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ABSTRACT. LetG be a finitely generated solvable-by-finite linear group. We present an algorithm
to compute the torsion-free rank ofG and a bound on the Prüfer rank ofG. This yields an algorithm to
decide whether a finitely generated subgroup ofG has finite index. The algorithms are implemented
in MAGMA for groups over algebraic number fields.

In [7, 8] we developed practical methods for computing with linear groups over an infinite field
F. Those methods were used to test whether a finitely generated subgroup of GL(n,F) is solvable-
by-finite (SF). We now proceed to the design of further algorithms for finitelygenerated SF linear
groups. Such a group may not be finitely presentable (see [21, 4.22, p.66]), so obviously cannot
be studied using approaches thatrequire a presentation; in contrast to, say, polycyclic-by-finite
(PF) groups. Extra restrictions are necessary to make computing feasible. Groups of finite rank
are suitable candidates from this point of view, because they are well-behaved algorithmically [13,
Section 9.3]. They also have convenient structural features (see [13, Section 5.2] and Section 1).

In this paper we develop initial results to enable computing with finitely generatedlinear groups
of finite rank. Since such groups areQ-linear (Proposition 1.4), our primary focus is the case that
F is an algebraic number field. We first test whetherG ≤ GL(n,F) has finite rank. If so, we
compute its torsion-free rank and an upper bound on its Prüfer rank. This furnishes an algorithm
to decide whether a finitely generated subgroup ofG has finite index. We determine various as-
ymptotic bounds of interest in their own right. Algorithms for the structural investigation ofG
are provided as well: these construct a completely reducible part, and a finitely generated subgroup
with the same rank as the unipotent radical. Our algorithms have been implementedin MAGMA [5].
We emphasize that computations are performed with a given group in its original representation,
avoiding enlargement of matrices to get an isomorphic copy overQ.

Naturally, it is possible to take advantage of additional properties ofG when they are known. If
G is polycyclic then one could obtain its torsion-free rank from a consistent polycyclic presentation
of G, the latter found as in [2]. An even more tractable class is nilpotent-by-finite groups (cf. [10,
Section 7]).

We summarize the layout of the paper. Section 1 gives background on lineargroups of finite rank,
including a reduction to SF groups over a number field. Section 2 is an extended treatment of such
groups. In Section 3 we discuss ranks of finite index subgroups; we are indebted to D.J.S. Robinson
for a vital theorem here. Section 3 also shows how to find the rank of a unipotent normal subgroup.
In Section 4 we present our algorithms and some experimental results.

Unless stated otherwise,F is an (infinite) field. The rational field is denoted as usual byQ, and
P is a number field with ring of integersOP.

1. PRELIMINARIES

A general reference for this section is [13, Chapter 5].
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1.1. Prüfer rank and torsion-free rank. Recall that a groupG has finite Pr̈ufer rankrk(G) if
each finitely generated subgroup ofG can be generated byrk(G) elements, andrk(G) is the least
such integer.

Theorem 1.1. LetG ≤ GL(n,F) have finite Pr̈ufer rank. ThenG is SF, and ifcharF > 0 thenG
is abelian-by-finite (AF).

Proof. See [21, 10.9, p. 141]. �

Corollary 1.2. Let G be a finitely generated subgroup ofGL(n,F). If G is AF then it has finite
Prüfer rank; ifG is completely reducible and has finite Prüfer rank then it is AF.

Proof. If G is AF then it has a normal finitely generated abelian subgroupA of finite index. Since
A andG/A have finite rank, so doesG. On the other hand, ifG is completely reducible and has
finite rank, then it is AF by Theorem 1.1 and [21, 3.5 (ii), p. 44]. �

Remark1.3. The converse of Theorem 1.1 is not true even whenG is finitely generated. However,
see Proposition 2.3.

Proposition 1.4. If G is a finitely generated subgroup ofGL(n,F) of finite Pr̈ufer rank thenG is
Q-linear, i.e., isomorphic to a subgroup ofGL(d,Q) for somed.

Proof. Suppose thatcharF = 0. By [21, 4.8, p. 56],G is (torsion-free)-by-finite, and by Theo-
rem 1.1,G is SF. ThusG contains a torsion-free solvable normal subgroup of finite index and finite
rank. The result now follows from [11, Theorem 2].

Suppose thatcharF > 0. By Theorem 1.1,G is PF. It is well-known that a PF group isZ-linear;
see [13, 3.3.1, p. 57]. �

Theorem 1.1 and Proposition 1.4 essentially reduce the investigation of finitelygenerated linear
groups of finite rank to the case of SF groups overQ. In Section 2.2 we show conversely that
finitely generated SF subgroups ofGL(n,P) always have finite rank. Hence we restrict attention
mainly to groups over number fields.

Now recall that a groupG has finite torsion-free rank if it has a subnormal series of finite length
whose factors are either periodic or infinite cyclic. The numberh(G) of infinite cyclic factors is the
Hirsch number, or torsion-free rank, of G.

Lemma 1.5. An SF group with finite Pr̈ufer rank has finite torsion-free rank.

Proof. See [13, p. 85]. �

Lemma 1.6. LetG be a group with normal subgroupN .

(i) If G has finite Pr̈ufer rank thenrk(G) ≤ rk(N) + rk(G/N).
(ii) If G has finite torsion-free rank thenh(G) = h(N) + h(G/N).

1.2. Polyrational groups. Let U(G) be the unipotent radical ofG ≤ GL(n,F); namely, the
largest unipotent normal subgroup ofG. Note thatG/U(G) is isomorphic to a completely re-
ducible subgroup ofGL(n,F). If we exhibitG in block triangular form with completely reducible
blocks, thenU(G) is the kernel of the projection ofG onto its main diagonal. Denote the largest
periodic normal subgroup ofG by τ(G).
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Lemma 1.7. LetG be a finitely generated subgroup ofGL(n,F) of finite Pr̈ufer rank. Thenτ(G)

is finite.

Proof. Theorem 1.1 and Proposition 1.4 imply thatG is SF and we may assume thatcharF = 0.
Thenτ(G) is isomorphic to a subgroup ofτ(G/U(G)), andG/U(G) is finitely generated AF by
Corollary 1.2. So we may further assume thatG has a normal abelian subgroupA of finite index.
SinceA is finitely generated,τ(G) ∩A ≤ τ(A) is finite. Thus|τ(G)| = |τ(G)A : A| · |τ(G) ∩A|
is finite. �

A group ispolyrationalif it has a series of finite length with each factor isomorphic to a subgroup
of the additive groupQ+. So a polyrational group has finite torsion-free and Prüfer ranks.

Proposition 1.8. If G is polyrational thenrk(G) = h(G).

Proof. See [13, 5.2.7, p. 93]. �

Theorem 1.9. A finitely generated subgroupG of GL(n,F) has finite Pr̈ufer rank if and only if it
is polyrational-by-finite. In this case,h(G) ≤ rk(G).

Proof. The first statement follows from Theorem 1.1, Lemmas 1.5 and 1.7, and [13,5.2.5, p. 92].
For the second, letN be a normal polyrational finite index subgroup ofG; thenh(G) = h(N) =

rk(N) ≤ rk(G). �

From now on, the term ‘rank’ without a qualifier means either Prüfer or torsion-free rank.

2. SOLVABLE -BY-FINITE GROUPS OVER A NUMBER FIELD

We now focus on finitely generated SF subgroups ofGL(n,P). Set|P : Q| = m. In this section
we obtain more detailed information about these groups that will be used in ouralgorithms.

A finitely generated subgroupG of GL(n,F) is contained inGL(n,R) whereR ⊆ F is a finitely
generated integral domain. The quotient ringR/ρ is a finite field for any maximal idealρ of R.
We explain in [7, Section 2] how to construct a congruence homomorphismϕρ : GL(n,R) →
GL(n,R/ρ) for a maximal idealρ such that

• the kernelGρ of ϕρ onG is unipotent-by-abelian (UA) ifG is SF;
• Gρ is torsion-free ifcharF = 0.

To be more explicit, letF = P = Q(α) whereα has minimal polynomialf(X), and letG = 〈S〉.
Thenϕρ onR ∩Q is reduction modulo an odd primep ∈ Z not dividing the discriminant off(X)

nor the denominators of entries in elements ofS ∪ S−1. Henceϕρ mapsR into the finite field
Zp(β), whereβ is a root of the modp reduction off(X). We adhere to this notation from [7].

2.1. Unipotent groups. Denote the groupUT(n,K) of upper unitriangular matrices over a com-
mutative unital ringK by T . DefineTi to be the subgroup ofT consisting of all matrices with their
first i− 1 superdiagonals equal to zero. ThenT = T1 > T2 > · · · > Tn = 1 is the lower (and up-
per) central series ofT . The homomorphism onTi that maps each element to itsith superdiagonal
has kernelTi+1 and image the(n− i)-fold direct sumK+⊕ · · · ⊕K+.

Lemma 2.1. If G ≤ UT(n,Q) then

(i) G is polyrational,
(ii) rk(G) = h(G) ≤ n(n− 1)/2.
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Proof. LetK = Q in the notation introduced just before the lemma. Since(G∩ Ti)/(G ∩ Ti+1) is
isomorphic to a subgroup ofTi/Ti+1, (i) is clear. Thenrk(G) = h(G) by Proposition 1.8. Also, by
Lemma 1.6 (ii),

h(T ) = h(T1/T2) + h(T2/T3) + · · ·+ h(Tn−1/Tn) =
∑n−1

i=1 i = n(n− 1)/2. �

Corollary 2.2. If G ≤ UT(n,P) thenG is polyrational andrk(G) = h(G) ≤ nm(nm− 1)/2.

2.2. Ranks of solvable-by-finite groups over number fields.In this sectionG is a finitely gen-
erated subgroup ofGL(n,P). We prove that ifG is SF then it has finite rank. Althoughrk(G)

can be arbitrarily large, the ranks of finitely generated SF subgroups ofGL(n,OP) are bounded by
functions ofn andm, which we give below.

Proposition 2.3. Suppose thatG is SF. ThenG is polyrational-by-finite, hence of finite Prüfer rank.

Proof. Select an idealρ such thatGρ is UA andG/Gρ is finite. LetU be the unipotent radical
of Gρ; thenGρ/U is finitely generated abelian. WriteGρ/U = H/U × τ(Gρ/U). SinceH/U

is a finitely generated free abelian group andU is conjugate to a subgroup ofUT(n,P), H is
polyrational. ThusGρ has a polyrational normal subgroup of finite index. Consequently the same
is true forG. �

Remark2.4. Retaining the notation in the proof of Proposition 2.3,h(G) = h(Gρ) andrk(G) ≤
rk(Gρ) + rk(ϕρ(G)) by Lemma 1.6. Furthermorerk(Gρ) ≤ h(H) + rk(τ(Gρ/U)). If we know
x ∈ GL(n,P) that conjugatesG to block upper triangular form with completely reducible diagonal
blocks, then we can chooseρ so that the torsion-free groupGρ is polyrational, and thusrk(Gρ) =

h(Gρ). In particular,Gρ is polyrational for anyρ whenG is completely reducible.

Remark 2.4 underpins our algorithm to calculate ranks.

Corollary 2.5. A finitely generated subgroup ofGL(n,F) has finite Pr̈ufer rank if and only if it is
SF andQ-linear.

Proposition 2.6. The following are equivalent.

(i) G is SF.
(ii) G has finite Pr̈ufer rank.

(iii) G has finite torsion-free rank.

Proof. Theorem 1.1 and Proposition 2.3 give (i)⇔ (ii). Then (i)⇔ (iii) by Lemma 1.5 and the Tits
alternative. �

Remark2.7. Thus, we can test whetherG has finite rank using the algorithm of [7, Section 3.2],
which decides the Tits alternative forG. This algorithm accepts a finitely generated linear group
over anyF; if it returnsfalse, then the input does not have finite rank.

In fact, Proposition 2.3 holds for a wider class of groups: what is most important here is that
unipotent subgroups ofGL(n,P) have finite rank.

Lemma 2.8. If R is a finitely generated subring ofP then an SF subgroupH of GL(n,R) has
finite Prüfer rank.
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Proof. It suffices to confirm thatH/U(H) has finite rank. Indeed,H/U(H) is finitely generated
AF by [21, 4.10, p. 57]. �

Proposition 2.9. Suppose thatG ≤ GL(n,OP) is SF. Thenh(G) ≤ nm(nm+ 1)/2 andrk(G) ≤
nm(2nm+ 3)/2.

Proof. SinceGL(n,OP) embeds intoGL(nm,Z), we may assume without loss of generality that
G ≤ GL(n,Z).

(i) Suppose thatG is abelian andQ-irreducible. Then the enveloping algebra〈G〉Q is a number
field of degreen overQ. Moreover,G is contained in the unit group of the ring of integers of〈G〉Q.
Hencerk(G) ≤ n by Dirichlet’s Units Theorem [19, Theorem 12.6, p. 227].

(ii) If G is abelian and completely reducible overQ, then [20, Lemma 4, p. 173] implies that
G is conjugate to a group of block diagonal matrices{diag(µ1(g), . . . , µk(g)) | g ∈ G} where
µi(G) ≤ GL(ni,Z) isQ-irreducible. Therefore, by (i),

rk(G) ≤ ∑k
i=1rk(µi(G)) =

∑k
i=1ni = n.

(iii) If G is UA thenrk(G) ≤ n(n−1)
2 + n = n(n+ 1)/2 by (ii) and Lemma 2.1.

(iv) By Remark 2.4, there is an odd primep such thath(G) = rk(Gρ) andrk(G) ≤ rk(Gρ) +

rk(ϕρ(G)) for ρ = pR. Thush(G) ≤ n(n + 1)/2. By [12], a finite completely reducible linear
group of degreen can be generated by⌊3n/2⌋ elements. Sincerk(UT(n, p)) ≤ n(n − 1)/2, we
deduce thatrk(ϕρ(G)) ≤ n(n+ 2)/2. The stated bound onrk(G) follows. �

Remark2.10. (i) If n ≥ 4 then the bound onrk(G) in Proposition 2.9 can be improved using
rk(GL(n, p)) ≤ n2

4 + 1; see [15, p. 199].
(ii) rk(GL(n, p)) ≥ ⌊n2/4⌋ becauseUT(n, p) has an elementary abelian subgroup of order

p⌊n
2/4⌋.

3. SUBGROUPS OF FINITE INDEX

In this section we first derive a rank-based criterion to recognize whena subgroup of a finitely
generated linear group of finite rank has finite index. Subsequently we prove a result about the
unipotent radical that forms a key piece of our main algorithm.

3.1. Ranks and isolators. We recall some definitions from [13, pp. 83–86]. Thep-rank (p prime)
of an abelian group is the cardinality of a maximalZp-linearly independent subset of elements of
orderp. A solvable groupG hasfinite abelian ranks(G is asolvable FAR group) if there is a series
of finite length inG with each factor abelian, and of finite torsion-free rank and finitep-rank for
every primep. A minimax groupis a group that has a series of finite length whose factors satisfy
either the maximal condition or the minimal condition on subgroups. The minimalitym(G) of a
solvable minimax groupG is the number of infinite factors in a series ofG with each factor finite,
cyclic, or quasicyclic. For finitely generated solvable groups, the notionsof FAR, minimax, and
finite Pr̈ufer rank all coincide [13, pp. 175–176].

The following theorem and its proof were communicated to us by D.J.S. Robinson.

Theorem 3.1(D.J.S. Robinson). LetH be a subgroup of a finitely generated solvable FAR group
G. Then|G : H| is finite if and only ifh(H) = h(G).
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Proof. The ‘only if’ direction being clear, assume thath(H) = h(G). ForN EG,

h(HN/N) = h(H)− h(H ∩N)

≥ h(G)− h(N) = h(G/N).

Thush(HN/N) = h(G/N). We prove that|G : H| is finite by induction onm(G). If m(G) = 0

thenG is finite, so letm(G) > 0.
Denote the finite residual ofG by D; this is a divisible periodic abelian group [13, 5.3.1, p. 96].

Suppose thatD 6= 1. Thenm(G/D) < m(G), and by the inductive hypothesis|G : HD| is finite.
HenceHD is finitely generated, soHD = HD0 whereD0 ≤ D is finitely generated, i.e., finite.
This implies that|HD : H| is finite, as is|G : H|.

Suppose now thatD = 1. ThenG has a non-trivial torsion-free abelian normal subgroupA (for
example, the penultimate term in the derived series of a non-trivial torsion-free normal subgroup of
G). Sincem(G/A) < m(G), by induction|G : HA| is finite. Next,H∩A 6= 1; otherwiseh(H) =

h(HA/A) = h(G/A) < h(G). So the result holds forHA/(H ∩A) and its subgroupH/(H ∩A)

by induction. Therefore|HA : H| is finite, as is|G : H|. �

Remark3.2. Finitely generated linear groups are residually finite [21, 4.2, p. 51], so for our algo-
rithms we only need that part of the proof of Theorem 3.1 in whichD = 1.

Corollary 3.3. Let H ≤ G ≤ GL(n,F) whereG is finitely generated and of finite Prüfer rank.
Then|G : H| is finite if and only ifh(H) = h(G).

The isolator in G of a subgroupH is

IG(H) = {x ∈ G | xk ∈ H for some positive integerk}.

Theorem 3.4. LetG be a finitely generated SF group, and letH ≤ G. Then|G : H| is finite if and
only if IG(H) = G.

Proof. See [13, 2.3.14, p. 45]. �

Lemma 3.5. Suppose thatG is a solvable FAR group with a finitely generated subgroupH such
thath(H) = h(G). ThenIG(H) = G.

Proof. Sinceh(〈g,H〉) = h(H) for everyg ∈ G, the lemma follows from Theorem 3.1. �

Lemma 3.6. Suppose thatG is a group of finite torsion-free rank, andH is a subgroup ofG such
that IG(H) = G. Thenh(G) = h(H).

We consider an illustrative example. LetG ≤ UT(n,C) be an algebraic group defined overQ,
and setGS := G ∩GL(n, S) for a subringS of C. Recall thatL ≤ GQ is an arithmetic subgroup
of G if L is commensurable withGZ; i.e.,L ∩GZ has finite index in bothL andGZ.

Lemma 3.7. A finitely generated subgroupL of GQ is an arithmetic subgroup ofG if and only if
rk(L) = rk(GQ).

Proof. By [17, Lemma 6, p. 138],H := L ∩GZ has finite index inL. SinceL is polyrational and
nilpotent,rk(H) = rk(L) by Theorem 3.1. Similarly (asGZ is finitely generated)|GZ : H| <
∞ if and only if rk(GZ) = rk(H). Also, it is not difficult to verify thatGQ = IGQ

(GZ). Hence
rk(GQ) = rk(GZ) by Lemma 3.6. �
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Remark3.8. By Lemma 3.7 and [6, Corollary 7.2], ifL is arithmetic inG thenh(L) is the dimen-
sion ofG as an algebraic group.

3.2. Prüfer rank of a unipotent normal subgroup. LetG be a finitely generated SF subgroup of
GL(n,P). We show how to construct a finitely generated subgroup ofU(G) with the same Pr̈ufer
rank asU(G).

Suppose thatG = 〈x1, . . . , xr〉, and letY be a finite subset ofU(G). The normal closure
N = 〈Y 〉G is inU(G). Define subgroupsH1 ≤ H2 ≤ · · · of N as follows: letH1 = 〈Y 〉, and for
i ≥ 1, if Hi = 〈yi1, . . . , yisi〉 then

Hi+1 = 〈yij , yxk

ij , y
x−1

k

ij : 1 ≤ j ≤ si, 1 ≤ k ≤ r〉.
Sincerk(Hi) ≤ rk(Hi+1) ≤ rk(N), there existst such thatrk(Ht) = rk(Ht+1).

Lemma 3.9. rk(Ht) = rk(N).

Proof. By Lemma 3.5,IHt+1
(Ht) = Ht+1. So for1 ≤ i ≤ r and1 ≤ j ≤ st, there are positive

integersmij , m̄ij such that(yxi

tj )
mij , (y

x−1

i

tj )m̄ij ∈ Ht. We claim thatyxtj ∈ IG(Ht) for all j and
x ∈ G. First,

(yxvx
±1
u

tj )mvj = ((yxv

tj )
mvj )x

±1
u ∈ Ht+1

sinceH
x±1

k

i ≤ Hi+1. Similarly (yx
−1
v x±1

u

tj )m̄vj ∈ Ht+1. Induction on the word length ofx then
establishes thatyxtj ∈ IG(Ht) as claimed. HenceN = HG

1 ≤ HG
t ⊆ IG(Ht); i.e.,N = IN (Ht).

By Lemma 3.6, the proof is complete. �

4. COMPUTING RANKS OF SOLVABLE-BY-FINITE LINEAR GROUPS

Let S be a finite subset ofGL(n,P) where|P : Q| = m, and letG = 〈S〉. In this section we
present algorithms to computeh(G) and a bound onrk(G). These lead directly to an algorithm that
tests whether a finitely generated subgroup ofG has finite index.

Proposition 2.6 allows us first to test whetherG has finite Pr̈ufer (and thereby torsion-free) rank:
IsFiniteRank(G) returnstrue precisely when the procedureIsSolvableByFinite(G) as in
[7, p. 402] returnstrue. HenceforthG has finite rank.

4.1. Auxiliary procedures.

4.1.1. Suppose thatG is abelian and irreducible. Methods to construct a presentation ofG are
reasonably standard; see [1, Chapter 4] for details. We can find the homogeneous components of
G (e.g., by [16]), so the methods extend to completely reducible abelianG. For such input we have
procedures (i)PresentationA, which returns a presentation ofG; and (ii) RankA, which returns
the torsion-free rank ofG. Thenrk(G) = RankA(G) + ε whereε = 0 if G is torsion-free andε =

1 otherwise.

4.1.2. IfG ≤ UT(n,P) thenG is isomorphic to a subgroup ofUT(nm,Z) [17, Lemma 2, p. 111].
SinceUT(nm,Z) is polycyclic, a constructive polycyclic sequence forG may be calculated as in
[18, Chapter 9] or [1, Chapter 5]. From this one immediately reads offRankU(G) := h(G) =

rk(G).
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4.2. Completely reducible groups. If G is completely reducible thenGρ is completely reducible
abelian andh(G) = h(Gρ). ThusRankCR(G) := h(G) = RankA(Gρ) as per 4.1.1.

Now let F be arbitrary andG ≤ GL(n,F) be finitely generated SF. In [7, Section 4] we show
how to test whetherG is completely reducible. Here we describe a more general procedure.

We refer to [7, Section 3.2]. The computations carried out in a run ofIsSolvableByFinite(G)

yield a change of basis matrixx such thatGx is block upper triangular and all diagonal blocks of
Gx

ρ are abelian. Treating each diagonal block ofGx separately, assume thatGρ is abelian. Let
M = {h1, . . . , ht} = NormalGenerators(Gρ); i.e,Gρ = 〈M〉G. With a subscript ‘u’ denoting
unipotent part from a Jordan decomposition,H = 〈(h1)u, . . . , (ht)u〉 = 〈M〉u ≤ (Gρ)u. SetU =

Fix((Gρ)u) andW = Fix(H). SinceG normalizes(Gρ)u, we see thatU is aG-module. We find
U as follows.

(1) W̄ := W .
(2) While∃ gi ∈ S such thatgiW̄ 6= W̄

W̄ := giW̄ ∩ W̄ .
(3) ReturnW̄ .

ClearlyU ⊆ W̄ . Letv ∈ W̄ andg ∈ G; then(hi)
g
uv = g−1(hi)u.gv = g−1gv (becausegv ∈ W̄ ⊆

W ) = v. This shows that̄W = U . By [20, Theorem 5, p. 172],U is completely reducible as aGρ-
module. Therefore, ifcharF does not divide|G : Gρ|, thenU is a completely reducibleG-module
by [20, Theorem 1, p. 122]. Repeat the previous computation after replacing the current underlying
spaceV for G by V/U . Continuing in this fashion, we eventually produce a flagV = V1 ⊃ V2 ⊃
· · · ⊃ Vl ⊃ {0} of G-modules with each quotientVi/Vi+1 completely reducible.

We adopt the following notation in our pseudocode. For a matrix groupH in block upper trian-
gular form,µ denotes the projection ofH onto its block diagonal, andµi is the projection onto its
ith diagonal block. When all diagonal blocks are completely reducible,kerµ = U(H) andµ(H)

is a ‘completely reducible part’ ofH.

CompletelyReduciblePart(G)

Input: a finite subsetS of GL(n,F) such thatcharF does not divide|G : Gρ| andG = 〈S〉 is
SF.

Output: a generating set for a completely reducible part ofG.

(1) ReplaceG by Gx in block upper triangular form withk diagonal blocks, whereµ(Gx
ρ) is

abelian.
(2) M := NormalGenerators(Gρ).
(3) For i = 1 to k, determinexi such thatµi(G)xi is block upper triangular with completely

reducible diagonal blocks, by the recursive calculation of fixed point spaces for〈µi(M)〉u.
(4) Returnµ(Sy) wherey = x · diag(x1, . . . , xk).

Remark4.1. If G is nilpotent-by-finite then we can takek = 1, µ1 = id, and omit Step (1).

We need one other procedure for completely reducibleG ≤ GL(n,P): PresentationCR(G)

returns a presentation ofG. This combines a presentation ofϕρ(G), computed using the machinery
of [3], with PresentationA(Gρ).
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4.3. The unipotent radical. Our next procedure is based on Lemma 3.9 and its proof.

RankOfUnipotentRadical(G)

Input: a finite subsetS = {g1, . . . , gr} of GL(n,P) such thatG = 〈S〉 is SF.
Output:h(U(G)) = rk(U(G)).

(1) G̃ := 〈CompletelyReduciblePart(G)〉.
(2) FindX := NormalGenerators(U(G)) from PresentationCR(G̃).
(3) WhileRankU(〈x, xgi , xg−1

i : x ∈ X, 1 ≤ i ≤ r〉) > RankU(〈X〉) do
X := {x, xgi , xg−1

i : x ∈ X, 1 ≤ i ≤ r}.
(4) ReturnRankU(〈X〉).

Remark4.2. The finitely generated subgroupH = 〈X〉 of U(G) such thatrk(H) = rk(U(G))

found at the end of Step (3) could be valuable in further computations withG.

4.4. Algorithms for computing ranks, and an application. Guided by Remark 2.4, we assemble
our constituent procedures into the final algorithms.

HirschNumber(G)

Input: a finite subsetS of GL(n,P) such thatG = 〈S〉 is SF.
Output:h(G).

ReturnRankCR(〈CompletelyReduciblePart(G)〉) + RankUnipotentRadical(G).

ThenRankBound(G) := HirschNumber(G) + rk(GL(nm, 3)) is an upper bound on the Prüfer
rank ofG (see Remark 2.10).

Corollary 3.3 gives us the following.

IsOfFiniteIndex(G,H)

Input: finite subsetsS1, S2 of GL(n,P) such thatG = 〈S1〉 is SF andH = 〈S2〉 ≤ G.
Output:true if |G : H| is finite;false otherwise.

Returntrue if HirschNumber(G) = HirschNumber(H); else returnfalse.

4.5. The implementation. We have implemented our algorithms as part of the MAGMA package
INFINITE [9]. An algorithm of Biasse and Fieker [4] is used to work with irreducible abelian groups
over number fields.

We report on several examples below (these will be available in a future release of INFINITE).
Our experiments were performed on a 2GHz machine using MAGMA V2.19-6. The test groups are
conjugated to ensure that generators are not sparse and matrix entries are large. Each time has been
averaged over three runs. As observed in [7, 8], the single most expensive task is evaluating relators
to obtain normal generators for the congruence subgroup.

(1) G1 is an irreducible non-abelian subgroup ofGL(2,Q(i)), i =
√
−1, andG2 ≤ GL(5,Q)

is a solvable group from the database of maximal finite rational matrix groups [14]. Then
G3 = G1 ⊗ G2 is a5-generator AF completely reducible subgroup ofGL(10,Q(i)). We
computeh(G3) = 3 in 10s.
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(2) G4 ≤ G3 ⊗ UT(3,Z) is a15-generator, nilpotent-by-finite (NF), reducible but not com-
pletely reducible subgroup ofGL(30,Q(i)). We computeh(G4) = 6 in 87s.

(3) G5 ≤ H⊗ T whereT is an upper triangular subgroup ofGL(6,Q) andH = diag(H1, H2);
H1, H2 are maximal finite rational matrix groups of degrees4, 2 respectively. The8-
generator groupG5 is SF and not NF. We computeh(G5) = 7 in 1104s, and establish that
a random4-generator subgroup has infinite index in163s.

(4) Let a ∈ GL(6,Q) be of the formdiag(1, 2, . . .) and letb =
(

x y

0 u

)

wherex =
(

1 1

0 1

)

,

y is a non-zero2 × 4 matrix overQ, andu ∈ UT(4,Z). ThenG6 ≤ GL(6,Q(
√
5 )) is

conjugate to a group generated bya, b, another diagonal matrix and two other unipotent
matrices inGL(6,Q). Note thatG6 is SF but not PF. We computeh(G6) = 12 in 18s.

(5) For each ofG3, G4, G6 we select random finitely generated non-cyclic subgroupsĜj . To
establish that̂Gj has finite index inGj takes4s,53s, and17s respectively.
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