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Abstract

It is well known that the only groups of prime-power order which can act fixed
point freely on a complex linear space are the cyclic or generalised quaternion
groups. Given a positive integer f and a prime p exceeding f, we determine the
p-groups which have a faithful complex representation such that the dimensions
of the spaces of fixed points of non-trivial elements are at most f.

1 Introduction

Let G be a group and let V be a finite-dimensional right CG-module. We denote
the fixed-point space of an element g of G by Cy(9) = {v € V : vg = v}. The
fixity, fiz(V), of V is the maximum of the dimensions of Cy(g) over all non-trivial
elements g € G. We define the fizity of G to be the minimum of fiz(V') over all faithful
CG-modules V.

It is a well known result, which goes back to Burnside ([3], §248), that the p-groups
of fixity zero are cyclic or generalised quaternion. Here, we determine the p-groups of
fixity one for all primes p. More generally, given a positive integer f we classify the
p-groups of fixity f for primes p greater than f.

The p-rank of a group G is the maximum of the ranks of elementary abelian p-
subgroups of G. Our first result provides an abstract characterisation of p-groups with
given fixity.

Theorem 1.1 Let f be a non-negative integer and let p be a prime greater than f. A
p-group G has fixity f if and only if the following conditions hold:

(i) G has p-rank f +1;
(ii) either G is abelian or G has cyclic centre and an abelian mazximal subgroup.

It follows immediately from Theorem 1.1 that the number of abelian groups of order
p" and fixity f is the number of partitions of n into f+ 1 parts. The number, N(f, p"),
of non-abelian groups of order p" and fixity f, where p > f, is computed below.
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Corollary 1.2 Ifn < f+2, then N(f,p") =0.

Proof. If G is a p-group of fixity f, then it has an elementary abelian subgroup of
order p/*1. If G is non-abelian, then |G| > p/*2. O

Theorem 1.3 Let f be a positive integer and let p be a prime.
1. Forp> f+2,

N(f,pn):{ 2+eed(p—1,f+1) Zi}”ig

2. Forp=f+2,

f+5+gd(n—2,f+1) n>f+3

w ) f+3 n=f+3
NP =1 3 n=f+2>4
2 n=3and [ =1.
3. Forp=f+1,
n—2
2n—f—-2)+ > ged(k—1,f) n>f+3>5
N(f.p") = k=f+2
(f,p") . n=fi2>4
3n—8 f=1

We see that the relationship between p and f is critical in determining the magnitude
of N(f,p"). Indeed, if p > f + 2, then N(f,p") is bounded above in terms of f alone,
while N(f,p") tends to infinity with n when p = f + 1. Of course, if neither f 4+ 1 nor
f + 2 is a prime, then only the first case of Theorem 1.3 applies.

Our count follows from a more general result, Theorem 4.2, which lists the p-groups
of fixity f for all primes p > f.

The proof uses some results from Shalev [6] which studies the fixity of arbitrary
finite groups.

2 Proof of Theorem 1.1

We need the following elementary results which follow from Shalev ([6], Lemmas 2.1
and 3.1).

Lemma 2.1 A p-group of fixity f has p-rank at most f + 1.

Lemma 2.2 A p-group G which has a CG-module of fixity f and dimension greater
than (p+ 1) f is cyclic or generalised quaternion.

This gives rise to the following two results.
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Corollary 2.3 The fizity of an abelian p-group of rank r is r — 1.

Proof.  Let G be an abelian group of rank r. By Lemma 2.1 the fixity of G is
at least  — 1. On the other hand G has a faithful module of dimension r, and so the
fixity of G cannot exceed r — 1. O

This proves Theorem 1.1 in the abelian case. We now consider non-abelian groups.

Corollary 2.4 A non-abelian p-group of fixity f less than p has a faithful irreducible
module of firity f and dimension p.

Proof.  The result is clear if such a group, G, is generalised quaternion, so suppose
otherwise. Then, since G is non-abelian, it has p-rank at least two.

Let V be a faithful CG-module of fixity f. Since G is non-abelian and V is faithful
and completely reducible, V has an irreducible submodule U of dimension p* for some
k > 1. The fixity of U is clearly at most f; since f is less than p, it follows that U is
faithful and so has fixity at least f.

By Lemma 2.2,

dim(U) < (p+1)(p—1)=p* — 1.

Hence £ =1 and U is the required module. O

Irreducible p-subgroups of GL(p,C) have been studied by Conlon [4]. His detailed
description will be applied in Section 4. Here we only need the following elementary
observation.

Lemma 2.5 A non-abelian p-subgroup of GL(p,C) is irreducible if and only if it has
cyclic centre and an abelian mazimal subgroup.

The following is a straightforward consequence.

Corollary 2.6 A non-abelian p-group of firity less than p has cyclic centre and an
abelian mazrimal subgroup.

We now come to the main point of the discussion.
Theorem 2.7 A p-group of fixity f less than p has p-rank f + 1.

Proof. By Corollary 2.3 we may assume that such a group, GG, is non-abelian. Let
r denote the p-rank of G. Then, by Lemma 2.1, » < f + 1. It remains to show that
r>f+1.

By Corollary 2.4 there is a faithful irreducible CG-module V' of dimension p and
fixity f. Let A be an abelian maximal subgroup of G and z an element of G which
together with A generates G. As an A-module V' has an irreducible one-dimensional
submodule V; generated by vy. For ¢ =0,...,p—2 put v, = v;z; then {vg,...,vp_1}
is a basis of V.

As in Corollary 2.4, it suffices to consider the case » > 2. So it remains to consider
the case f > 2. Let a be an element of G whose space, Cy(a), of fixed points in
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V has dimension f. Since elements outside A are represented by monomial matrices
corresponding to cycles of length p, their fixity is at most 1. It follows that a € A.
Since Cy (a?) > Cy(a), we can take a to have order p.

Let E be the elementary abelian subgroup generated by elements of order p in A,
then FE has rank r and a € E. Let w € K be a primitive p™ root of unity and F, be a
field of p elements. Let W be the additive group of all polynomials of degree at most
p—1inF,[t]. Let ¢ : E — W be the mapping defined by v;e = w*®y, for all e in E;
here e¢(i) is the value of the associated polynomial function defined on the index set
{0,...,p— 1} identified with the field F,. Clearly ¢ is a monomorphism.

For 0 < k < p—1set Wy, = {P € W : P has degree at most k}. Then clearly
{O}ZW_l SW()SWl g...SWp_lzl/Vand [WkZWk_l]:pfOI'OSkSp—l.

There is an automorphism o of W defined by P?(t) = P(t—1) for all P in WW. Note
that the W}, are o-invariant subgroups of W and that [Wy, o] = Wy _; for0 < k < p—1.
Hence o acts uniserially on W and every o-invariant subgroup of W has the form Wy
for some k. Note that the rank of W} is k£ + 1.

Since (e¢)? = e%¢ for all e in E, the image E¢ is o-invariant. It follows that
E¢ = W, for some k. Since a has fixity f, the polynomial a¢ has f roots and so degree
at least f. Hence EF¢p = Wy, for some k > f. Therefore r > f 4 1. O

We can now complete the proof of Theorem 1.1 by dealing with the non-abelian
case. Theorem 2.7 and Corollary 2.6 show that a non-abelian p-group of fixity f < p
satisfies conditions (i) and (ii) of the theorem.

Conversely, let G' be a non-abelian p-group satisfying conditions (i) and (ii). We
have to show that the fixity of G is f. This will follow from Theorem 2.7 once we
show that the fixity of GG is less than p. It clearly suffices to show that G has a faithful
module of dimension p. Since G has cyclic centre and an abelian maximal subgroup,
this follows from Lemma 2.5. Theorem 1.1 is proved.

3 Non-abelian p-groups of fixity one

In Section 4, p-groups of fixity less than p are classified using Conlon’s work. Clearly
this provides a complete list of the p-groups of fixity one for all primes p.

In this section, we provide an alternative and perhaps simpler method of obtaining
the non-abelian p-groups of fixity one, for odd p. Theorem 1.1 states that these groups
have p-rank precisely 2. It follows from Theorem 4.1 of [2] that, for odd p and n > 5, a
group of order p" and p-rank 2 is either a metacyclic group, a 3-group of maximal class,
or one of three exceptional types. We obtain the groups of fixity one among these by
checking which of these groups have an abelian maximal subgroup and cyclic centre.

Newman & Xu [5] show that every metacyclic p-group, for odd p, has a presentation

{a,b: " =1 =, P =Y

where r > 1, s,t,u > 0, and u < r and different values of the parameters r,s,t,u
correspond to different isomorphism types. The metacyclic groups which have an
abelian maximal subgroup and cyclic centre are those with r =« =1 and s = 0. Note

these groups also have split presentations {a,b : " =0 =1, a® =a'?" " ).
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Blackburn [1] determines the 3-groups of maximal class which have an abelian
maximal subgroup; for all n > 4, there are four such groups of order 3" when n is even
and three when n is odd.

By examination, each of the three exceptional groups described by Blackburn has
the desired property.

This, combined with an examination of the groups of order p* and p*, yields the
following result.

Theorem 3.1 For odd p, the non-abelian p-groups of firity one and order p™ are:

1. for n > 3, the metacyclic group
(a,b : a” =W =1,a"=a""""")

and
n—3
(@, 7,y :a"  =lz,9],[a,7] = [a,y] = 2P =y’ = 1);

2. for n > 4, the 3-groups of maximal class

(8,851,802, 8n_1: [Si—1,8] = s, s = 5;51—17 8?8383 =s0_1, [Si8]=1)

with v, € {0,1} — where v6 # 1 if n is odd; and
(a,2: " =[z,a,2]", 2" =1,[z,a,a] = 1)
where X\ is either 1 or a non-quadratic residue.

In particular, for p > 5 and n > 4, there are four groups of fixity one and order p”.

4 Non-abelian p-groups of fixity at most p — 1

Conlon [4] gives various descriptions for the non-abelian p-groups with cyclic centre
and with an abelian maximal subgroup. In particular he gives presentations for such
groups. We follow his naming of the groups and the generators but write the relations
in a slightly different form. There is a non-abelian group P, of order p**! which has
a generating set

TyYtiye o s Yky 21y -+, 2
and defining relations

Z1,...,2 are central,

Za=zfori=1,...,1—1,
Y1, .., Yr Pairwise commute,

Wjt1, 2] =y;forj=1,... k-1,

Y=z,
(yjz)P =1forj=1,...,k—1,
=1, (yx)? =2 form=0,...,p—1,

2P = (ygz)? =z for m =p
where | > 1, k>3 and 0 <m <p, or k =2 and m € {0,p}.
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Theorem 4.1 A non-abelian p-group with cyclic centre and an abelian maximal sub-
group has p-rank at most p. Moreover Py, has p-rank p when

e p=2, unlessl =1 and m = 2,
e p>31>2k>p,
®p>3,1>2k=pme{0,p},
ep>3l=1Lk=pm=1.
Otherwise Py, has p-rank
e 1 whenp=2,1=1, and m =2 (the generalised quaternion case),
e 2 whenp>3 and k = 2,
e the minimum of k and p — 1 when m € {0, p},

e the minimum of k —1 and p—1 when 0 < m < p.

Proof.  Conlon observes that every such group can be embedded into the wreath
product P of a p-quasicyclic group by a cyclic group of order p. The base group A
has index p in P and is the direct product of p quasicyclic groups. Hence the maximal
elementary abelian subgroups of P are

e ;(A) the subgroup of A consisting of the elements of order dividing p — this has
rank p, and

e the Q;(Cp(g)) where g is an element of order p which does not lie in A — these
have rank 2.

The first sentence of the theorem and the second sentence for p = 2 follow at once.
So we can now assume p > 3. For all k£ the subgroup Y7 = (y1,...,yn) of Py is
elementary abelian where h is the minimum of £k — 1 and p — 1. For [ > 2,k > p,
the subgroup (yi, ..., Yp—1,Yp22) is elementary abelian. For [ > 2,k = p,m € {0,p}
and [ = 1,k = p,m = 1, the subgroup (yi,...,¥p—1,Yp) is elementary abelian. This
completes the proof of the first part of the second sentence. Further for £ < p,m €
{0,p} the subgroup Yo = (y1,...,yk) is elementary abelian. When [ = 1,k > p and
when [ = 1,k = p,m # 1, every abelian normal subgroup of Py, properly containing
Y} contains g, — in the first case this can be seen by commuting an appropriate number
of times with a suitable element of Py1,,,. Since y, has order p? in these cases, it follows
that Y; is maximal elementary abelian. When [ > 2k = p,m # 0 or p and when
k < p,m # 0 or p, every abelian normal subgroup properly containing Y; contains zy
and it follows that Y; is maximal elementary abelian. Finally when k& < p,m € {0, p},
every abelian normal subgroup properly containing Y5 contains z, and it follows that
Y, is maximal elementary abelian. O

Given a positive integer f and a prime p > f, we now list the non-abelian groups
of order p” which have fixity f.



Theorem 4.2 Let f be a positive integer and p a prime.

1. Forp > f+2, the non-abelian groups of order p" and fizity f are Pri1n—(f+1)m
where m € {0,p}, and Pfiopn_(f+2)m where 0 < m < p.

2. For p = f + 2, the non-abelian groups of order p" and fizity f are P, 11m
where 0 < m < p, Priyp(f+1),m where m € {0,p}, and Prion_(f12)m, where
0 <m < p, except for Prio11.

3. Forp = f 4+ 1 and odd p, the non-abelian groups of order p™ and fixity f are
Py pm where f+2<k<n—2and0<m<p, P,n_pm wherem € {0,p} and
Ppalal'

The non-abelian 2-groups of fixity 1 are Py g, where 3 < k < n—2 and
0<m<2, Py, o, wherem € {0,2}, and P, 11, where m € {0,1},

Proof.  'This result follows from Theorems 1.1 and 4.1. O

Conlon ([4], Proposition 3.3) proves that the groups Py and Py, are not isomorphic
and, for £ > 3, neither is isomorphic to any of Py, where 0 < m < p. He also
shows that the number of isomorphism types of groups Py, where 0 < m < p is
2+ged(k —1,p—1) when £ > 2 and 2 when £ = 2. (The case [ = 1 follows from
Theorem 4.3 of [1].)

Theorem 1.3 now follows from Theorem 4.2 and the above remarks. We leave the
tedious verification to the reader.
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