11 |11 |10 | 10| 9| 9|8 | 8 | 6 | otherwise

Valueu || 2| 1| 2| 1] 2| 1| 2| 1|2]|1]|2|otherwise
k(3,d,u) | 8| 8| 8| 4[12| 0| 3| 2|4[4]2 0
k(4,d,u) || 8| 8| 4| 4|12| 0] 3| 2|0]0]|2 0
k(b,d,u) || 8| 8| 4| 4|12 8|11|10|0|0]|O0 0
k(6, d, u) 8| 8| 8| 4|12 811104410 0

Table 12: Values of k(i,d, u) when p =2 and d(N(C(i))) = 12

and N(C') has only the principal block except when C' = C(1), in which case N(C(1)) =
G and Irr* (G) consists of two blocks By and Bj given in Lemma 4.2 (c). In particular,
k(N(C(1)), By,d,u) is the same as k(N(C(16)), By,d,u) given in (6.1). The non-zero
values k(i, d, u) are given in Table 13.

Defectd || 14|14 |13 |13 |12 (111110110 ]9]|19 /8|8 |7|7|6]| 6
Valuveu || 2| 1| 2 1| 2| 2| 1| 2| 1|2|1(2]1|2]|1]2| 1
k(1,d,u) || 8| 8| 4| 4| o 7| 4] 4| o|1|o|o]o|o]o0|3]2
k(2,d,u) | 8| 8| 4| 4| 4| 7| 2| 4| o|1]|0|2|4|1[2]|3]|2
k(7,d,u) | 8| 8| 4| 4| 4| 7| 2| 4| 8/1]|2|2[4|1]2]0]0
k(8,d,u)88440744812000000
Table 13: Non-zero values of k(i,d, ) when p = 2 and d(N(C())) = 14

It follows that

> (-D)9K(N(C), By,d,u) =0

d(N(C))=14
and Theorem 6.1 follows. O
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