ALGORITHMS FOR LINEAR GROUPS OF FINITE RANK

A. S. DETINKO, D. L. FLANNERY, AND E. A. O'BRIEN

ABSTRACT. LetG be a finitely generated solvable-by-finite linear group. We present anithlgn

to compute the torsion-free rank@fand a bound on the Bfer rank ofG. This yields an algorithm to
decide whether a finitely generated subgroug‘dfas finite index. The algorithms are implemented
in MAGMA for groups over algebraic number fields.

In [7, 8] we developed practical methods for computing with linear growps an infinite field
F. Those methods were used to test whether a finitely generated sub§m@iyro F) is solvable-
by-finite (SF). We now proceed to the design of further algorithms for fingelyerated SF linear
groups. Such a group may not be finitely presentable (see [21, 4.88])pso obviously cannot
be studied using approaches theduire a presentation; in contrast to, say, polycyclic-by-finite
(PF) groups. Extra restrictions are necessary to make computing feaSitieps of finite rank
are suitable candidates from this point of view, because they are welisbékalgorithmically [13,
Section 9.3]. They also have convenient structural features (se8¢t8on 5.2] and Section 1).

In this paper we develop initial results to enable computing with finitely geneliatsat groups
of finite rank. Since such groups agelinear (Proposition 1.4), our primary focus is the case that
F is an algebraic number field. We first test whether< GL(n,F) has finite rank. If so, we
compute its torsion-free rank and an upper bound on if$ePrrank. This furnishes an algorithm
to decide whether a finitely generated subgroug-dfias finite index. We determine various as-
ymptotic bounds of interest in their own right. Algorithms for the structural stigation ofG
are provided as well: these construct a completely reducible part, and b/ fgeteerated subgroup
with the same rank as the unipotent radical. Our algorithms have been implermektedMA [5].
We emphasize that computations are performed with a given group in its dnigprasentation,
avoiding enlargement of matrices to get an isomorphic copy Qver

Naturally, it is possible to take advantage of additional propertigs when they are known. If
G is polycyclic then one could obtain its torsion-free rank from a consistgtpclic presentation
of G, the latter found as in [2]. An even more tractable class is nilpotent-by-fintepg (cf. [10,
Section 7]).

We summarize the layout of the paper. Section 1 gives background ondiroegas of finite rank,
including a reduction to SF groups over a number field. Section 2 is an extérehtment of such
groups. In Section 3 we discuss ranks of finite index subgroups;aie@debted to D.J.S. Robinson
for a vital theorem here. Section 3 also shows how to find the rank of atemipnormal subgroup.
In Section 4 we present our algorithms and some experimental results.

Unless stated otherwisE,is an (infinite) field. The rational field is denoted as usual}yyand
P is a number field with ring of intege8p.

1. PRELIMINARIES

A general reference for this section is [13, Chapter 5].
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1.1. Prifer rank and torsion-free rank. Recall that a grou- has finite Piafer rankrk(G) if
each finitely generated subgroup@fcan be generated bk (G) elements, andk(G) is the least
such integer.

Theorem 1.1. Let G < GL(n,F) have finite Pifer rank. TherG is SF, and ifchar F > 0 thenG
is abelian-by-finite (AF).

Proof. See [21, 10.9, p. 141]. O

Corollary 1.2. Let G be a finitely generated subgroup GiL(n,F). If G is AF then it has finite
Priufer rank; if G is completely reducible and has finiteiPer rank then it is AF.

Proof. If G is AF then it has a normal finitely generated abelian subgrbwp finite index. Since
A andG/A have finite rank, so doeS. On the other hand, i is completely reducible and has
finite rank, then it is AF by Theorem 1.1 and [21, 3.5 (ii), p. 44]. O

Remarkl.3 The converse of Theorem 1.1 is not true even wiidn finitely generated. However,
see Proposition 2.3.

Proposition 1.4. If G is a finitely generated subgroup 6fl.(n, IF) of finite Prifer rank thenG is
Q-linear, i.e., isomorphic to a subgroup 6fL.(d, Q) for somed.

Proof. Suppose thathar F = 0. By [21, 4.8, p. 56],G is (torsion-free)-by-finite, and by Theo-
rem 1.1,G is SF. Thug& contains a torsion-free solvable normal subgroup of finite index and finite
rank. The result now follows from [11, Theorem 2].

Suppose thathar F > 0. By Theorem 1.1¢ is PF. It is well-known that a PF group#linear;
see [13, 3.3.1, p. 57]. O

Theorem 1.1 and Proposition 1.4 essentially reduce the investigation of fipéebrated linear
groups of finite rank to the case of SF groups offer In Section 2.2 we show conversely that
finitely generated SF subgroups @L(n, P) always have finite rank. Hence we restrict attention
mainly to groups over number fields.

Now recall that a groug: has finite torsion-free rank if it has a subnormal series of finite length
whose factors are either periodic or infinite cyclic. The nunit{é¥) of infinite cyclic factors is the
Hirsch numbeyor torsion-free rankof G.

Lemma 1.5. An SF group with finite Rifer rank has finite torsion-free rank.
Proof. See [13, p. 85]. O

Lemma 1.6. LetG be a group with normal subgrouly’.

(i) If G has finite Piifer rank thenk(G) < rk(N) + rk(G/N).
(i) If G has finite torsion-free rank thenG) = h(N) + h(G/N).

1.2. Polyrational groups. Let U(G) be the unipotent radical off < GL(n,[F); namely, the
largest unipotent normal subgroup 6f Note thatG/U(G) is isomorphic to a completely re-
ducible subgroup ofsL(n, F). If we exhibitG in block triangular form with completely reducible
blocks, thenU (G) is the kernel of the projection @ onto its main diagonal. Denote the largest
periodic normal subgroup @¥ by 7(G).
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Lemma 1.7. LetG be a finitely generated subgroup @L(n, ) of finite Piifer rank. Thenr(G)
is finite.

Proof. Theorem 1.1 and Proposition 1.4 imply ti@ts SF and we may assume tkébr F = 0.
Then7(G) is isomorphic to a subgroup efG/U(G)), andG /U (G) is finitely generated AF by
Corollary 1.2. So we may further assume thahas a normal abelian subgroupof finite index.
SinceA is finitely generated; (G) N A < 7(A) is finite. Thus|7(G)| = |7(G)A : A| - |[7(G) N A|
is finite. 0]

A group ispolyrationalif it has a series of finite length with each factor isomorphic to a subgroup
of the additive grou@) ™. So a polyrational group has finite torsion-free anif@rranks.

Proposition 1.8. If G is polyrational then'k(G) = h(G).
Proof. See [13, 5.2.7, p. 93]. O

Theorem 1.9. A finitely generated subgrou of GL(n, F) has finite Piifer rank if and only if it
is polyrational-by-finite. In this casé(G) < rk(G).

Proof. The first statement follows from Theorem 1.1, Lemmas 1.5 and 1.7, an& A3, p. 92].
For the second, leV be a normal polyrational finite index subgroup@f thenh(G) = h(N) =
rk(N) < rk(G). O

From now on, the term ‘rank’ without a qualifier means eitharf@ror torsion-free rank.

2. SOLVABLE-BY-FINITE GROUPS OVER A NUMBER FIELD

We now focus on finitely generated SF subgroup&bfn, P). Set|P : Q| = m. In this section
we obtain more detailed information about these groups that will be used aigarithms.

A finitely generated subgrou@ of GL(n, F) is contained ifGL(n, R) whereR C F is a finitely
generated integral domain. The quotient riRgp is a finite field for any maximal ideal of R.
We explain in [7, Section 2] how to construct a congruence homomorppismGL(n, R) —
GL(n, R/p) for a maximal ideap such that

e the kernelG, of ¢, on G is unipotent-by-abelian (UA) itx is SF;

e (i, istorsion-free ifchar F = 0.
To be more explicit, leF = P = Q(«) wherea has minimal polynomiaf (X), and letG = (S).
Theny, on RN Q is reduction modulo an odd primee Z not dividing the discriminant of (X')
nor the denominators of entries in elementsSaf) S~!. Hencey, mapsR into the finite field
Zy(B), whereg is a root of the mogh reduction off (X'). We adhere to this notation from [7].

2.1. Unipotent groups. Denote the groupy T (n, K') of upper unitriangular matrices over a com-
mutative unital ringiK by T'. DefineT; to be the subgroup @ consisting of all matrices with their
firsti — 1 superdiagonals equal to zero. THER=T} > T> > --- > T,, = 1 is the lower (and up-
per) central series &f. The homomorphism offi; that maps each element to ith superdiagonal
has kernell; . ; and image thén — i)-fold direct sumK & --- @ K.

Lemma 2.1. If G < UT(n,Q) then
(i) G is polyrational,
(i) 1k(G) =h(G) <n(n—-1)/2.
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Proof. Let K = Q in the notation introduced just before the lemma. Sif€e 7;) /(G N T;+1) IS
isomorphic to a subgroup @f /T;11, (i) is clear. Thenk(G) = h(G) by Proposition 1.8. Also, by
Lemma 1.6 (ii),

h(T) = h(Ty/Ty) +h(To/T3) + - - + h(Th1/Ty) = S0t = n(n — 1)/2. O
Corollary 2.2. If G < UT(n,P) thenG is polyrational andrk(G) = h(G) < nm(nm — 1)/2.

2.2. Ranks of solvable-by-finite groups over number fields.In this sectionG is a finitely gen-
erated subgroup diL(n,P). We prove that ifG is SF then it has finite rank. Althougtk(G)
can be arbitrarily large, the ranks of finitely generated SF subgrou@$.¢f, Op) are bounded by
functions ofn andm, which we give below.

Proposition 2.3. Suppose thatr is SF. Ther is polyrational-by-finite, hence of finite &fer rank.

Proof. Select an ideap such thatG, is UA andG/G, is finite. LetU be the unipotent radical

of G,; thenG,/U is finitely generated abelian. Writ€,/U = H/U x 7(G,/U). SinceH/U

is a finitely generated free abelian group diids conjugate to a subgroup & T(n,P), H is
polyrational. Thus~, has a polyrational normal subgroup of finite index. Consequently the same
is true forG. g

Remark2.4. Retaining the notation in the proof of Proposition 2:8¢x) = h(G,) andrk(G) <
rk(G,) + 1k(¢,(G)) by Lemma 1.6. Furthermoneé(G,) < h(H) + 1k(7(G,/U)). If we know

x € GL(n,P) that conjugatesé; to block upper triangular form with completely reducible diagonal
blocks, then we can choogeso that the torsion-free groug, is polyrational, and thusk(G,) =
h(G),). In particular,GG, is polyrational for anyp whenG is completely reducible.

Remark 2.4 underpins our algorithm to calculate ranks.

Corollary 2.5. A finitely generated subgroup 6fL(n, F) has finite Piifer rank if and only if it is
SF andQ-linear.

Proposition 2.6. The following are equivalent.
(i) G'is SF.
(i) G has finite Pifer rank.
(iii) G has finite torsion-free rank.

Proof. Theorem 1.1 and Proposition 2.3 give<) (ii). Then (i) < (iii) by Lemma 1.5 and the Tits
alternative. O

Remark2.7. Thus, we can test whethéf has finite rank using the algorithm of [7, Section 3.2],
which decides the Tits alternative f6f. This algorithm accepts a finitely generated linear group
over anyFF; if it returnsfalse, then the input does not have finite rank.

In fact, Proposition 2.3 holds for a wider class of groups: what is most ifapbhere is that
unipotent subgroups &L (n, P) have finite rank.

Lemma 2.8. If R is a finitely generated subring dP then an SF subgroup/ of GL(n, R) has
finite Prufer rank.



ALGORITHMS FOR LINEAR GROUPS OF FINITE RANK 5

Proof. It suffices to confirm thatl /U (H) has finite rank. Indeed /U (H) is finitely generated
AF by [21, 4.10, p. 57]. O

Proposition 2.9. Suppose thaff < GL(n, Op) is SF. Therh(G) < nm(nm + 1)/2 andrk(G) <
nm(2nm + 3)/2.

Proof. SinceGL(n, Op) embeds intdGL(nm, Z), we may assume without loss of generality that
G < GL(n,Z).

(i) Suppose that7 is abelian and)-irreducible. Then the enveloping algeli(@)q is a number
field of degree: overQ. Moreover,G is contained in the unit group of the ring of integerg 6% .
Hencerk(G) < n by Dirichlet’s Units Theorem [19, Theorem 12.6, p. 227].

(ii) If G is abelian and completely reducible ov@r then [20, Lemma 4, p. 173] implies that
G is conjugate to a group of block diagonal matridelag(1(g),--.,ux(g)) | ¢ € G} where
1i(G) < GL(n;, Z) is Q-irreducible. Therefore, by (i),

k(@) < S k(ui(@)) = Y my = n.

(iii) If G is UA thenrk(G) < 21 4 1y — n(n 4 1)/2 by (ii) and Lemma 2.1.
(iv) By Remark 2.4, there is an odd primesuch thah(G) = rk(G,) andrk(G) < 1k(G,) +
rk(¢,(G)) for p = pR. Thush(G) < n(n + 1)/2. By [12], a finite completely reducible linear

group of degree: can be generated Hyn /2| elements. Sincek(UT(n,p)) < n(n —1)/2, we

deduce thatk(¢,(G)) < n(n + 2)/2. The stated bound ark(G) follows. O

Remark2.1Q (i) If n > 4 then the bound omk(G) in Proposition 2.9 can be improved using
rk(GL(n,p)) < % + 1; see [15, p. 199].
(i) tk(GL(n,p)) > [n%/4] becausdUT(n,p) has an elementary abelian subgroup of order
[n?/4]
P .

3. SUBGROUPS OF FINITE INDEX

In this section we first derive a rank-based criterion to recognize arsrbgroup of a finitely
generated linear group of finite rank has finite index. Subsequently o @ result about the
unipotent radical that forms a key piece of our main algorithm.

3.1. Ranks and isolators. We recall some definitions from [13, pp. 83-86]. Theank (p prime)
of an abelian group is the cardinality of a maxinigtlinearly independent subset of elements of
orderp. A solvable groug= hasfinite abelian rankgG is asolvable FAR groujif there is a series
of finite length inG with each factor abelian, and of finite torsion-free rank and fipitank for
every primep. A minimax groups a group that has a series of finite length whose factors satisfy
either the maximal condition or the minimal condition on subgroups. The minimality) of a
solvable minimax groug- is the number of infinite factors in a series@fwith each factor finite,
cyclic, or quasicyclic. For finitely generated solvable groups, the nottd®AR, minimax, and
finite Prifer rank all coincide [13, pp. 175-176].

The following theorem and its proof were communicated to us by D.J.S. Robinso

Theorem 3.1(D.J.S. Robinson)Let H be a subgroup of a finitely generated solvable FAR group
G. Then|G : H]| is finite if and only ifh(H) = h(G).
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Proof. The ‘only if’ direction being clear, assume thatH ) = h(G). ForN <G,
h(HN/N) =h(H) —h(HNN)
> h(G) — h(N) = h(G/N).

Thush(HN/N) = h(G/N). We prove thatG : H| is finite by induction onmn(G). If m(G) =0
thenG is finite, so letm(G) > 0.

Denote the finite residual @ by D; this is a divisible periodic abelian group [13, 5.3.1, p. 96].
Suppose thab # 1. Thenm(G/D) < m(G), and by the inductive hypothesi§ : H D| is finite.
HenceH D is finitely generated, sé/ D = H Dy whereDy < D is finitely generated, i.e., finite.
This implies that HD : H| is finite, as i9G : H|.

Suppose now thad = 1. ThenG has a non-trivial torsion-free abelian normal subgraugor
example, the penultimate term in the derived series of a non-trivial torsé@mbrmal subgroup of
G). Sincem(G/A) < m(G), by induction|G : HA|is finite. Next,H N A # 1; otherwiseh(H ) =
h(HA/A) =h(G/A) < h(G). So the result holds falf A/(H N A) and its subgroug? /(H N A)
by induction. ThereforéH A : H| is finite, as i9G : H|. O

Remark3.2 Finitely generated linear groups are residually finite [21, 4.2, p. 51]osodr algo-
rithms we only need that part of the proof of Theorem 3.1 in wHick: 1.

Corollary 3.3. Let H < G < GL(n,FF) whereG is finitely generated and of finite Bfer rank.
Then|G : H| is finite if and only ifh(H) = h(G).

Theisolator in G of a subgroupH is
Io(H) = {z € G | 2* € H for some positive integek}.

Theorem 3.4. Let G be a finitely generated SF group, and t< G. Then|G : H]| is finite if and
only if Ic(H) = G.

Proof. See [13, 2.3.14, p. 45]. O
Lemma 3.5. Suppose thaf7 is a solvable FAR group with a finitely generated subgréfiguch
thath(H) = h(G). Thenlg(H) = G.

Proof. Sinceh((g, H)) = h(H) for everyg € G, the lemma follows from Theorem 3.1. O

Lemma 3.6. Suppose that7 is a group of finite torsion-free rank, and is a subgroup otz such
that/(H) = G. Thenh(G) = h(H).

We consider an illustrative example. L&t< UT(n,C) be an algebraic group defined ov@r
and setis := G N GL(n, S) for a subringS of C. Recall thatL. < G is an arithmetic subgroup
of G if L is commensurable with';; i.e., L N Gz has finite index in botl. andGy,.

Lemma 3.7. A finitely generated subgroup of G is an arithmetic subgroup af if and only if
rk(L) = rk(Gop).

Proof. By [17, Lemma 6, p. 138]H := L N Gz has finite index inL. SinceL is polyrational and
nilpotent,rk(H) = rk(L) by Theorem 3.1. Similarly (a&'z is finitely generated)Gz : H| <
oo if and only if rk(Gz) = rk(H). Also, it is not difficult to verify thatGg = Ig,(Gz). Hence
rk(Gq) = rk(Gz) by Lemma 3.6. O
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Remark3.8. By Lemma 3.7 and [6, Corollary 7.2], & is arithmetic inG thenh(L) is the dimen-
sion of G as an algebraic group.

3.2. Prifer rank of a unipotent normal subgroup. Let G be a finitely generated SF subgroup of
GL(n,P). We show how to construct a finitely generated subgroufg @¥) with the same Rifer
rank asU (G).

Suppose thaG = (z1,...,z,), and letY be a finite subset of/(G). The normal closure
N = (V)% isinU(G). Define subgroup&l; < Hy < --- of N as follows: letd; = (Y'), and for
1> 1, if Hz = <yi1> ce 7yis7;> then

-1
Hipyr = (yijuifyyf c1<j<si, 1<k<r).
Sincerk(H;) < rk(H;;+1) < rk(N), there exists such thatk(H;) = rk(H¢41).
Lemma 3.9. rk(H;) = rk(N).

Proof. By Lemma 3.5/, ,(H;) = Hy1. Soforl < i < randl < j < s, there are positive

—1 _
integersm;, m;; such that(yf]?)mij, (yf]? )™ € Hy. We claim thaty; € I¢(H;) for all j and
z € G. First, .
1 ) o E1
(yfjvxu )™= ((y)™7)™ € Higa

+1 —1,_+ _
sincer’“ < H;+1. Similarly (yfjleul)mvj € H;y1. Induction on the word length of then
establishes that’; € I (H;) as claimed. Henc& = H{ < H{ C Ig(Hy);i.e., N = In(Hy).

By Lemma 3.6, the proof is complete. O

4. COMPUTING RANKS OF SOLVABLEBY-FINITE LINEAR GROUPS

Let S be a finite subset o&L(n,P) where|P : Q| = m, and letG = (S). In this section we
present algorithms to compui€G) and a bound onk(G). These lead directly to an algorithm that
tests whether a finitely generated subgroug-dfas finite index.

Proposition 2.6 allows us first to test whetli¢has finite Piafer (and thereby torsion-free) rank:
IsFiniteRank(G) returnstrue precisely when the proceduisSolvableByFinite(G) as in
[7, p. 402] returngrue. HenceforthG has finite rank.

4.1. Auxiliary procedures.

4.1.1. Suppose that is abelian and irreducible. Methods to construct a presentatid@r afe
reasonably standard; see [1, Chapter 4] for details. We can find thedgemeous components of
G (e.g., by [16]), so the methods extend to completely reducible ab@li&wor such input we have
procedures (iPresentationA, which returns a presentation 6f, and (ii) RankA, which returns
the torsion-free rank off. Thenrk(G) = RankA(G) + £ wheres = 0 if G is torsion-free and =

1 otherwise.

4.1.2. IfG < UT(n,P) thenG is isomorphic to a subgroup & T (nm, Z) [17, Lemma 2, p. 111].
SinceUT (nm, Z) is polycyclic, a constructive polycyclic sequence may be calculated as in
[18, Chapter 9] or [1, Chapter 5]. From this one immediately read&afkU(G) := h(G) =
rk(G).
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4.2. Completely reducible groups. If G is completely reducible the@, is completely reducible
abelian andh(G) = h(G)). ThusRankCR(G) := h(G) = RankA(G,) as per 4.1.1.

Now letF be arbitrary andz < GL(n,F) be finitely generated SF. In [7, Section 4] we show
how to test whethef; is completely reducible. Here we describe a more general procedure.

We refer to [7, Section 3.2]. The computations carried outin a riis®dlvableByFinite(G)
yield a change of basis matrixsuch thatG* is block upper triangular and all diagonal blocks of
G, are abelian. Treating each diagonal blocksf separately, assume that, is abelian. Let
M = {hy,...,h} = NormalGenerators(G,); i.e, G, = (M)“. With a subscript<’ denoting
unipotent part from a Jordan decompositiéh= ((h1)u, - -, (ht)u) = (M)u < (Gp)u- SetU =
Fix((Gp)u) andW = Fix(H). SinceG normalizes(G,)., we see that/ is aG-module. We find
U as follows.

(L) W:.=Ww.

(2) While3 g; € S such thay, W # W
W =gWnWw.

(3) Returniv.

ClearlyU C W. Letv € W andg € G; then(h;)5v = g~ (h;)u.gv = g 'gv (becausguv € W C
W) = v. This shows thatV = U. By [20, Theorem 5, p. 172]/ is completely reducible as@,-
module. Therefore, ithar IF does not divideG : G|, thenU is a completely reduciblé-module
by [20, Theorem 1, p. 122]. Repeat the previous computation aftlraieg the current underlying
spaceV for G by V/U. Continuing in this fashion, we eventually produce a flag- V; D V5 D
.-+ D V; D {0} of G-modules with each quotief§ /V;, completely reducible.

We adopt the following notation in our pseudocode. For a matrix gidup block upper trian-
gular form, ;. denotes the projection df onto its block diagonal, and; is the projection onto its
ith diagonal block. When all diagonal blocks are completely reducieley = U(H) andu(H)
is a ‘completely reducible part’ off.

CompletelyReduciblePart(G)

Input: a finite subses of GL(n,F) such thathar F does not dividg¢G : G,| andG = (S) is
SF.
Output: a generating set for a completely reducible paft of

(1) ReplaceG by G* in block upper triangular form witlk diagonal blocks, wherg(Gy) is
abelian.

(2) M := NormalGenerators(G,).

(3) Fori = 1 to k, determiner; such thatu;(G)* is block upper triangular with completely
reducible diagonal blocks, by the recursive calculation of fixed pqiates for(y;(M)).,.

(4) Returnu(SY) wherey = x - diag(z1, ..., xg).

Remarkd.1 If G is nilpotent-by-finite then we can take= 1, u; = id, and omit Step (1).

We need one other procedure for completely redudible GL(n,P): PresentationCR(G)
returns a presentation 6f. This combines a presentationf(G), computed using the machinery
of [3], with PresentationA(G)).
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4.3. The unipotent radical. Our next procedure is based on Lemma 3.9 and its proof.

RankOfUnipotentRadical(G)

Input: a finite subse$ = {¢1, ..., g-} of GL(n,P) such thatG = (S) is SF.
Output:h(U(G)) = tk(U(G)).

(1) G := (CompletelyReduciblePart(G)).

(2) FindX := NormalGenerators(U(G)) from PresentationCR(G).

(3) WhileRankU((z, 2%, 2% :z € X,1<i<r)) > RankU((X)) do
X = {x,:ﬁgi,ngl rrxe X, 1<i<r}.

(4) ReturnRankU((X)).

Remark4.2 The finitely generated subgroupp = (X) of U(G) such thatk(H) = rk(U(G))
found at the end of Step (3) could be valuable in further computations@With

4.4, Algorithms for computing ranks, and an application. Guided by Remark 2.4, we assemble
our constituent procedures into the final algorithms.

HirschNumber(G)

Input: a finite subse$ of GL(n,P) such thatG = (S) is SF.
Output:h(G).
ReturnRankCR((CompletelyReduciblePart(())) + RankUnipotentRadical(G).

ThenRankBound(G) := HirschNumber(G) + rk(GL(nm, 3)) is an upper bound on the ifer
rank of G (see Remark 2.10).
Corollary 3.3 gives us the following.

IsOfFiniteIndex(G, H)

Input: finite subsets;, S; of GL(n, P) such thatG = (S;) is SF andH = (S;) < G.
Output:true if |G : H| is finite; false otherwise.

Returntrue if HirschNumber(G) = HirschNumber(H ); else returrfalse.

4.5. The implementation. We have implemented our algorithms as part of thed¥a package
INFINITE [9]. An algorithm of Biasse and Fieker [4] is used to work with irreducitidelaan groups
over number fields.

We report on several examples below (these will be available in a futlease of NFINITE).
Our experiments were performed on a 2GHz machine usingh V2.19-6. The test groups are
conjugated to ensure that generators are not sparse and matrix ergtteag@. Each time has been
averaged over three runs. As observed in [7, 8], the single moshexpdask is evaluating relators
to obtain normal generators for the congruence subgroup.

(1) Gy is anirreducible non-abelian subgroup®@k.(2, Q(4)), i = v/—1, andGs < GL(5,Q)
is a solvable group from the database of maximal finite rational matrix grduys Then
Gs = 1 ® G is ab-generator AF completely reducible subgroupGdf (10, Q(4)). We
computeh(G3) = 3in 10s.



10 A. S. DETINKO, D. L. FLANNERY, AND E. A. O'BRIEN

(2) G4 < G3 ® UT(3,2) is alb-generator, nilpotent-by-finite (NF), reducible but not com-
pletely reducible subgroup 6L (30, Q(¢)). We computéh(G4) = 6 in 87s.

(3) G5 < H® T whereT is an upper triangular subgroup@1.(6, Q) andH = diag(H1, Hs);
Hy, H, are maximal finite rational matrix groups of degreg<2 respectively. Thes-
generator grouprs is SF and not NF. We comput€Gs) = 7 in 1104s, and establish that
a randomd-generator subgroup has infinite indexlitBs.

(4) Leta € GL(6,Q) be of the formdiag(1,2,...) and leth = (m Z) wherez = (1 1):

0 01
y is a non-zer® x 4 matrix overQ, andu € UT(4,Z). ThenGs < GL(6,Q(v/5)) is
conjugate to a group generated byb, another diagonal matrix and two other unipotent
matrices inGL(6, Q). Note thatG is SF but not PF. We computgGs) = 12 in 18s.
(5) For each ofys, G4, Gg we select random finitely generated non-cyclic subgr(ﬂpsTo
establish tha€; has finite index inG; takes4s, 53s, and17s respectively.
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