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Abstract

Given a finite dimensional vector space V', we construct a family of projective
geometries whose flats are certain subspaces of V', and show that there is a one-
to-one correspondence between this family of projective geometries and the set
of equivalence classes of tensor decompositions of V. This provides a practical
method for finding a tensor decomposition of a finite dimensional K G-module,
or proving that no non-trivial tensor decomposition exists.

1 Introduction

The object of this paper is to give an internal description of a tensor decomposition of
a finite dimensional vector space, and to use this description to determine whether or
not a KG-module V' of finite dimension over the ground field K can be decomposed
as the tensor product of two modules of smaller dimension.

A tensor decomposition of a KG-module V' consists of a K E-isomorphism between
V and U ® W, where F is a covering group of G, and U and W are K E-modules. The
kernel C' of the homomorphism E' — G is a central cyclic subgroup of E that acts as
scalars on both U and W. If ¢ € C acts as a on U, then g acts as o' on W. We
shall generally assume that G < GL(V) and hence that G acts faithfully on V. We
shall also assume, when searching for a tensor decomposition of V', that the projective
action of G on at least one of the tensor factors is irreducible.

In Section 2 we discuss what is meant by a tensor decomposition of a vector space.
A direct decomposition of a module can be defined externally or internally; the internal
definition, as a pair of complementary modules, is used in deciding whether or not a
module has a direct decomposition. A tensor decomposition of a module, on the other
hand, is usually given in terms of an external description. This is not useful in deciding
whether or not a given module has a tensor decomposition. In the case that particularly
concerns us, when we are considering K G-modules for some field K and group G, one
would in principle have to consider the tensor product of all pairs of modules of suitable
dimensions over covering groups of G.

Instead, we provide here, apparently for the first time, a description of a tensor
decomposition of a vector space V' in terms of a projective geometry whose flats are
certain subspaces of V. Such a projective geometry on V is an internal description
of a tensor decomposition of V' in that it consists of a set of subspaces of V' that are



required to satisfy axioms that depend only on the structure of V' as a vector space,
and on the factorisation of the dimension d of V.

Note that if we regard a point in our projective geometry as a subset of V', then
the union of all the points in the projective geometry is a Segre variety, first studied
by Segre [8]. (We thank Tim Penttila for this reference.)

Our geometrical approach presented here forms a central part of an algorithm that,
given a KG-module V' as input, decides whether or not V' has a tensor decomposition.
In Sections 3 and 4, we outline the theory of two components of this algorithm. We have
developed an implementation of our algorithm and find that it generally performs well
for matrix groups of moderate degree. The algorithm is presented and its performance
analysed in Leedham-Green & O’Brien [5]. Finally, in Section 5, we illustrate these
ideas by considering a simple example.

Apart from its intrinsic interest, another motivation for our work is its application to
the on-going matrix group “recognition” project. Aschbacher [1] classified the maximal
subgroups of GL(d, ¢) into nine categories, one of which is that a subgroup preserves a
tensor decomposition. A first step in “recognising” a matrix group is to determine (at
least one of) its categories in the Aschbacher classification. Algorithms have already
been developed for some of the other categories: for example, Neumann & Praeger [6],
in a seminal paper, propose an algorithm for recognising the special linear group in
its natural representation; more recently, Niemeyer & Praeger [7] present a recognition
algorithm for classical groups in their natural representations; Holt, Leedham-Green,
O’Brien & Rees [2] present an algorithm for primitivity testing.

2 Tensor Products as Projective Geometries

The usual construction of a projective space is to take the subspaces of a linear space.
We generalise this to take certain subspaces of dimension a multiple of a fixed divisor
u of the dimension d of a vector space V over a field K. These subspaces correspond to
the subspaces of the form U® X of U ®@ W, where U and W are K-spaces of dimension
u and w respectively, and X varies over the subspaces of W, under an isomorphism
taking V onto U @ W. All tensor products are, of course, taken over K.

We start by stating a number of simple axioms that our projective geometry must
satisfy.

Definition 2.1 A set of subspaces Py, ..., P, of a vector space V is said to be in
general position if, for all i, one has V = @, F;.

This of course implies that the P; are all of the same dimension. Given Py, Py, ..., P,
in general position, and vectors v; € P; such that Y ;v; = 0, each v; determines the
others. So vy — v; defines a linear isomorphism 6; of P, onto P;; in other words, —6; is
the restriction to P, of the projection of V onto P; with respect to the decomposition
V= GB?’ZIPJ-. We sometimes regard 6; as a linear map of Py into V.

We identify W with K%, and for z = (z4,...,z,) € W define 6, € Hom(Fy, V') by
0, = Xjz;0;. Now for X < W, define G(X) = Upext,(Fo), where G = (P, ..., P,)
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is an ordered (w + 1)-tuple in general position. Note that 6, depends on G. If x =
(21, ..., Ty), we will sometimes write [z1, ..., z,] for G({x)).
We can now state our main definition.

Definition 2.2 Let V' be a K-space of dimension d = uw and let G be a set of w+ 1
subspaces of V' of dimension u in general position. Let F = F(G) be the collection of
subspaces G(X), for all subspaces X of W. The u-projective geometry defined by G is
the collection of subspaces F(G).

A subspace G(X) is called a flat; if X has dimension one, then G(X) is a point.

Observe that the map X — G(X) is an isomorphism between the projective geome-
try PG(W) and the subgeometry F of PG(V). In particular, the flats in a u-projective
geometry on V form a sublattice of the lattice of subspaces of V.

It would be useful to have a characterisation of a u-projective geometry purely in
terms of incidence relations. The following example shows that such a task would be
difficult.

Let V' be the 4-dimensional space of homogeneous polynomials of degree three in
two variables over an arbitrary field K. For f a homogeneous polynomial of degree
one in these variables, let P; be the 2-dimensional space of homogeneous polynomials
of degree three that are multiples of f2. Then take JF to consist of the set of these
subspaces, together with (0) and V. It is easy to see that any two distinct subspaces
P; and P, intersect trivially, so any three are in general position. However, if we define
Py, P, and P, to be P, P, and P, respectively, then

[, B] = (x(az® + 2axy + By?), y(ax® + 2Bzy + By°));

this cannot be of the form P, for any linear homogeneous polynomial A, unless o = 0
or f =0 or o = . Hence, F is not a 2-projective geometry if K has more than
two elements. However, if K is a perfect field of characteristic 2, then V' has a tensor
decomposition, as GL(2, K)-module, as the tensor product of the natural module for
GL(2, K) with the module obtained from this one by applying the Frobenius automor-
phism to the coefficients of the elements of G.

Definition 2.3 A u-tensor decomposition of V' is a linear isomorphism from U @ W
onto V', where U and W are fized vector spaces, with U of dimension u. If o and 8 are

u-tensor decompositions of V', they are equivalent if there are linear automorphisms ¢
and ¥ of U and W respectively such that o = (¢ ® V).

We now justify our definition of a u-projective geometry by showing that it gives
an internal definition of a tensor decomposition.

Theorem 2.4 Let V be a vector space of dimension uw. For each u-tensor decom-
position a : U QW w— V, define F(a) to be {a(U @ X) : X < W}. Then the
map |a] — F(a) is a bijection between the set of equivalence classes [a] of u-tensor
decompositions of V and the set of u-projective geometries on V.

3



Proof. First note that F(«) = F(G(«)) where
G(a) = (a(Kwy), a( Kwy), ..., a(Kw,y)),

w; is the ith standard basis vector for W for 7 > 0, and >’ ;w; = 0. Hence F(«)
is a u-projective geometry. Since ¢ ® ¢ permutes PG(W), it follows that F(a) =
F(ao (¢p®1)). Hence the map is independent of the representative a of the class [a].
Fix a basis ui,...,u, of U. Given G = (P, ..., P,) in general position, pick a basis
T1,. .., %, for Py and define ax : UQW — V by az(u; @ w;) = 0;(z;). Then F — [ag]
is an inverse for [o] — F(«), so the map is a bijection. ||

Corollary 2.5 If Q@ = (Q1, ..., Q) is an r-tuple of linearly independent points in the
u-projective geometry F, then Q extends in F to P = (Qo, - - -, Qw) in general position
and F = F(P).

We now discuss linear maps between flats. The most general class of linear maps
we are interested in are those that map subflats of one flat to subflats of a second.
These will be called geometric transformations. A geometric endomorphism of V' is
conjugated by a u-projective decomposition of V' into an endomorphism of U ® W of
the form A ® C, where A € End(U) and C € End(W).

We shall make considerable use of the more special class of geometric endomor-
phisms of V' to itself that are conjugated into endomorphisms of the form A ® C' where
A is scalar. We call such endomorphisms of V' to itself projectivities; these will play a
crucial role in Section 3 and will be useful for the remainder of this section.

More generally we define projectivities between arbitrary flats of V.

Definition 2.6 Let V be a K-space of dimension uw and let F be a u-projective ge-
ometry defined on V. A projectivity (or u-projectivity) is a linear map between two
flats in F that 1s constructed according to the following rules.

(1) If Qo, - - ., Qu is a set of points in general position, and if 0 < i,j < w, then there
is a linear map 0;; that maps Q; to Q; defined as follows. Let vo+vi+- -+, = 0
then v;0;; = v;, and 0;; is a projectivity.

(2) If i = &P and F, = ®,Q; are flats, where P; and @, are points, and if
¢ij - Py — Q) is a projectivity, and oy; € K for all 1,7, then Y- oy« F1 — F
1S a projectivity.

(3) Ewvery projectivity between two flats can be constructed using this definition.

We use this definition of a projectivity because of its intrinsic nature. The following
description of a projectivity between points is not intrinsic, but is in some ways more
instructive.

Lemma 2.7 Let Q = [y, ..., Q] and R = [B1,. .., Buw| be points. Then the projectivi-
ties from @ to R are the linear multiples of qbélgbg, where g = Y- a,;0; and pr = 3 Bib;.
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Proof. We may assume that ) and R are distinct points, so let Q; = [, - . ., Q| for
0 <17 < w be a set of points in general position where () = @)y and R = @)y, say. Thus
the (w + 1) x w matrix o;; has rank w. Let >, w; = 0, where w; € @Q; for all ¢. Now
w; = 32; ai;v0; where v; € Py for all o. Then }-;; ayv:6; = 0. Since Pi,..., P, span
their direct sum, this implies that }-; a;;v;6; = 0 for all j, and hence }; a;;v; = 0 for
all j. This gives w independent linear relations between w+ 1 vectors, which must thus
be scalar multiples of some fixed vector, say v; = A\v for all 7. So w; = >°; A\ja;;v0;.
Now 6y, takes w;, to wy, and hence is )\;lquﬁélqu. The result follows. ||

It follows at once that the set of projectivities between two flats is a K-algebra.
More precisely, if F} and F; are of dimensions ru and su respectively, then the algebra
of projectivities from F} to Fj is isomorphic to K, ;.

We now turn to the representation of projectivities with respect to suitable bases for
V. Suppose that we have fixed flats P, ..., P, as in Definition 2.2. Take an ordered
basis By for P,, and let B; be the image of By under #; for 1 < ¢ < w. Now the
concatenation of By, By, ..., B, is an ordered basis for V. Call this the standard basis
for V' with respect to Py, Pi,..., P, and By. Now every point () in the projective
geometry is the image of Py under some linear map ), o;6;, and so () has an ordered
basis B that is the image of By under this map. Clearly B is unique up to scalar
multiple. Call B a geometric basis for (). Now every flat is a direct sum of points, and
by concatenating geometric bases for these points we obtain a basis for the flat. Such
bases we again call geometric. We shall always take matrices of linear transformations
between flats with respect to geometric bases.

Let A be an r x s matrix over K, where r and s are multiples of u. We call A a
u-projective matriz if A is built up of u x u blocks, each of which is scalar: that is, A
is of the form I, ® C' where C is an r/u x s/u matrix. We can now prove a key result.

Theorem 2.8 Let F| and Fy be flats in a u-projective geometry on the uw-dimensional
K-space V. Let f be a linear transformation from Fy to Fy, and A be the matriz of f
with respect to geometric bases for Fy and Fy. Then f is a projectivity if and only if A
18 u-projective.

Proof. It is clear that the set of u-projective matrices is closed under combining
and extracting u X u blocks, and under forming linear combinations. Hence every
projectivity corresponds to a u-projective matrix, since by Lemma 2.7, a projectivity
between points maps a geometric basis of the first point to a scalar multiple of a
geometric basis of the second point.

Conversely, a u-projective matrix defining a map f between points is, by definition,
scalar; since there exists a projectivity between any two points, and such a projectivity
must, by Lemma 2.7, be defined by an (arbitrary) scalar matrix, it follows that f is a
projectivity. As an arbitrary u-projective matrix is built up from blocks of u x u scalar
matrices, it follows that every u-projective matrix defines a projectivity. ||

We use the following corollaries of this result repeatedly.



Corollary 2.9 The group of invertible u-projectivities from the uw-dimensional K-
space V to 'V acts transitively on the set of ordered (w + 1)-tuples of points in general
position, and preserves F.

Corollary 2.10 An invertible projectivity between two points is unique up to scalar
multiplication.

Corollary 2.11 A projectivity that fizes each element of a set of w+1 points in general
position s a scalar.

Corollary 2.12 The kernel of a projectivity is a flat.

Recall that a geometric transformation is a linear map between flats that maps
subflats of the first flat to subflats of the second.

Lemma 2.13 A geometric automorphism of V' that fizes each of a set of w+ 1 points
in general position, and acts as a scalar on one of them, is a scalar.

Proof. Let Py, Py, ..., P, be the set of points that are fixed and let vo+v1+- - -+v,, = 0,
where v; € P; for 1 =0,...,w. Assume that one, and hence all, of the v; are non-zero.
Applying the geometric automorphism, g say, gives

Wl 4l =0 (¥

where, for some 7, we have v} = av; for some fixed non-zero o € K. However any one
summand in () determines the others, hence v{ = av; for all j. The result follows. ||

It is now easy to prove the main results of this section.

Theorem 2.14 Let g be a linear automorphism of the uw-dimensional K -space V. Let
F be a u-projective geometry on V. Then g is geometric with respect to F if and only if
a u-tensor decomposition o of V' corresponding to F conjugates g to an endomorphism
of the form A® C, where A and C lie in GL(u, K) and GL(w, K) respectively.

Proof. Let g be conjugated by a to an automorphism of U ® W of the required
form. If A is the identity matrix, we have seen that ¢ is a projectivity, and hence is
geometric. If C is the identity and A is arbitrary, ¢ maps every flat to itself, and hence
is geometric. Since the composite of geometric transformations is geometric, it follows
that g is geometric.

Conversely, assume that g is geometric. Multiplying g by some projective auto-
morphism of V', we may assume, using Corollary 2.9, that ¢ fixes every point in the
set of points in general position that was used to co-ordinatise V. Multiplying ¢g by a
geometric transformation of the form A ® I, we may also assume that g acts as the
identity on one of these points. Then, by Lemma 2.13, we conclude that g is now the
identity. The result follows. ||

The motivation for this work is to produce an algorithm for determining whether
or not a KG-module has a non-trivial tensor decomposition. The next result gives the
first step along this path.



If G does preserve a u-projective geometry on V', then this induces a projective
representation of G on the corresponding tensor factors, which need not be linear. If a
tensor decomposition of V' as a KG-module exists, this may give rise to a linear action
of some covering group E of G on each factor. Explicitly, an element of E may act as
a non-identity scalar o say on U and as ™! on W, and hence act trivially on V.

Theorem 2.15 Let G be a subgroup of GL(V') where V is a uw-dimensional K -space.
There is a u-projective geometry on V that is preserved by G if and only if there
1s an isomorphism of U @ W onto V such that G lies in the induced image of the
central product GL(U) o GL(W), where U is a u-dimensional K-space and W is a
w-dimensional K-space.

This is just a rewording of Theorem 2.14. It follows that G preserves a u-projective
geometry if and only if it preserves a w-projective geometry. If u = 1, a case that does
not interest us, this is the classical dual.

Theorem 2.16 Let V be a uw-dimensional K -space with a u-projective geometry and
corresponding isomorphism to U @ W. The invertible projectivities of V' form a nor-
mal subgroup P of the group G of invertible geometric transformations of V, with P
isomorphic to GL(W), and G/P isomorphic to PGL(U).

This follows at once from the above results. We shall need the following slight
generalisation:

Theorem 2.17 Let g be a geometric automorphism of V, and let Fy and Fy be flats.
If f is a projectivity from Fy to Fy then f9 is a projectivity of F} to Fy.

Proof. There is a flat that is a complement to F, in V, and the projection of V
onto Fy defined by this complement is a projectivity. Hence f can be extended to a
projectivity of V' to itself. Then its g-conjugate is a projectivity, and hence restricts to
a projectivity of Ff to F3. ||

3 Finding a projective geometry from a flat

We now outline two central components of an algorithm that, given a KG-module V
as input, constructs a G-invariant projective geometry on V or proves that no such
geometry exists. In this section, we describe how a point in the geometry may be
obtained from a flat of higher dimension; in Section 4, we discuss how we find such a
flat.

Suppose that we have a vector space V of dimension d over a field K, a proper
subspace F' of V', and a set of generators for a group G acting K-linearly on V. How
do we decide whether or not V' has, for some chosen u > 1, a u-projective geometry
that is preserved by G and which has F' as a flat?



The motivation for asking this question is that, given GG, we expect to find one or
more subspaces of V' such that, if G does preserve a u-projective geometry of V', then
it preserves a u-projective geometry that has one of these subspaces as a flat.

We assume that d has a proper factorisation as v x w and look for a tensor de-
composition of V as U @ W, where U has dimension u and W has dimension w. We
assume that the projective action of G on W is irreducible but we do not require that
G acts irreducibly on V. We also assume that G acts faithfully on V', though this is
just a formality.

Clearly, if F'is a flat in a u-projective geometry, then v must divide the dimension
of F. If this is so, we try to find a set of G-images of F' in general position. This may
fail in one of three ways.

1. It may be that the G-images of F' do not span V. In this case no tensor decom-

position as required can exist since we assume that the projective action of G' on
W is irreducible.

2. We may find that some G-image F; of F intersects some direct sum of G-images
of F in some proper non-zero subspace Fy of F;. Then F; must be a flat in our
putative geometry, and we start again with F, in place of F' provided that u
divides the dimension of Fj.

3. It may be that the images of I’ under G form a system of imprimitivity, in which
case again no such geometry exists.

We have now reduced to the situation in which we have found a set of G-images
of F' in general position. Let F be the projective geometry they define, and take a
geometric basis for V' with respect to F.

If the geometry is preserved by G, this can be read off from the matrices of the
given generators of G' written with respect to this basis; each of these will be a block
matrix in which any two non-zero f x f blocks will differ by a scalar multiple, where
f is the dimension of F'.

If this is not the case, but F is a flat (not now a point) in some non-trivial projective
geometry preserved by G, then the f x f blocks of which the matrix of an element is
composed define geometric transformations between flats. In fact they are a composite
of projectivities and a geometric automorphism. Since, by Corollary 2.12, the kernel
of a projectivity is a flat, and a geometric automorphism takes flats to flats, it follows
that the kernel of each of these blocks is again a flat. Hence if one of these blocks is
non-zero but singular, then its kernel defines a smaller dimensional flat, and we start
again with this flat.

Now we are reduced to the case in which the f x f blocks of the matrices representing
elements of (G are either zero or non-singular. In this case, for g € G, we can find two
such blocks C;; and Cj; that are both non-singular. Then C' = C’UC',;I is the matrix of
the transformation

B, = V-5V = B, —» B, > VI3V — B, — B..
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Here B; is the t-th f-dimensional flat from which the standard basis for V' has been
constructed, and unnamed maps are projectivities. Thus, by Theorem 2.17, C is the
matrix with respect to a geometric basis of a projectivity, provided that the supposed
geometry exists. We may assume that C' is not scalar since we have not found a
tensor decomposition. Since the set of projectivities is closed under addition and scalar
multiplication, the eigenspaces of C' are flats. So if C has a non-zero eigenspace, we
can find a smaller flat. More generally, every polynomial in C' over K represents a
projectivity, so if the minimal polynomial m(x) of C is reducible we can find a smaller
flat as the null-space of f(C) where f(z) is an irreducible factor of m(z).

Finally we consider the case in which the minimal polynomial m(x) of C is irre-
ducible. More precisely, we can proceed as above unless every element in the algebra
generated by matrices of the form C' = C;;C,;' is either zero or non-singular. This can
only be the case if this algebra is a field K, which is a proper extension of K, since
at least one of the matrices C is not scalar. Suppose that K = GF(q¢°); of course,
e must divide f. If we allow GF(q°) to act on V by left multiplication by matrices
of the form diag(C,C,...,C), where C is as above, and we use the geometrical basis
constructed for V, then clearly G acts semi-linearly on V as K-module. This gives
a tensor decomposition V = F ® Wy®K, where the tensor products are over K, and
the expression Wy®K denotes the fact that G acts on this tensor product not as a
subgroup of the central product of the linear groups on the tensor factors, but rather
as a subgroup of the group that acts semi-linearly on the tensor product as K-space
and linearly as K-space.

4 Finding a flat

Assume, as before, that we are looking for a tensor decomposition of the KG-module
V of dimension d as U @ W, where U and W have dimensions v and w respectively.

We now present two approaches to find a flat in a suitable G-invariant projective
geometry, or to prove that no such geometry exists.

4.1 Using a projectivity

It may be that G does not act faithfully modulo scalars on one of the factors in the
putative tensor decomposition. If a non-scalar element g of G acts as a scalar on U,
then g is a u-projectivity mapping V' to itself.

Then the characteristic polynomial f(x) of g is a u-th power. If f(z) is not a power
of an irreducible polynomial, then we choose an irreducible factor h(z) of f(x); now,
by Corollary 2.12, the kernel of h(A) is a flat.

If f(x) is a power of an irreducible polynomial, we can search in the K-algebra gen-
erated by g and its conjugates under GG for an element whose characteristic polynomial
has more than one irreducible factor. This search will fail if the algebra is a field K.
In this case, V may be regarded as a K-space on which G acts semi-linearly, and we



terminate our investigation at this point. Of course, we can easily find generators for
the subgroup Gy of G that acts linearly over K, and look for a tensor decomposition of
V under the action of Gy, working over K. If V does have a proper tensor decomposi-
tion as KGy-module, this gives a fortiori a tensor decomposition of V' as KG-module
in which g acts as a projectivity. If V' does not have a proper tensor decomposition as
KGy-module, it may still have a proper decomposition as KG-module with g acting
as a projectivity, since G' could be a central product of a group of K-automorphisms
of V defined over K with a subgroup of the group K acting on itself.

Thus we have a procedure ISPROJECTIVITY that takes as input generators of
G < GL(V) and g € G, and returns one of the following:

(a) A non-trivial tensor decomposition of V' on which ¢ acts as a projectivity.
(b) “False”, if a proof has been constructed that no such tensor decomposition exists.

(c) A KG-isomorphism of V with some semi-linear KG-space, where K is a proper
extension of K.

IsPrOJECTIVITY performs a task that could also be carried out using the more
general algorithm SMASH. That algorithm, described in Holt, Leedham-Green, O’Brien
& Rees [3], investigates whether G has certain decompositions with respect to a normal
subgroup; however it requires that G acts irreducibly on V.

Finding a (possible) projectivity of V to itself is considered in Leedham-Green
& O’Brien [5]. In summary, we may find an element of G whose projective order

dictates that some power of it would have to be a projectivity. The projective order of
g € GL(V) is the order of the image of g in PGL(V).

4.2 Using reducible subgroups

We now consider the case where G acts faithfully modulo scalars on each of the factors
in every tensor decomposition of V.

When considering direct decompositions, one naturally turns to the submodule
structure of V. This suggests a second approach to finding a flat — that is, we consider
the H-submodule structure of V for “suitable” subgroups H of G. A subgroup is
suitable if it is guaranteed to act reducibly on at least one of the tensor factors in any
putative tensor decomposition.

Suppose that we also assume that the projective action of G on W is irreducible. Let
H be a subgroup of G that acts reducibly on W. Then at least one of the H-invariant
subspaces of V' is a non-trivial flat in the corresponding u-projective geometry. Hence,
we seek to find a subgroup of GG that normalises sufficiently few subspaces of V' that we
can process these subspaces, but which also acts reducibly on W if the required tensor
factorisation exists.

One natural class of such subgroups, which has proved useful in practice, can be
found as follows. We assume that the ground field is finite, and take H to be p-local for
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some prime p: namely, H is contained in the normaliser of some non-trivial p-group.
The problem that we wish to address here is that of proving, when possible, that H
acts reducibly on W if the tensor decomposition exists.

The first and simplest criterion is as follows. If p is the characteristic of the ground
field, then H cannot act irreducibly in any dimension greater than one: the subspace
of V' centralised by a p-group must be non-trivial, and this space is normalised by H.

Now suppose that H normalises a cyclic p-subgroup P = (g) of G, where p is not
the characteristic of K. We give a criterion, in terms of g, which guarantees that H
will act reducibly on one of the tensor factors if the tensor factorisation exists.

Theorem 4.1 If H is a subgroup of G that acts wrreducibly on W, and normalises
the cyclic group generated by g, where g has projective order p, then the characteristic
polynomial of g acting on W is of the form I1; fi(z)t, where fi is an irreducible factor
of P — X\ for some scalar A\, and the f; are the conjugates of fi under the action of H.
That is to say, if fi(x) = I1;(x — ¢;), and h € H conjugates g to g° for some integer
s, then h conjugates fi(z) to [1;(x — 7).

Proof. Since H acts irreducibly on W, by Clifford’s theorem (see, for example, Hup-
pert, [4], p. 565) W is a direct sum of homogeneous P-submodules where P = (g). If a
homogeneous subspace 7" is the direct sum of ¢ isomorphic irreducible P-submodules,
then the characteristic polynomial of g restricted to T is f(x)’, where f(z) is an irre-
ducible factor of z? — X\ and X is some scalar in K. Now the action of g on the other
homogeneous factors of W is obtained by conjugating the action on T" by each element
of a transversal of the inertia group of the action of H on 7T'. The result follows. ||

Similar criteria can be developed when P is not cyclic. The construction of p-local
subgroups is described in Leedham-Green & O’Brien [5].

If [T;(z — A;) and [];(z — p;) are monic polynomials, their tensor product is defined
to be [];;(z — Aiu;). Clearly the tensor product of two polynomials with coefficients in
a field K has its coefficients also in K. The problem of finding a tensor factorisation
of a polynomial is discussed in Leedham-Green & O’Brien [5].

We use these ideas as follows. Suppose that we can find g € G of projective order p
and generators for the subgroup H of G that normalises (g). A necessary condition for
H to act irreducibly on W is that the characteristic polynomial f(z) of ¢ has a tensor
factorisation as u(z) ® w(x), where w(x) is of degree w and satisfies the condition
of Theorem 4.1. So if f(z) does not have such a factorisation, then H cannot act
irreducibly on W, and some invariant H-submodule of V' must be a proper flat in a
u-projective geometry on V.

5 A sample calculation

We illustrate the algorithm embodied in the above description by applying it to the
following simple example. Let G be the subgroup of GL(4, 5) generated by the following
matrices:
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The problem is to determine whether or not G preserves a tensor decomposition of the
natural module V. One first observes that C' and AC' are of order 2, and hence generate
a dihedral group. Since the characteristic polynomial of A is (x — 1)%, it follows that
A has order 5. So the group H generated by A and C' is dihedral of order 10, and is
5-local.

The next step is to find the H-invariant 2-dimensional subspaces of V. Any such
subspace must contain an eigenspace for A; that is, a subspace that is centralised by A.
It is easy to see that the subspace of V centralised by A has a basis {v1, ve}, where v; =
(0,1,-1,0) and vy = (0,0,0,1). One checks that the only one-dimensional subspaces of
(v1, vo) that are also invariant under C are (v;) and (v9). The H-invariant 2-dimensional
subspaces of V' that contain v are those of the form X = ((z,z+vy, —y,0), v2), and no
other cases arise from subspaces that contain v;. So we have 6 subspaces to consider.

If we take X and X2, these subspaces must complement each other, as they cannot
be equal, and this implies that = # 0 and z + 2y # 0. With these conditions, Py = X
and P, = X® and P, = XB¢ are in general position. So we take z = 1 and y = 0.

Now X has a basis {z, 22}, where 21 = (0,0,0,1), and z2 = (1,1,0,0). One finds
that x; = fi+ f3 where f; = (=2,0,—-2,—-2) € P, and f;3 = (2,0,2,—2) € P,. Similarly
xo = fo+ f1 where fo =(1,-2,0,—2) € P and f, = (0,—2,0,2) € P,. So we write A,
B and C with respect to the basis f1, fo, f3, f1, and obtain:

4.3 0 0 42 4 2 040 0
, l2300] ., [3333| ., [4000
A=143 430800420/ |00 01

2 3 2 3 00 3 3 00 1 0

Thus G acts projectively as PSL(2,5) on each of the tensor factors, and is in fact
isomorphic to PSL(2,5).
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