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Abstract

We modify the local strategy of [2] and use it to classify the radical subgroups
and chains of the Fischer simple group Fipss. We verify the Alperin weight con-
jecture and the Dade final conjecture for this group.

1 Introduction

In [2] we presented a local strategy to decide the Alperin and Dade conjectures for the
finite simple groups and demonstrated its computational effectiveness by using it to
verify these conjectures for the Conway simple group Cos. In this paper, we develop a
modification of this strategy and use it to verify the Alperin and Dade conjectures for
the Fischer simple group Fiss. Although the outlines of our computations and proofs
are similar to those for Coq, the details are significantly more complex.

We face two central challenges in attempting to decide these conjectures for Fiys.
The first is to determine the radical subgroups of Fiy3 and hence to obtain its rad-
ical chains. In practice, some of its radical chains cannot be determined explicitly
using existing approaches. Our local strategy and its modification presented here use
knowledge of both the maximal and p-local subgroup structure of Fis3 to determine its
radical subgroups. Second, we must determine the character tables of the normalizers
of radical 2- and 3-chains of Fiy;3. The character tables of the normalisers of some of
the radical chains could not be calculated directly from the given representation using
either of GAP [12] or MAGMA [3]. If the relevant normalizer is a maximal subgroup of
a finite simple group, then its character table is stored in a library supplied with GAP.
Otherwise, in some cases, we constructed a “useful” representation of the normalizer
and attempted to compute directly its character table; if this construction failed, we
used lifting of characters of quotient groups, induction and decomposition of characters
of subgroups of the normalizer to obtain its character table. We outline the details in
Section 6.

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [7] generalized the Knorr-Robinson version of the Alperin weight conjecture
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and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [8] announced that his final conjecture
needs only to be verified for finite non-abelian simple groups; in addition, if a finite
group has both trivial Schur multiplier and outer automorphism group, then the or-
dinary conjecture is equivalent to the final conjecture. We verify the Alperin weight
conjecture and the Dade ordinary conjecture, and so the final one, for Figs.

The paper is organized as follows. In Section 2, we fix notation and state the two
conjectures in detail. In Section 3, we develop our modified local strategy and explain
how we applied it to determine the radical subgroups of Fis3. In Section 4, we classify
the radical subgroups of Fis3 up to conjugacy and verify the Alperin weight conjecture.
In Section 5, we do some cancellations in the alternating sum of Dade’s conjecture
when p = 2 or 3, and then determine radical chains (up to conjugacy) and their local
structures. In the last section, we verify Dade’s conjecture. Three appendices provide
details of proofs and character tables.

2 The Alperin and Dade Conjectures

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R,
where O,(N(R)) is the maximal normal p-subgroup of the normalizer N(R) = Ng(R).
Denote by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G)
be the set of p-blocks, B € BIk(G) and ¢ € Irr(N(R)/R). The pair (R, ¢) is called a
B-weight if ¢ has p-defect 0 (see (5.5) of [7] for the definition) and B()“ = B (in the
sense of Brauer), where B(y) is the block of N(R) containing ¢. A weight is always
identified with its G-conjugates. Let W(B) be the number of B-weights, and ¢(B) the
number of irreducible Brauer characters of B. Alperin conjectured that W(B) = ¢(B)
for each B € BIk(G).
Given a p-subgroup chain

C:Pp<P<---<P, (2.1)
of a finite group G, define |C|=n, Cy: Bh< P, < --- < P, C(C) = Cg(P,), and
N(C) = Ng(C)=N(P)NN(P)N---NN(P,). (2.2)

The chain C is said to be radical if it satisfies the following two conditions: (a) Py =
O,(G) and (b) P, = O,(N(Cy)) for 1 <k < n.
Denote by R = R(G) the set of all radical p-chains of G. For B € Blk(G) and integer
d >0, let k(N (C), B,d) be the number of characters in the set

Irr(N(C), B,d) = {4 € Ir(N(C)) : B()® = B, d(v) = d},

where d(v) is the defect of .
Dade’s Ordinary Conjecture [7]. If O,(G) =1 and B is a p-block of G with defect
d(B) > 0, then for an integer d > 0,

Z (_1)‘C|k(N(C)7 B, d) =0, (23)
CER/G

where R/G is a set of representatives for the G-orbits of R.
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3 A modification of the local strategy

The maximal subgroups of Fiy; were classified by Flaass [9] and Wilson [14]. Using
this classification, we know that each radical 2- or 3-subgroup R of Fiys is radical in
one of the maximal subgroups M of Fiy; and further that Ng,,(R) = Ny (R).

A modified version of the local strategy of [2] was developed to classify the radical
subgroups R. We review this method here and develop the necessary modification.

Step (1). We first consider the case where M is a p-local subgroup. Let Q = O, (M),
so that Q < R. We find all the subgroup classes of a Sylow 2-subgroup D of M
containing ). Using MAGMA, we explicitly compute the quotient M /@ and the natural
homomorphism 1 : M — M/Q. This approach provides a regular representation for
M/Q, whose (potentially large) degree is usually computationally limiting. Hence, we
construct a power-conjugate presentation for the quotient group n(D) = D/Q since
such presentations are computationally very effective. We now compute all subgroup
classes in D/@Q. The preimages in D of the subgroup classes of D/Q are the subgroup
classes of D containing Q).

Available computational resources limit our ability to apply this approach directly
to some maximal p-local subgroups of Fiy3. For example, when p = 2 and M = 2.Figs,
we could not construct the natural homomorphism 7 : M — M/Q = Fiy. In addi-
tion, in some cases where we obtained the natural homomorphism 7, the computations
of the normalizers of subgroup classes of D containing () are too expensive, since the
minimal permutation representation of Fiss has degree 31 671. We make the following
modification.

Choose a subgroup X of M. Using MAGMA, we explicitly compute the coset action
of M on the cosets of X in M; we obtain a group W representing this action, a group
homomorphism f from M to W, and the kernel K of f. For a suitable X, we have
K = @ and the degree of the action of W on the cosets is much smaller than that of M.
We can now directly classify the radical p-subgroup classes of W, and the preimages
in M of the radical subgroup classes of W are the radical subgroup classes of M.

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a subgroup K of M such
that Ng(R) = Nj(R) for each radical subgroup R of M. If K is p-local, then we apply
Step (1) to K. If K is not p-local, we can replace M by K and repeat Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
possible fusions among the resulting list of radical subgroups can be decided readily
by testing whether the subgroups in the list are pairwise Fiss-conjugate.

As an example of the application of the modified strategy, consider the case where
p =2 and M = 2Y M,y;. We can find a subgroup X of index 23 in M, so that
W ~ My and K = Oy(M) = 2. Applying the local strategy to W, we determine the
radical subgroup classes of W, and the preimages are radical subgroups of M. In some
cases, we must apply the modified local strategy to W. For example, when p = 2 and
M = 2.Fisg, if we choose a subgroup X of M with index 3510, then W =~ Fiy. We use
the modified local strategy to classify the radical subgroup classes of W.

In our investigation, we used the minimal degree representation of Fis, as a per-
mutation group on 31 671 points. Its maximal subgroups were constructed using the
details supplied in [5] and the black-box algorithms of Wilson [15]. We also made



extensive use of the algorithm described in [6] to construct random elements, and the
procedures described in [2] for deciding the conjectures.

The computations reported in this paper were carried out using MAGMA V.2.3-1
on a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights

Let ®(G,p) be a set of representatives for conjugacy classes of radical subgroups of
G. For HK < G, we write H <g K if z7'Hz < K; and write H €¢ ®(G,p) if
r 'Hz € ®(G, p) for some z € G. We shall follow the notation of [5]. In particular,
if p is odd, then p1++27 is an extra-special group of order p'*2? with exponent p; if §
is + or —, then 2,77 is an extra-special group of order 2'*27 with type §. If X and
Y are groups, we use X.Y and X : Y to denote an extension and a split extension of
X by Y, respectively. Given a positive integer n, we use Ep» or simply p" to denote
the elementary abelian group of order p”, Z, or simply n to denote the cyclic group
of order n, and D5, to denote the dihedral group of order 2n.
Let G be the simple Fischer group Figs. Then

G| =2"%-3%.5%.7-11-13-17- 23,

and we may suppose p € {2, 3,5}, since both conjectures hold for a block with a cyclic
defect group by Theorem 9.1 of [7].

We denote by Irt’(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number log,(|H|). Given R € ®(G,p), let C(R) =
Cg(R) and N = Ng(R). If By = By(QG) is the principal p-block of G, then (c.f. (1.3)
of [2])

W(By) = 3_ [’ (N/C(R)R)], (4.1)
R

where R runs over the set ®(G, p) such that the p-part d(C(R)R/R) = 0. The character
table of N/C(R)R can be calculated by MAGMA, and so we find |Irt’(N/C(R)R)|.

Lemma 4.1 The non-trivial radical 5-subgroups R of Fisz (up to conjugacy) are given
in Table 1, where FJ is the Frobenius group with kernel p" and complement Zy,.

R | CR) | N__| [°(N/C(R)R)
5 5 X S7 Fgl X S7
52 | 52x2 | (Ffx F}x2).2.3 16

Table 1: Non-trivial radical 5-subgroups of Figs

ProoF: By [5], p. 178, G = Fiy; has a unique class of elements z of order 5,
and by MAcMA, C(z) = 5 x Sy and N({(z)) = Fi x S;. In addition, a Sylow 5-
subgroup S of G is elementary abelian of order 25. We may suppose x € S, so that
Nnay)(S) = Fi x F x 2 and by MAGMA, N(S) = (F x Fy x 2).2.3. O



Lemma 4.2 The non-trivial radical 3-subgroups R of Figs (up to conjugacy) are given
in Table 2, where S € Syl;(Fias) is a Sylow 3-subgroup of Figs.

R C(R) N | |Ir°(N/C(R)R)|
313 x 07(3) 53 X 07(3)

36 36 3% L4(3):2 2
3}:—8 3 31+8 21+6 31+2 25 9
33.36 33 33.3%: (L3(3) x 2) 2
33:“8.3 3 31+8 3. 21+4 (S3 x S3) 4
33.3.33.33 33| 33.3.3%.3%: (L3(3) x 2) 2
3?“8.32 3 3“r8 32: (254 x 2) 4
33:3.33.33.32 32| 3%:3.33.3%.32.(25, x 2) 4
3?8: 31*2 3 31+8 31+2 (25, x 2) 4
S 3 S.23 8

Table 2: Non-trivial radical 3-subgroups of Fias

ProOF: Let i € {1,...,5}, and let M; denote a maximal 3-local subgroup of G = Fiys
where M; = N(3A) ~ S5 x 07(3), My = N(3B) ~ 31+8:2116:31+2: 25, M5 = N(3°%) ~
3%: L4(3):2, My = N(3B?) ~ 33.3% (L3(3) x2) and M5 = N(3B3) ~ 33.[37]: (L3(3) x 2).
By Theorem A of [14], each 3-local subgroup of G is G-conjugate to a subgroup of M;
for some 1.

The subgroup M; and M, are normalizers of some 34 and 3B elements, so we
can easily construct them in G. The centralizer C(3C) of an element of class 3C
is isomorphic to 3% (2 x Uy(2)) (c.f. [14], p. 78) and M3 is the normalizer of 35 =
O3(C(3C)) in G. As shown in the proof of Theorem A of [14] (see p. 81 of [14]),
O5(M,) = 31® contains two classes of 3B-pure elementary subgroups of order 32,
with representatives say X and Y such that M, = N(X) and M5 = N(Y'). Repeated
random selections of elements allow us to obtain X and Y'; and so we can construct all
of the subgroups M;.

Let R be a non-trivial radical 3-subgroup of G. Then N(R) is a 3-local subgroup of
G, so that we may suppose N(R) < M; for some i. Thus we may suppose R € ®(M;, 3)
such that N(R) = Ny (R). We can apply the local strategy of [2] or the modified local
strategy to each M;.

(1) Let 3% = O3(M>) and apply the local strategy to Ms. By MAGMA,
(M, 3) = {311%,3118.3,31 15,32, 31+8. 312 SY, (4.2)

where S € Syl;(G). Moreover, N(R) = Ny, (R) for each R € ®(M>,3) and we may
suppose ®(Ms, 3) C ®(G, 3). If L = Ny, (3118.3)/3178.3, then by MAcGMA, |L| = 27-32,
E = 04(L) is an extra-special subgroup of order 2° and CL(F) = Z(E) = 2. Since
L/E < Out(FE), the outer automorphism group Out(E) contains a subgroup of order 9,
so that E has plus type and E = 2!+%. By Proposition 2.5.9 of [10], Out(21*) = Of (2)
has three subgroups of index 2, S3x S3, S3x S3 and (S3%3).2, and (S5x3).2/(3x3) ~ 4.
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Using MAGMA, we have L = 2174,(S3 x S;). If R = S, then N(S)/S = 23. The other
normalizers of R € ®(M,, 3) are given by the proofs (2) and (3) below.

(2) If 3%.[3"] = O3(Ms), then by MacMma, [37] = 3.3%.3%. Applying the local
strategy of [2] to My, we have

(M, 3) = {3°.3.3°.3%,3%.3.3°.3%.3?, 31 +%: 3112, S}, (4.3)

where 3118: 312 €, ®(My, 3). In addition, N(R) = Ny (R) for all R € ®(Ms, 3), so
we may suppose ®(Ms,3) C ®(G,3). Since each subgroup R/O3(M;) is a unipotent
radical of a parabolic subgroup of L3(3), the structures of N(R) can be determined
using the subgroup structures of Ls(3) (see p. 13 of [5]).

(3) Let 33.3%° = Oy(M,). Apply the local strategy of [2] to M,. Then
(M., 3) = {3°.3%,3%.3%.3?,3178: 3%, '}, (4.4)

where S' € Sylg(My) and 3178:3% €5 ®(M,,3). In addition, N(R) = Ny, (R) for
R € ®(M,,3)\{33.35.3%, S"}. The structures of N(R) can also be determined using the
subgroup structures of L3(3). In particular, for R € {32.3%.32, '}, by [5], p. 13,

[ 3%.35.32.(2S, x 2) if R = 3%.3%.32,
Noay (B) = { S'.93 fR=39"

(4) Let M = My, U = Oy(M) and U # R € ®(M,3). Then U < R and D = RJU
is a radical subgroup of M/U = L4(3):2, since Ny (R)/U ~ Ny y(R/D). By [11],
Lemma 2.1, D = D N L(3) is a radical subgroup of L4(3). By the Borel-Tits theorem
[4], Np,3)(D) is a parabolic subgroup @ of L4(3) and D = O3(Q). Thus @ is a
subgroup of a maximal parabolic subgroup of L,(3). By [5], p. 69, we may suppose
Q < Q1 = 3% L3(3) (two classes of Q) or Q < Qo = 3%:2(Ay x Ay).2. If H is
the commutator subgroup of M, then H = 3%: L4(3). By MAGMA, Ny py(Q1) = Q1
and Npp(Q2) = (Q2).2, so that an element of L4(3):2\L4(3) fuses the two classes of
parabolic subgroups 33: L3(3).

Let K; be the preimage of Ny, 3)2(Q;) in M. Then K; = 3%.3% L3(3) and K, =
36.3%:2(A4 x Ay).2.2. We can apply the local strategy to each K; to classify the radical
subgroups of K;. If Q < 3%: L3(3), then D €,,(3) ®(3% L3(3),3) and R €¢ (K1, 3). If
Q < 3%:2(A; x Ay).2, then

NL4(3);2(D) < 343 2(A4 X A4)22 < L4(3) 2.

Thus D €y ®(3%:2(As x Ay).2.2,3) and R €g (K>, 3) such that N(R) = Ng,(R).
By MAGMA, 30.3% =¢ 3%.36 € &(M,, 3) and

®(3°.3%: Ls3(3),3) = {3°.3%,3%.30.3%,317%.3%, 5"} =¢ ®(My, 3). (4.5)
Moreover, N(R) # Ny, (R) for all R € ®(K,3), Nuy,(R) = Nk, (R) for R = 3%.3% and
3178.3% and Ny, (R) # Nk, (R) for R = 3°:3%:3% and S’. In addition,
33.35: L3(3) if R=33%.3°,
33.36.32.29, if R=3%36.32,
3178.3225, if R =3.8.32,
5.2 if R=29"

NKI (R) =



N, (33.35.3%) = 33.30.32.(25, x 2) and Ny, (S') = §'.2%,
By MAGMA, 3%.3* = O5(K3) is G-conjugate to 31+8.3 and

B(3%.3%:2(As x Ay).2.2,3) = {3118.3,315.3?, §'}, (4.6)
where S’ €g ®(My, 3). Moreover, N(311%.3) = Ny, (3178.3) = N, (3118.3),
N(3178.3%) # Niy, (3118.3%) = N, (318.3%) ~ 318.3%:25,
and N(S') # Nar, (S') = Ng,(S') = 5'.23. Tt follows that
®(Ms,3) = {3°,3°.3%,3%.30.3%,31%.3,318.3%, 5}, (4.7)

and moreover, N(R) = Ny, (R) for R € {35, 3118.3}.

(5) Let U = O3(M;) = 3and U # R € ®(My,3). Then C(U) = 3 x 07(3)
is a index 2 subgroup of M; and we can apply the modified local strategy to C(U).
By [11], Lemma 2.1, R = RN C(U) is a radical subgroup of C(U), so R/U is a
radical 3-subgroup of C(U)/U = O7(3). By the Borel-Tits theorem [4], No,@)(R/U)
is a parabolic subgroup of O7(3) which is contained in one of the maximal parabolic
SUng'OUpS (Cf [5], P 109), Ql = 3}|_+62(2A4 X A4).2, QQ = 33+32L3(3) and Qg =
3°:U4(2):2. Let K; be the preimage of Q; in M;. Then K; = S5 x 3176: (24, x Ay).2,
Ky, = S3 x 3%73: L3(3) and K3 = S3 x 35:Uy(2):2. Moreover, we may suppose R €
®(K;, 3) for some i such that N(R) = Ng,(R). The subgroups K; can be constructed
using the local structure of O;(3) = [C(U),C(U) | and we can apply the local strategy
to each K;.

Applying the local strategy to K, we have

®(Ky,3) = {3 x 317%,3 x 31°.3,3 x 3%:3%, 5"}, (4.8)

where 3 x 35:3? is a radical subgroup of K3 and S” € Syl;(K;). Moreover, N(R) #
Ny, (R) = Nk, (R) for all R € ®(K7,3) and (c.f. [5], p. 26)

S3 x 31T6(2A44 x Ay).2 if R =3 x 341,

N (R) o S3 X 3}|_+6_3: 254 fTR=3x 3}|—+6'3’

K =

1 S3 x 3533 (84 X 2) fR=3x% 35:33’
S .23 fR=9"

Applying the local strategy to K5, we have

® (Ko, 3) = {3 x 3°%%,3 x 3%%:3%,3 x 3170.3, 5"}, (4.9)
and moreover, N(R) # Ny, (R) = Ng,(R) for all R € ®(K3,3), Nk,(R) ~ Nk, (R) for
R e {3 x 3116.3,5"} and

Sy x 333: L3(3)  if R =3 x 3%%3,
NK2(R):{ ’ 3()

Sy x 33+3.32:25, if R =3 x 3313.32.
Similarly, by MAGMA,

®(K3,3) = {3% 3 x 3°:3%,3 x 331332, 5", (4.10)
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and moreover, N(R) # Ny, (R) = Ng,(R) for all R € ®(Kj,3), Nk, (R) ~ Nk, (R) for
R € {3 x3%:3% 5"} and N, (3 x 3373.3%) ~ N, (3 x 3373.3?). It follows that

®(My,3) = {3,3%3x 3% 3 x 317%,3 x 3110.3,3 x 3%13: 3?3 x 3:3%, 5"}, (4.11)

and N(R) # Ny (R) for all R € ®(My, 3)\{3}.
Thus the radical 3-subgroups are as claimed. The centralizers and the normalizers
of R can be obtained by MAGMA. O

Lemma 4.3 Given integer 1 < 1 < 6, let M; be the maximal subgroups of G = Figg
such that My ~ 2.Fiyy, My ~ 22.Ug(2).2, M3 ~ 2" My, My ~ (22 x217%).(3x Us(2)).2,
My ~ 25%8:(A; x S3) and Mg ~ Sy x Ss(2). Suppose R is a non-trivial radical 2-
subgroup of G. Then Ng(R) <g M; for some i. In particular, if Ng(R) < M;, then

PrOOF: It follows by Flaass [9], Theorem (b), and [5], p. 177, that each M; is a
maximal subgroup of G. As shown in the proof of Section 6 of [9], each non-trivial rad-
ical subgroup R is contained in some M; and Ng(R) < M;. This completes the proof. O

Lemma 4.4 The non-trivial radical 2-subgroups R of Fiss (up to conjugacy) are given
in Table 3, where S € Syl,(Fiy3) and H* denotes a subgroup of G such that H* ~ H
and H* #¢ H.

ProoF: If R is a non-trivial radical 2-subgroup of G' = Fiy3, then by Lemma 4.3, we
may suppose R € ®(M;,2) such that N(R) = Ny, (R) for some i =1,...,6.

(1) Let M = Mg ~ Sy x Sg(2). Now Sy has two classes of radical subgroups,
(22)* = 0,(S,) and Dg € Syly(S;), and we may take ®(Sy,2) = {(22)*, Dg}. Note that
S6(2) is the second derived group of Mg. We apply the modified local strategy to Sg(2).
Take a maximal subgroup K of Sg(2) with index 28. MAGMA constructs the action
of Ss(2) on the cosets of K in Sg(2) and the group homomorphism from Sg(2) to the
image H of the action. Then H ~ Sg(2) and the permutation representation of H has
degree 28. Applying the local strategy of [2] to H, we learn that Sg(2) has 7 classes
of non-trivial radical 2-subgroups and their preimages are radical 2-subgroups (up to
conjugacy) of Sg(2). We may take

®(S5(2),2) = {1,2°,2°,2%.2% 2°.2% 26,92 2394 2 §'},
where S” € Syl,(Ss(2)). It follows that
(I)(S4 X 56(2),2) = {Rl X RQ ‘ R1 € (1)(54,2),R2 € (I)(SG(Q), 2)}, (412)

and moreover, by MAGMA, N(R) = Ny (R) if and only if R = (2?)* or R = Ds.
(2) Apply the local strategy to My = 2678: (S5 x A7). Then we may take

(Ms,2) = {208, 2018.2 261892 (22 x 2118) 2 2% 2648 Dy 204823 21l 92 2% S}



R C(R) N/C(R)R | |It®(N/C(R)R)|
2 2.Fig,
22 22 Us(2) 2
(22" | 22 x S4(2) Sy
Ds | 2x S5(2) 1
27 27 Se(2) 1
9ll 911 Mg 9
92 x Lt8 25 | (3 x Uy(2).2 1
(22 x 21+8).2 92 Se 1
211 23 24 L3(2) 1
96+8 26 Sy x A; 0
26+8 2 26 Az 0
211 2t 23 3.55 1
26+8 22 23 Sy x S 1
(22 x 21+8) 2,24 93 3.(S3 x S3) 4
211 92 23 92 S, 1
211 92 ot 93 F2, 4
26+8 Dy 92 S 1
26+8 23 93 S, 1
S 92 1 1

Table 3: Non-trivial radical 2-subgroups of Figs

and Ny, (R) = N(R) for each R € ®(Ms5,2). We may suppose ®(Ms,2) C &(G, 2).
(3) Apply the local strategy to My = (2% x 217%)(3 x Ux(2)).2. Then we may take

*(My,2) = {(2% x 2178).2, (2% x 2178).2.2¢ 21124 21192 23 2648 D¢ 211 22 94}

where ®*(My,2) = ®(My,2)\{2% x 21+8, S} and in addition, Ny, (R) = N(R) for each
R € ®(My,2). We may suppose ®(My,2) C ®(G,2).

(4) Apply the modified local strategy to M = Mz = 2!!'.My3. Take K a maximal
subgroup of M with index 23. Using MAGMA, we compute the action of M on the
cosets of K in M and a homomorphism 7 from M to the image H of the action. Then
H is isomorphic to M»3 and is described by the permutation representation of degree
23. By applying the local strategy to H, we classify the radical subgroups of H. The
preimages of radical subgroups of H are radical subgroups R of M and, moreover,
Ny (R) is the preimage of Ny (n(R)). Thus we may take

®(Ms,2) = {2, 211.23 211 24 2648 9 oll 92 93 9648 93 oll 92 o4 S},

and moreover, N(R) = Ny (R) for each R € ®(M,2). We may suppose ®(Mj3,2) C
d(G,2).



(5) Let M = M, = 22.Us(2).2. We apply the modified local strategy to the maximal
subgroup M.

Using MAGMA, we find a subgroup K of M with index 693, and then get the
image H of the action of M on the cosets of K in M and the group homomorphism
n from M to H. Now H of degree 693 is isomorphic to Us(2).2, and the commutator
group H' ~ Ug(2). Then the preimages of radical 2-subgroups of H are the radical
2-subgroups of M. So we need only to classify the radical 2-subgroups of H.

If D is a non-trivial radical subgroup, then D N H' is a radical subgroup of H'. If
DN H' =1, then D=2, Ny(D) =2 x Ss(2) and 7' (D) =¢ Dg € ®(Ms,2). Suppose
D N H' is non-trivial. It follows by the Borel-Tits theorem that D is H-conjugate to
a radical subgroup of Ky ~ 2178.U4(2).2, K, = 2*7%: (3 x A5):2.2 or K3 = 2°: L3(4): 2
(see [5], p- 115), and in addition, Ny (D) = Nk, (D) for D < K.

If MK; = '(K;) for i =1,2,3, then MK, ~ (22 x 217%).U4(2).2 <¢ My, MK, ~
2618(3 x A5).2.2 <g M5 and M K3 ~ 2''.L3(4).2 < M3. The preimages of the radical
subgroups of K; are the radical subgroups of M K;. Applying the local strategy to each
K, we can classify its radical subgroups. If ®*(M Kj,2) = ®(MK;,2)\{O2(MK;), S},
then we may take

O*(MK1,2) = {(2°x2178).2,2'1.2% (2% x 217%).2.2%, 2112223 21 22 2% 2048 D}
D*(MK,,2) = {2618.2,22.2%78.2 (2% x 2119).2.2% 26¥8.22 21 22 9% 2048 D.},
O (MK3,2) = {21.2,2.2% 2618 2 9618 92 9oll 92 93 911 22 241,

It follows that we may take

®(M,,2) = {27, Dg,2",2% x 2118 (2% x 217%).2,22.2%18 2 oM 2 2648,
2'1.21 2618 9 9648 22 (22 x 2178) 2.2% 2112293 211 92 2% 2848 Dy S}

and moreover, for each R € Q = {22, Dg, (22 x 2118).2,211.22.23 2648 Dg S} we have
N, (R) = N(R). In addition, for R € ®(M,,2)\(,

( Ly(4).2 if R =21,
Us(2).2 if R = 22 x 21+8,
Sy x S if R = 929489
Ls(2) if R=212
(3 x A5).2.2 if R = 26+8,
N (R)/B = 9 S, if R =211.9¢
S if R = 2682,
A if R = 26+8 22,
Sy x Sy if R = (22 x 21+8).2.2¢,
[ S; if R = 211294,

(6) Let M = M; = 2.Figp. The radical subgroups of M can be classified using
the modified local strategy. We first find a subgroup K of M with index 3510, and
then get the image H of the action of M on the cosets of K in M and the group

10



homomorphism 7 from M to H. Then H of degree 3510 is isomorphic to Fig. As
shown in the proof of the main theorem of [9], a non-trivial radical 2-subgroup D of H
is conjugate to a radical 2-subgroup of K; and Ny (D) <y K;, where 1 <i <5 and K;
are maximal subgroups of H such that K; ~ 2.Us(2), Ko ~ 2'0: My, K3 ~ 2°: S¢(2),
Ky~ (2x217%:U4(2)): 2 and K5 ~ 2°7%: (S5 x Ag). Applying the modified local strategy
to each maximal subgroup K; of H, we get all the radical 2-subgroups of K; and hence
those of H = Figy; these are listed in Table 4.

R| Cu(R) Ng(R) | [r°(Ny (R)/Cu(R)R)|
2 | 2.Us(2) 2.Us(2)

26 26 26: S5(2) 1
210 210 210: My, 0
2 x 2118 22 (2 x 2L18: U, (2)): 2 0
(2 x 2118).2 2 (2 x 2178).2.5, 1
210 23 23 21093 [4(2) 1
25+8 25 2518 (S5 x Ag) 2
25+8 9 25 2548 2 Aq 2
210 2t 22 210 24 g, 1
95+8 92 22 2548 22 (G5 x Sy) 1
(2 x 21+8).2.94 22 | (2 x 2118).2.24 (S5 x S) 1
210 92 93 2 210 92 23 G, 1
210 92 9t 22 210 92 24 g, 1
2548 Dy 2 2548 Dg .S, 1
95+8 23 22 2548 23 G, 1
2548 Dy 2 2 2548 Dy.2 1

Table 4: Non-trivial radical 2-subgroups of Fig,

Since the preimages of radical subgroups of H are radical subgroups of M;, we may
take

®(M,2) = {2°,27,2",2° x 217, (2% x 2,7%).2,211.9%, 207, 270 2,
2'1.24, 2048 2% (27 x 2118) 2,24 211 22,23 2192 2% 2618 Dy 26+ 23}

and moreover, for R € {2,27, (22 x 21¥8).2, 21123 26+8 92 911 92 23 2648 Dy 26+8.23 S}
Ny, (R) = Ng(R).

This completes the classification of radical 2-subgroups of G. The centralizers and
normalizers of R € ®(G,2) are given by MAGMA. O

Lemma 4.5 Let G = Fiyg, and let BIK’(G,p) be the set of p-blocks with a non-trivial
defect group and Irr*(G) the characters of Irr(G) with positive p-defect.
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(a) If p =5, then Irt®(G,p) = {B; | 0 < i < 6} such that D(B,) =g D(B,) ~ 5
and D(B;) ~ 5 for 2 < i < 6, where By = By(QG) is the principal block of G and
D(B) is a defect group of a block B. In the notation of [5], p. 178,

( {Xx11, X19, X255 X34, X390} if 1 =2,

{X13, X24, X40,X43,X49} if 1 =3,
Irr(B;) = < {X21, X555 X60, X79, Xs6} if 1 =4,
{X22, X685 X875 X91, X93} if 1 =15,
C {X23, X33, X59, X70, X78} if i =6,
and in addition, Irr(B1) = {X2, X6, X7, X8> X9> X14, X275 X325 X37> X44, X485 X57> X645 X695

X73> X765 X82> X89, X92; Xo6 } and Irr(By) = Irr* (G)\(U8_,Irr(By)). Moreover, £(B;) =
4 for2 <i <6 and ¢(B;) =16 for j =0,1.

(b) If p = 3, then BIk(G,2) = {By, B1} such that D(B;) ~ 3. In the notation of
[5], p. 178, Trr(B1) = {xe9, Xs2, X903} and Irr(By) = Irr ™ (G)\Irr(By). Moreover,
¢(B;) =2 and {(By) = 32.

(C) pr = 2, then B]k(G, 2) = {Bo,Bl,BQ} such that D(Bl) ~ 2 and D(BQ) >~ Dg.
In the notation of [5], p. 178, Irr(B1) = {xs6, X57},

Irr(Bz2) = {Xs0, X645 X65, X765 X77}

and Irr(By) = Irr* (G)\(Irr(By ) U Irr(By)). Moreover, £(By) =1, £(Bs) = 2 and
#(By) = 20.

ProoOF: If B € BIk(G,p) is non-principal with D = D(B), then Irr’(C(D)D/D) has
a non-trivial character # and N(6)/C(D)D is a p'-group, where N(#) is the stabilizer
of # in N(D). By Lemmas 4.1, 4.2 and 4.4, D €¢ {5,5%, 3,2, Dg}, and moreover, if
Q € {52,3,2, Dg}, then G has exactly one non-principal block B with D(B) =¢ Q,
since |[Irr’(C(Q)Q/Q)| = 1. If D = 5, then [Ir®(C(D)D/D)| = 5, so G has exactly 5
blocks, B; for 2 < i < 6 with D(B;) =g D.

Using the method of central characters, Irr(B) is as above. If D(B) is cyclic or
isomorphic to Dg, then £(B) is the number of B-weights (see [7] and [13]), so that

4 ifp=>5andi > 2,
2 ifp=3andi=1,
1 ifp=2andi=1,
2 ifp=2andi=2.

UBy) =

Suppose p = 5 and B = Bj. Since all non-trivial elements of D(B) are G-conjugate,
it follows by a theorem of Brauer that k(B) = ¢(B) + £(b), where b is a block of
Cq(5) = 5 x S7 such that b = B. Thus b = by X by, where by = By(5) and b; € Blk(S7).
So D(bl) ~ 5 and W(bl) = g(b1) But D(bl) c Sy15(57), SO N57(D(b1)) ~5:4x2 It
follows that W(b;) = 4 and £(b) = £(b;) = 4, so that £(B) = 20 — 4 = 16.

If £(G) is the number of p-regular G-conjugacy classes, then ¢(By) can be calculated
by the following equation due to Brauer:

(Gy= | 4B+’ @G).

BeBIK(G,p)
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This completes the proof. O

Theorem 4.6 Let G = Fiyz and let B be a p-block of G with a non-cyclic defect group.
Then the number of B-weights is the number of irreducible Brauer characters of B.

Proor: If B = By, then the proof of Theorem 4.6 follows by Lemmas 4.1, 4.2, 4.4,
4.5 and (4.1). Suppose B # By. Then p = 5 and D(B) =¢g 52, so we may suppose
D(B) = 5%. By MacMA, N(52)/5% has 32 irreducible characters and by Lemma 4.1,
16 of them are the Bj-weight characters, so that W(B) = 32 — 16 = 16 = {(B). O

5 Radical Chains of Fis;
Let G = Figs, C € R(G) and N(C) = Ng(C).

Lemma 5.1 In the notation of Lemma 4.1, the radical 5-chains C of G (up to conju-
gacy) are given in Table 5.

C | No | c | N(C)
C3) |1<5<52 | FAxFix2| CM@)|1<52| (FfxFtx2).23

Table 5: Radical 5-chains of Fiys

Proor: Straightforward. O

Lemma 5.2 (a) In the notation of Lemma 4.2 and (4.2)-(4.11), the radical 3-chains
C(i) for 1 <i < 24 and their normalizers are given in Table 6.

(b) Let R%(G) be the G-invariant subfamily of R(G) such that R°(G)/G = {C(i) :
1 <i<24}. Then

> (=DIYK(N(C),By,d) = Y. (=1)“k(N(C), By, d) (5.1)

CeR(G)/G CeRY(@)/G
for all integers d > 0.
PRrROOF: (b) Suppose C' is a radical chain such that
C':1<P/<...<P. (5.2)

Let C € R(G) be given by (2.1) with P, € ®(G, 3).
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C N(C)
C(1) 1 | Fig
C(2) 1<3 | S5x07(3)
C(3) 1<3<3% | S3x3%:U(2):2
C(4) 1<3<3x33<3x3%3:32 | Gy x3343:3%: 29,
C(5) 1<3<3x33%3 | G5 x 333 [3(3)
C(6) 1<3<3x36<3x363 | 53x3H63:25,
C(7) 1<3<3x3H6 | S5 x 3624, x 44).2
C(8) 1<3<3x340<3x3%33 S x 35:33: (Sy x 2)
CH) |1<3<3x3H0<3x3H03<95" |52
C(10) 1< 318 | 31F8:2146: 31+2: 95,
C(11) 1<3%.3% <3%.36.32 | 3%.3%:32: (25, x 2)
C(12) 1<3%.3% | 3%.35:(Ls(3) x 2)
C(13) 1< 3330 <311832 | 31¥8.32: (25, x 2)
C(14) 1<35 | 35:L0,(3):2
C(15) 1 <35 <3335 | 3335 Ly(3)
C(16) 1<36<3%.35<33.36:32 | 3%:30:3%29,
C(17) 1<3%<3%.30.32 | 33%:36:3% (25, x 2)
C(18) 1<35<333032<8 | 9.23
C(19) 1 <35 <3183 | 318.3.21H4 (S5 x S3)
C(20) 1< 3% <383 <383 |3.+5:3%25,
C(21) 1<3% <313 <332 <8 | 522
C(22) 1<3%<33<8 | 5.2
C(23) 1<3%.3.3%.3° < 318312 | 3183142 (25, x 2)
C(24) 1< 333333 3%.3.3%.33: (L3(3) x 2)

Table 6: Radical 3-chains of Fiy;

Case (1). We first consider the radical subgroups of G contained in M,. Let
R € ®(M>,3)\{31*®}. Define G-invariant subfamilies M*(R) and M°(R) of R(G),
such that

M*(R)/G = {C'€R/G: P! =R},
MY (R)/G = {C'eR/G:P]=3"8 P,=R}. (5.3)

For C' € M™(R) given by (5.2), the chain
g(C):1<3 ¥ <P =R<Py<...<P), (5.4)
is a chain in M°(R) and N(C") = N(g(C")). For B € Blk(G) and for integer d > 0,

k(N(C"), B,d) = k(N(¢(C")), B, d). (5.5)
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In addition, g is a bijection between M*(R) and M°(R). So we may suppose
C¢ U (MT(R) U M°(R)).

RE®(M,3)\{3}°}

Thus P, ¢ {31+8.3,3178.32, 31783172 S} and if P, = 318, then C' =g C(10). We may
assume
P, € {3,3% 3%.3% 3%.3.3%.3%,3%: 3.32.3%.3%)} C 9(G, 3).

Case (2). Let Q = {3 x 35:33,3 x 33t3:3%2, 5"} C ®(My,3) and suppose Q € Q.
By (4.10), we may suppose Q C ®(N,y, (3%), 3), and moreover, Ny, (Q) = Ny, (39)(@).
Define G-invariant subfamilies £7(Q) and £°(Q) of R(G), such that

LYQ)/G = {C"eR/G: P =3,P;=Q},
L£(Q))G = {C'eR/G:P =3,Py=3%P;=Q}. (5.6)

A similar proof to Case (1) shows that there exists a bijection g between L£(Q) and
L%(Q) such that N(C") = N(g(C")) for each C" € L1 (Q). Thus we may suppose

C¢ JKLrQuL@). (5.7)

QEN

It follows that if P, = 3, then we may assume P, € ®(M;,3)\Q and if, moreover,
P, = 3%, then C =¢ C(3).

By (4.11), we may suppose P, € {3 x 3°%3 3 x 3176 3 x 3170.3}. By (4.9), we
may suppose 3 X 31763 € ®(Ny, (3 x 3°%3),3), and in addition, Ny, (3 x 3176.3) <
Na (3 x 33%3). Let £1(3 x 3176.3) and £°(3 x 3170.3) be defined by (5.6) with @
replaced by 3 x 3176.3 and 3° by 3 x 3**3. A similar proof shows that we may suppose

C ¢ (L£7(3x31.3)u L3 x 3179.3)),

so we may assume P, #¢ 3 x 3176.3 and if P, = 3 x 3*3 then P3 #¢ 3 x 3110.3.

Let C":1<3<3x3P <S5 and g(C") :1<3<3x33 <3x3P3:32 < 3"
Then N(C') = N(g(C")) and we may delete C' and ¢(C"). Similarly, we can delete
C':1<3<3x3% < S"and g(C") : 1 <3< 3x31% < 3x3%:3% < 5" It follows that
if P, = 3 and P, =¢ 3x3°% or 3x31*8 then C €5 {C(4),C(5),C(6),C(7),C(8),C(9)}
and we may suppose

P, e {3°,3%.3° 3%.3.3%.3%,3%: 3.3°.3%.3%} C @(G, 3).

Case (3). Let C': 1 < 3%3% < 8" and ¢g(C") : 1 < 33.3% < 3%.35:32 < §'. By the
proof (3) of Lemma 4.2, N(C') = N(g(C")) and we may delete C' and ¢g(C’). Thus if
Py =3%3% then C € {C(11),C(12),C(13)} or C = C(1)' : 1 < 32.3° < 317%:3% <
S

Case (4). Let C' = C(1)" and ¢g(C") : 1 < 3% < §". Then N(C') = N(g(C")) =
5'.2% and (5.5) holds. Let £*(31%8.3%) and £°(3118.3%) be defined as (5.6) with @
replaced by 3178.3%, 3 by 3° and 3° by 3°.3°. Then (5.7) holds with Q@ = 31t8.3%
IfC': 1 <35 <33 < 8 and g(C') : 1 < 3% < 3%3% < 303332 < &', then

15



N(C') = N(g(C")) = 522 and (5.5) holds. It follows by (4.5) and (4.6) that if
P, = 3% then C € {C(k) : 14 < k < 22}.

Case (5). Let M™(33.3.3%.3%.3%) and M?(33.3.3%.3%.3%) be defined by (5.3) with R
replaced by 3%.3.3%.3%.3% and 31*® by 3.3.3%.3%. Then for each C' € M*(33.3.33.3%.3%)
(5.5) holds, so that we may suppose P, #g 3%.3.3%.3%.32 and moreover, if P, =
33.3.33.3%, then P, #¢ 3%.3.3%.33.32. Let C' : 1 < 3°.3.3°.3° < S and g(C') : 1 <
33.3.33.3% < 317831+ < S, Then N(C') = N(g(C')) = N(S) and (5.5) holds. If
Py = 3%.3.33.3%, then by (4.3), C € {C(23),C(24)}.

The proof of (a) follows easily by that of (b) or Lemma 4.2. O

Lemma 5.3 (a) In the notation of Lemma 4.4 and its proof, the radical 2-chains C (i)
for 1 <1 < 32 and their normalizers are given in Table 7.

(b) Let R°(G) be the G-invariant subfamily of R(G) such that R°(G)/G = {C(i) :
1<1<32}. Then

> (DCK(N(C),By,d) = Y. (-1)°k(N(C), By, d)

CeR(G)/G CeRY(G)/G
for all integers d > 0.

The proof of Lemma 5.3 is similar to that of Lemma 5.2 and is in Appendix A.

6 The proof of Dade’s Conjecture

Let N(C) be the normalizer of a radical p-chain C. If N(C) is a maximal subgroup of
Figs, then the character table of N(C) can be found in the library of character tables
distributed with GAP. If this is not the case, we construct a “useful” description of
N(C) and attempt to compute directly its character table using MAGMA.

If N(C) is soluble, we construct a power-conjugate presentation for N(C') and use
this presentation to obtain the character table.

If N(C) is insoluble, we construct faithful representations for N(C') and use these
as input to the character table construction function. We employ two strategies to
obtain faithful representations of N(C).

1. Construct the actions of N(C') on the cosets of soluble subgroups of N(C).

2. Construct the orbits of N(C') on the underlying set of Fiys; for the stabiliser of
an orbit representative, construct the action of N(C') on its cosets.

In several cases, however, none of the representations constructed was of sufficiently
small degree to allow us to construct the required character table.

In these cases, we directly calculate the character table of N(C) as follows: first
calculate the character tables of some subgroups and quotient groups of N(C); next
induce or lift these characters to N(C), so the liftings and the irreducible characters
from the induction form a partial character table 7' of N(C); finally decompose the
remaining inductions or the tensor products of the inductions using the table 7.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 6.1 are in Appendix C.
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1

1<2

1<2<2!

1 <28

1<2<2? %2t

1< 2% x 218

1 <2< 2048

1< 26—1—8

1 < 2618 < 26489

1 <2< 208 < 26489

1 <2< 2048 < (22 x 2478)2.20 < 2112224
1< 2678 < (22 x 2478)2.24 < 2112224
1< 2648 < (22 x 2178)2.2¢

1<2< 268 < (22 x 2178)2.2¢
1<2<2?

1<2?

1<2?2 <2

1<2<22 <2t

1< 2% <2? x2S
1<2<2?<2?x2if8

1< 2?2 < 26%8

1<2< 22 <268

1< 22 x 2148 < 211 2
1<2<2?x2H8 <2ttt
1<2<22 <2t <2112!

1 <22 <22 x 218 <2124
1<2<22 <2t <2682

1 <22 < 2608 < 2648 2

1<2<2? <2608 < (22 x2148) 224
1< 22 <20%8 < (22 x 2178).2.2¢
1< 22 <2048 < (22 x 2178).2.2% < 2119224
l<2<22<2t <22t <8

Fiys

2.Figo

211 My,

211 My,

(22 x 2178).U4(2).2

(22 x 2148).(3 x Uy(2)).2
2048 (S5 x Ag)

2618 (S3 x A7)

26+8 2 A,

26182 A¢

211,92 94 G,

211 92 94 F2,

(2% x 2478)2.2%.3.(S5 x Sj)
(22 x 2178)2.24.(S5 x S)

(
(22 x 2148).U,(2).2
(22 x 2478).U4(2)
26+8(3 x A;).2.2
2678(3 x Aj5).2
211 94 395
211 91 G,
211 24 AL
211 94 G,
26+8 9 A,
26+8 9 G,
(22 x 2118).2.24.3.5;
(22 x 21+8).2.2(S3 x S3)
211 92 94 G,
S'.3

Table 7: Radical 2-chains of Fias
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Theorem 6.1 Let B be a 2-block of G = Figz with a positive defect. Then B satisfies
the ordinary conjecture of Dade.

ProOF: We may suppose D(B) is noncyclic, so by Lemma 4.5 (c¢), B = By or By. If
B = By, then D(B) ~ Dg and by [13], B satisfies the ordinary conjecture of Dade. We
may suppose B = By. We denote k(i,d) = k(N(C(7)), Bo, d) for integers i, d.

First, we consider the 2-chains C'(j) such that the defect d(N(C(j))) = 17, so that
j € {15,18,20,22, 25,27, 29, 32}.

The subgroups N(C(15)) =~ 22.Us(2) and N(C(25)) ~ 2'1.2*. A5 have 139 and 143
irreducible characters, respectively, whose degrees are given in Tables C-1 and C-2.
In addition, N(C(15)) has two blocks and the principal block contains 135 irreducible
characters. Thus k(15,d) and k(25, d) are as in Table 8.

Defect d || 17 | 16 | 15 | 14 [ 13 | 12 | 11 | 10 | 7 | otherwise
k(15,d) 16| 8| 4|32[21[30[16] 4]4] 0

Defect d || 17 | 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(25,d) 16| 8| 4|36 |51 |14 14| 0

Table 8: Values of k(15,d) and k(25, d)

The subgroups N(C(27)) ~ 2678.2.45 and N(C(29)) ~ (2% x 21+%).2.21.3.5; have
155 and 279 irreducible characters, respectively, whose degrees are given in Tables C-3
and C—4. Thus k(27,d) and k(29, d) are as in Table 9.

Defect d || 17 | 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(27,d) 16| 824 |28 |67 | 4| 8] 0

Defect d || 17 |16 | 15| 14 | 13 | 12| 11 | 10 | otherwise
k(29,d) [ 16| 8]24 |40 |101|52]26 |12 | 0

Table 9: Values of k(27,d) and k(29, d)

If k(oddy,d) = cq15,25,27,201 K(N(C(3)), Bo, d), then the values are recorded in
Table 10.

Defect d || 17 |16 | 15| 14| 13| 12| 11|10 | 7 | otherwise
k(odd,,d) || 64 | 32| 56 | 136 | 240 | 100 | 64 | 16 | 4 | 0

Table 10: Values of k(odd, d)

The subgroups N(C(18)) ~ 2''.L3(4) and N(C(20)) ~ (2% x 21+®).U,4(2) have 89
and 201 irreducible characters, respectively, whose degrees are given in Tables C-5 and
C—6. Thus k(18,d) and k(20,d) are as in Table 11.
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Defect d || 17 | 16 | 15 | 14 | 13 | 11 | otherwise
k(18,d) [[16 | 8] 4[28]19 14 | 0

Defect d || 17 [ 16 | 15| 14 | 13 | 12 | 11 | 10 | 7 | otherwise
k(20,d) 16| 8| 4|40 |53 |48 [16]12]4 | 0

Table 11: Values of k(18,d) and k(20, d)

The subgroups N(C(22)) ~ 26%8(3 x A5).2 and N(C(32)) ~ S".3 have 197 and 225
irreducible characters, respectively, whose degrees are given in Tables C-7 and C-8.
Thus k(22,d) and k(32,d) are as in Table 12.

Defect d || 17 [ 16 | 15| 14 | 13 | 12 | 11 | 10 | otherwise
k(22,d) |16 8|24 |32|69|34][10] 4] 0

Defect d || 17 | 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(32,d) |16 | 8]24[36[99 18| 24 | 0

Table 12: Values of k(22, d) and k(32, d)

If k(eveni,d) = 3 cq1820.22,32) K(NV(C(7)), Bo,d), then the values are recorded in
Table 13.

Defect d | 17 [ 16 [ 15| 14| 13| 12| 11|10 | 7 | otherwise
k(eveny,d) || 64 | 32 | 56 | 136 | 240 [ 100 | 64 | 16 | 4 | 0

Table 13: Values of k(even;, d)

It follows that

> k(N(C(3)),Bod)= Y k(N(C(>)),Bo,d).
i€{15,25,27,29} i€{18,20,22,32}
Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 18
and N(C(j)) <pips 2.Figg, so that j € {2,3,5,7,10,11,14,24}.
The subgroups N(C(3)) =~ 2'. My, and N(C(5)) ~ (22 x 217®).U4(2).2 have 69 and
189 irreducible characters, respectively, whose degrees are given in Tables C-9 and
C-10. Thus k(3,d) and k(5,d) are as in Table 14.

Defect d || 18 | 17 [ 16 [ 15 | 14 | 13 | 12 | 11 | otherwise
k(3,d)[[16 |12 2| 8[12]|14| 2| 3] 0

Defect d || 18 | 17 [ 16 | 15| 14 | 13 | 12 | 11 | 10 | 8 | 7 | otherwise
k(5,d) 16 [12]10 |24 |40 |36 |32] 9| 5]4[1] 0

Table 14: Values of k(3,d) and k(5, d)
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The subgroups N(C(7)) ~ 2678(S3 x Ag) and N(C(11)) ~ 2!1.22.24.S5 have 166
and 222 irreducible characters, respectively, whose degrees are given in Tables C-11
and C-12. Thus k(7,d) and k(11, d) are as in Table 15.

Defect d | 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | 10 | otherwise
k(7,d) [[16 |12 181433 [43 18| 8| 4| 0

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(11,d) [ 16 | 12 |26 | 34 | 53 [ 59 [ 12 [ 10 | 0

Table 15: Values of k(7,d) and k(11, d)

If k(oddy, d) = Yie(35,7,113 K(N(C(i)), Bo,d), then the values are recorded in Table
16.

Defect d || 18 |17 [ 16 | 15| 14| 13| 12| 11|10 | 8| 7 | otherwise
k(oddy,d) | 64 |48 | 56 | 80 | 138 [ 152 |64 [30 | 9|4 |1 | 0

Table 16: Values of k(oddy, d)

The subgroups N(C(2)) = 2.Figy and N(C(10)) =~ 25%8.2. 4¢ have 114 and 132
irreducible characters, respectively, whose degrees are given in Tables C-13 and C-14.
In addition, N(C(2)) has 3 blocks and the principal block contains 108 irreducible
characters. Thus k(2,d) and k(10,d) are as in Table 17.

Defect d | 18 | 17 [ 16 | 15 | 14| 13 | 12 | 11 | 10 | 8 | 7 | otherwise
k(2,d) 16 [12] 2| 8|17 [23]18] 3| 4[4[1] 0

Defect d || 18 | 17 |16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(10,d) 16|12 |18 |14 |28 [ 34| 2| 8] 0

Table 17: Values of k(2,d) and k(10, d)

The subgroups N (C(14)) ~ (2% x 21+8)2.2%.(S3x S3) and N(C(24)) ~ 2'1.2%.55 have
255 and 151 irreducible characters, respectively, whose degrees are given in Tables C-15
and C-16. Thus k(14,d) and k(24, d) are as in Table 18.

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | 10 | otherwise
k(14,d) [ 16 [ 1226 |30 | 56 |64 |32 | 14| 5| 0

Defect d || 18 | 17|16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(24,d) |16 |12 |10 |28 |37 |31 [12] 5| 0

Table 18: Values of k(14, d) and k(24, d)
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If k(eveny,d) = > icq210,1424) K(N(C(7)), Bo, d), then the values are recorded in
Table 19.

Defect d || 18 |17 |16 | 15| 14| 13| 12| 11|10 | 8| 7 | otherwise
k(eveny,d) || 64 | 48 | 56 [ 80 [ 138 [ 152 |64 [30| 9|4 |1 | 0

Table 19: Values of k(even,, d)

It follows that

S KNCOLBod = Y KN(C), Bod)
i€{3,5,7,11} i€{2,10,14,24}
Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 18
and N(C(j)) <ri,, 22.Us(2), so that j € {16,17,19, 21, 26,28, 30, 31}.
The subgroup N(C(17)) =~ 2''.L3(4).2 has 97 irreducible characters, whose degrees
are given in Table C-17. Thus k(17,d) is as in Table 20.

Defect d || 18 | 17|16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(17,d) 16|12 |10 |20 [19| 7] 8] 5] 0

Table 20: Values of k(17, d)

The subgroup N(C(19)) ~ N(C(5)) =~ (2% x 21+%).U4(2).2 has 189 irreducible
characters, whose degrees are given in Table C-10.

The subgroup N(C(21)) =~ 2°78(3 x A5).2.2 has 199 irreducible characters, whose
degrees are given in Table C-18. Thus k(21,d) is as in Table 21.

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | 10 | otherwise
k(21,d) [ 16 [ 1226 |30 |36 |48 |24 | 6| 1| 0

Table 21: Values of k(21, d)

The subgroup N(C(31)) ~ N(C(11)) ~ 2!1.22.2%.S; has 222 irreducible characters,
whose degrees are given in Table C-12.

If k(odds,d) = Yicqi7,19,21,313 K(N(C(i)), Bo,d), then the values are recorded in
Table 22.

Defect d || 18 |17 |16 | 15| 14| 13|12 |11 |10 | 8 | 7 | otherwise
k(odds,d) || 64 |48 | 72 [ 108 | 148 [ 150 [ 76 |30 | 6|4 |1 | 0

Table 22: Values of k(odds, d)

The subgroup N(C(16)) ~ 22.Ug(2).2 has 146 irreducible characters, whose degrees
are given in Table C-19. In addition, N(C'(16)) has two blocks and the principal block
contains 141 irreducible characters. Thus k(16,d) is as in Table 23.
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Defect d | 18 | 17 [ 16 | 15 | 14| 13 | 12 | 11 | 10 | 8 | 7 | otherwise
k(16,d) [ 16 |12 10|24 |20 20 24| 9| 1[4[1] 0

Table 23: Values of k(16, d)

The subgroup N(C(26)) ~ N(C(24)) ~ 2'.2%.S5 has 151 irreducible characters,
whose degrees are given in Table C-16.

The subgroup N(C(28)) ~ 26%8.2.55 has 160 irreducible characters, whose degrees
are given in Table C-20. Thus k(28, d) is as in Table 24.

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(28,d) || 16 [ 12|26 [ 26 |35 |35 | 8| 2| 0

Table 24: Values of k(28, d)

The subgroup N(C(30)) ~ N(C(14)) ~ (22 x21+8).2.2%.(S3 x S3) has 255 irreducible
characters, whose degrees are given in Table C-15.

If k(evens,d) = 3 cq16,26,28,30; K(NV(C(7)), Bo, d), then the values are recorded in
Table 25.

Defect d || 18 | 17|16 | 15| 14| 13| 12|11 |10 | 8 | 7| otherwise
k(evens,d) || 64 | 48 | 72108 | 148 [ 150 | 76 [ 30| 6 4|1 | 0

Table 25: Values of k(evens, d)

It follows that

Y KN Bad= Y K(N(C()),Bo,d).

i€{17,19,21,31} 1€{16,26,28,30}

Finally, we consider the remaining chains C(j5), so that j € {1,4,6,8,9,12,13, 23}.

If j =1, then N(C(j)) = Fiy3 and by Lemma 4.5 (c), B = By has 89 irreducible
characters. By MAGMA, N(C(9)) ~ 26%8.2.4; has 105 irreducible characters, whose
degrees are given in Table C-21. Thus the numbers k(1,d) and k(9, d) are as in Table
26.

Defect d || 18 | 17 [ 16 | 15| 14 | 13 | 12 | 11 | 10 | 8 | 7 | otherwise
k(1,d) 162010 8| 7[12] 2] 7] 2[4[1] 0

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(9,d) [[16 20181820 5| 4| 4| 0

Table 26: Values of k(1,d) and k(9, d)
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The subgroups N(C(13)) ~ (2% x 2178)2.24.3.(S5 X S3) and N(C(23)) ~ 2".2%.3.5;5
have 254 and 146 irreducible characters, respectively, whose degrees are given in Tables
C-22 and C-23. Thus k(13,d) and k(23, d) are as in Table 27.

Defect d || 18 | 17 [ 16 | 15 | 14 | 13 | 12 | 11 | 10 | otherwise
k(13,d) || 16 [ 20|34 | 38|52 |45 |28 |16 | 5| 0

Defect d || 18 | 17 |16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(23,d) 1620 |10 |32 |29 |26 | 10| 3| 0

Table 27: Values of k(13,d) and k(23, d)

If k(oddy, d) = Yicq1,0,13,23) K(V(C(2)), Bo, d), then the values are recorded in Table
28.

Defect d || 18 | 17 [ 16 | 15| 14 |13 |12 |11 [ 10| 8| 7 | otherwise
k(odds,d) [ 64 |80 | 72|96 | 108 |88 44 |30 | 7[4|1| 0

Table 28: Values of k(oddy, d)

The subgroups N(C(4)) = 2" .My and N(C(6)) = (22 x 2178)(3 x Uy(2)).2 have
56 and 194 irreducible characters, respectively, whose degrees are given in Tables C-24
and C-25. Thus k(4, d) and k(6, d) are as in Table 29.

Defectd H 8‘ ‘13 ‘ 11 ‘ otherwise
d[[16[20] 2| 8[ 4] 1] 5| 0

Defect d || 18 | 17 [ 16 | 15| 14 | 13 | 12 | 11 | 10 | 8 | 7 | otherwise
k(6,d) |16 [20] 18|28 |36 |33 [24] 9] 5[4[1] 0

Table 29: Values of k(4, d) and k(6, d)

The subgroups N(C(8)) ~ 278(S;3 x A7) and N(C(12)) ~ 2'1.22.2*. F2 have 133
and 211 irreducible characters, respectively, whose degrees are given in Tables C-26
and C-27. Thus k(8,d) and k(12, d) are as in Table 30.

Defect |18 1716|1514 | 13|12 |1
d) 16 ] 2026 | 1823 | 16 |

2‘ 1 ‘ 10 ‘ otherwise
6] 6| 2| 0
Defect d || 18 | 17|16 | 15 | 14 | 13 | 12 | 11 | otherwise
k(12,d) [ 16 |20 |26 | 42 | 45 | 38 | 14 | 10 | 0

Table 30: Values of k(8,d) and k(12,d)
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If k(eveny, d) = Yicqa6,8,12) K(V(C(4)), Bo, d), then the values are recorded in Table

31.

Defect d || 18 | 17 [ 16 | 15| 14|13 12|11 [ 10| 8| 7 | otherwise
k(even,,d) || 64 [ 80|72 |96 | 108 |88 [44 [30| 7[4]1] 0
Table 31: Values of k(eveny, d)

It follows that
> k(N(C(),Bud)= > k(N(C(i)), Bo,d).
1€{1,9,13,23} i€{4,6,8,12}
This completes the proof. O

Theorem 6.2 Let B be a p-block of G = Fiys with a positive defect. If p is odd, then
B satisfies the ordinary conjecture of Dade.

The proof of Theorem 6.2 is similar to that of Theorem 6.1 and is in Appendix B.
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A Proof of Lemma 5.3

PROOF: (b) Let C € R(G) be given by (2.1) with P, € (G, 2).

(
Case (1). Let M be the subfamily of R = R(G) consisting of chains C such that
P, =g (2%)* = 03(Mg). Then M is G-invariant, and we may suppose P, = (2?)* and
P, € ®(Mg,2) given by (4.12) when |C| > 2. Write P, = X; x Y}, where X; = (2%)*
and Y7 = 1 < Sg(2). Since Mg = Sy x Sg(2), it follows that P, = X, X Y5, where
X, € {(2%)*, Dg} and Y, € ®(S6(2),2). Moreover, the i-th subgroup P; of C € M
decomposes as

P = X; x Y,
where X; = (22)* or Dg and Y; < Sg(2). It is clear that if X; = Dg, then X; = Dy
for all j > 4. If n = |C| and X,, =g, (2%)*, set £(C) = 0, otherwise set £ = £(C) to
be the smallest integer such that X, = Dg, so that £(C) = 0 or ¢(C) > 2 for C € M.
Denote by M the subfamily of M consisting of chains C' such that ¢(C) > 2 and
either |C| —¢(C) > 1 or |C| =4(C) but Y,_; #Y,.

Suppose C' € M given by (2.1) and £ = £(C). Then

C:l<.. <P 1=X1xY 1 <P=X,xY,<...<P,
and Y;_; <Y, where X,_; = (2%)* and X, = Ds. If Y,_; # Y, then define
e(C):1<...<P1<DgXYy1<P<...<P,.

If Yy 1 = Yy, then |C|—£(C) > 1 and Yiyy # Yp. Since NY_; Nag2) (Vi) = NZ{ Ny (Ya),
it follows that Y, is a radical 2-subgroup of ﬂf;llNgﬁ(g) (Y;), so that Py, is a radical
subgroup of NZ{ Ng(P;). We define

e(C):1<...<P1 <P <...<P,.
Thus ¢ is an involutive mapping of M., |¢(C)| = |C|F1 and N(C) = N(¢(C)). Thus

Y (=1)9K(N(C), B,d) =0

ceMy

for all B € Blk(G) and integers d, so we may suppose C € M\ M.
Given ¢ = 1 or 0, let M, be the subfamily of M\M consisting of chains C' such
that £(C) = |C| or 0 according as i = 1 or 0. If C € M, then

C:l<...<Py1=2)"xY, 1< P,=DgxY,

and Y, 1 =Y,. We define p(C) : 1 < ... < P, 1, so that p(C) € M,. If C € M,,
then
C:l1<...<P,=(2)"xY,

and define ¢(C) to be the chain 1 < ... < P, < Dg x Y, so that ¢(C) € M;.
Since p(p(C)) = C for each C € My U M, it follows that ¢ induces a bijection
from M; to My. Suppose C € M; with |C| = n. Then N(C) = Dg x H and
N(p(C)) =S4 x H, where H = Nj_; Ns4(2)(Y;). Now Dg has 4 linear characters and
one irreducible character of degree 2, and S; has 2 linear characters, 2 irreducible
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of degree 3 and one of degree 2, and moreover, both Dg and S; have exactly one
block, the principal block By(Dsg) and By(S,), respectively. Thus there is a 2-defect
preserved bijection 1 from Irr(Dg) to Irr(Sy). If € is a character of Irr(N(C), B, d),
then & = & x &, where & € Irr(Dsg) and & € Irr(H). In addition, the block B(§)
of N(C) containing £ has the form B(§) = By(Ds) x by for some by € Blk(H). If
V(&) = (&) X &, then B(¥(€)) = Bo(Ss) X by and both ¥(&) and £ have the same
defect d. Since B(£)¢ = B and B(£)N®¥(©) = B(¥(€)), it follows that B(¥(¢))¢ = B,
so that
U(¢) € Irr(N(p(C)), B, d).

Since v is a defect preserved bijection, Irr(By(Dg)) = Irr(Dg) and Irr(By(Sy)) = Irr(Sy),
it follows that ¥ is a bijection between Irr(N(C), B, d) and Irr(N(¢(C)), B, d), so that
k(N(C), B,d) = k(N(¢(C)), B, d) and

> (-1)°k(N(C),B,d) = 0.

CeM/qG

We may suppose C & M.

Case (2). Suppose P, = 2 = Oy(M;), and so we may assume that P, € ®(M,2)
when |C| > 2. Let

Q= {27,2",2% x 2178 2048 211 2 26+8 2 (2% x 217%).2.2% 2127 2%}

be a subset of ®(M1,2) and 2 # R € ®(M;,2)\Q, so that Ny, (R) = N(R). Let
MT(R) and M°(R) be the subfamilies of R defined by (5.3) with 31"® replaced by 2.
Then for C' € M*(R) given by (5.2),

g(C"):1<2<P/ =R<...<P|,
is a chain of M°(R) and N(C') = N(g(C")), so that (5.5) holds. We may suppose

c¢g U MEBUM(R)

Re®(M;,2)\Q

and in particular, P; ¢ ®(M1,2))\Q. Moreover, if P, = 2 and |C| > 2, then P, €¢ ).

Case (2.1). By MAGMA, Ny, (21) = 21 My, and we may take ® (N (2'1),2) as a
subset of ®(Mj,2) such that

O (2" My, 2) = {211 21123 211 9% 2648 9 9oll 92 93 96+8 93 9l 22 2% S}

and moreover, if R € X = {2!1.24,26¥8 2 211 22 941 C QO then Ny, (R) < Ny, (21);
and if 2!' # R € ®(Ny, (21),2)\X, then N(R) = Ny, (R).

Given Q € X, let £L7(Q) and L°(Q) be the subfamilies of R defined by (5.6) with
3 replaced by 2 and 3° by 2!'. Then a similar proof shows that there is a bijection g
between £1(Q) and £°(Q) satisfying N(C') = N(¢g(C")). Thus we may suppose (5.7)
holds with € replaced by X.

If P, =2 and P, € , we may suppose P, €z X and moreover, if P, = 2!, then
either C =g C(3) or Py € ®(N,y, (2'1),2)\X.
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Case (2.2). By MAGMA, Ny, (2% x 2178) = (22 x 2178).U4(2).2 and we may take
O(Npp, (22 x 2478),2) as a subset of ®(Mi,2) such that

(2% x 287%).U4(2).2,2) = {22 x 2178 (2% x 2178).2,211 24,
(2% x 21+8).2.24 211 22 23 26+8 Dy 2112221 G}

and moreover, if R € Y = {211.24 (2% x 21+8).2.24 211222} C Q, then Ny, (R) <
]\[]\/[1 (22 X 2}|_+8), and if 22 x 2}|_+8 ?é R e ©(NM1 (22 X 2}|_+8), 2)\);, then Ng(R) = ]\7]\/[1 (R)

Let £7((22 x 217%).2.2*) and L£°((2* x 217®).2.2*) be the subfamilies of R defined by
(5.6) with 3 replaced by 2, 3° by 22 x 21 and @ by (22 x 217#).2.2*. A similar proof
shows that we may suppose

C & (LF((2% x 2178).2.2Y) U £O((2? x 218).2.2%)),

so that if P, = 2, then P, #5 (22 x 217%).2.2*, and moreover, if P, = 22 x 2!, then
either C' =¢ C(5) or Py € ®(Nyp, (22 x 2178), 2)\{(2% x 2178).2.2}.

Case (2.3). By MAGMA, the normalizer Ny, (2678) = 2678 .(S; x Ag) and we may
suppose ®(Nyy, (2678),2) is a subset of ®(M;,2) such that

(N, (2°078),2) = {2078 26182 2618 92 (22 x 2178).2.24 211 2224 2618 23 2648 Dy S}
and moreover, if R € Z = {208.2,(2% x 217%).2.24 2112221} C Q, then Ny, (R) <

Nip, (2618); and if 2518 £ R € ®(Nyy, (2°7%),2)\ Z, then Ng(R) = Ny, (R).
If P, =2 and P, = 2%%8 then either C = C(7) or P3 € ®(N,y (2678),2).

Case (2.4). By MAGMA, Ny, (2%) = 22.Us(2) and we may take
®(2°.Us(2),2) = {2°,2% x 2178, 21 26F8 o1t 2% 96+8 9 (22 x 2178).2.2%, 5"},

where S’ € Syl,(22.Us(2)). Moreover,

(U4(2) if R =22 x 2148,
Ls(4) if B = 211,
3x As).2 if R = 2618
N2_ R)/R = 4 ( ° ,
2 UG(Q)( )/ A5 lfR — 211.24 or 26+8.2’
53 X Sg if (22 X 2}+_+8).2.24,
3 if R=29"

If P, =2 and P, = 22, then either C =g C(15) or P3 € ®(22.Us(2), 2).

Case (3). Suppose P, = 2! = O,(M3), so that we may take P, €5 ®(Ms,2) which is
given in the proof (4) of Lemma 4.4. Let X* = {211.23 211.22.23 26+8 23 G} he a subset
of ®(Mj3,2). We may suppose X'* is a subset of ® (2. My, 2) given by Case (2.1) above,
so that X* = ®(21. My, 2)\ (X U {2!1,211.24}) and Ny, (R) = Now gy, (R) = N(R) for
each R € X*. Given W € X*, let G (W) and G°(W) be the subfamilies of R such that

GtW)/G = {C'eR/G:P =21 P, =W},
GFW))G = {C'eR/G: P =2,P,=2" P, =W} (5.8)
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If C' € GT(W) is given by (5.2), then
g(C:1<2< P <...<P,

is a chain of G°(W) and N(C") = N(g(C")). Moreover, g is a bijection between G+ (W)
and G°(W), so we may suppose

c¢ U @rmwyugm)). (5.9)
Wex
In particular, if P, = 2 and P, =¢ 2!, then C =g C(3); if P, = 2!! and |C| > 2, then
P, €6 O(Msy, 2)\ X",
Suppose R € ®(Ms,2)\(X* U {2'1}) = {2!1.242678.2 2112224} Let MT(R) and
MPO(R) be the subfamilies of R defined by (5.3) with 3}"® replaced by 2''. A similar

proof shows that there is a bijection between M*(R) and M°(R), and we may suppose
(5.5) holds, so that

C ¢ U (MT(R) U M°(R)).

Re®(Ms,2)\(X*U{211})
It follows that if P, =¢ 2!, then C =¢ C(4).

Case (4). Suppose P; = 2% x 2118 = Oy(My), so that we may take P, €¢ ®(My,2)
which is given in the proof (3) of Lemma 4.4. Let

V*={(2% x 27%).2,2".22.2%,2°%. Dy, 5}

be a subset of ®(Mj,2). We may suppose Y* is a subset of ®((2? x 21+%).U4(2).2,2)
given by Case (2.2) above. Thus Ny, (R) = N(22><2§r+8).U4(2).2(R) = N(R) for each
ReY*. If W e Y* let GH(W) and G°(W) be the subfamilies of R given by (5.8) with
2" replaced by 2% x 2!8. A similar proof shows that we may suppose (5.9) holds with
X* replaced by V*.

In particular, if P, = 2 and P, =¢ 2% x 2!*®, then either C' =g C(5) or Py =¢ 2'.2*
or 212224 if P; = 2% x 21*% and |C| > 2, then P, €¢ (M, 2)\(V* U {22 x 218}) =
{211,924 21192 24 (22 x 21+48) 224}

Let M*((2? x 21+8).2.2%) and MP((2? x 2118).2.2%) be the subfamilies of R defined
by (5.3) with 31*® replaced by 2% x 2!+® and R by (22 x 28).2.2%. We may suppose
(5.5) holds, so that

C & (MT((2% x 217%).2.2%) U MO((2% x 211%).2.2%)).

In particular, we may suppose P; #¢ (2% x 2478).2.2% and if P, =g 2% x 218, then
either C' =g C(6) or P, € {2'1.24,211.22.24}.
Case (4.1). By MAGMA, Ny, (21.2%) = 211.20.3.55 = N(2".2%) and we may take

(2'1.21.3.85,2) = {2'.2%)211.22.23 21 22.2% S} C ®(G, 2)

and Ny(uan(R) = N(R) for each R € ®(2'.2°.3.55,2). Let £(2'.2%.2%) and
L£°(2M.22.2*) be the subfamilies of R defined by (5.6) with 3 replaced by 2% x 21+8 36
by 211.2* and @ by 2!1.22.2%. Then we may suppose

C ¢ (£r(2M.22.2Y) u £0(2".22.2Y)),
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so that if P, = 22 x 21*8, then P, #¢ 2'1.22.2%, and moreover, if P, =g 2!1.2, then
Py € ®(N(211.24),2)\{211.24, 211 22 24}
Case (4.2). By MAcmA, Ny (22><2i+8)(211'24) = 2'1.2*.S5 and we may take

(2'1.24.55,2) = ®(211.24.3.55, 2).

Thus N211_24_55 (211.22.24) = NNMI (22X2_1'_+8)(211.22.24) and N211_24_55(R) = N(R) for R €

{211.22.23,S}. Suppose D € {2!1.22.23 S}. Let T(D) and 7°(D) be the subfamilies
of R such that

TH(D)/G = {C'eR/G: P =2"x2" P,=2"2" Py=D},
T'(D)/G = {C'"eR/G:P[=2,P,=2"x2"% py=2"2" P{=D}. (510
1 2 + 3 4

A similar proof to that of (5.7) shows that we may suppose

C¢ U (TT(D)uT(D)). (5.11)

Def211.92.93 5}
If P =2'".222% then define

HT(P)/G = {C'eR/G:P =2, P)=2"x gi_+8’pé = P},
H(P)/G = {C'eR/G: P =2,P=2"x2"* Pp=2"2" P{=P}. (512

Then a similar proof shows that we may suppose
C & (H"(P)UH(P)). (5.13)

Thus if P, =g 2 and P, = 2? x 217 then C € {C(5),C(24)}; if P, = 2% x 2!*8, then
C e {C(6),C(23)}.

Case (5). Suppose P, = 2678 = (0,(Mj5), so that we may take P, €q ®(Ms,2)
which is given in the proof (2) of Lemma 4.4. Let Z* = {2678 22 26+8 23 96+8 D¢ S}
be a subset of ®(Mj;,2). We may suppose Z* is a subset of ®(2578.(S3 x Ag),2) given
by Case (2.3) above. Thus Ny (R) = Nasts (s,x45)(R) = N(R) for each R € Z*. If
W e Z*, let G (W) and G°(W) be the subfamilies of R given by (5.8) with 2'! replaced
by 268, A similar proof shows that we may suppose (5.9) holds with X'* replaced by
Z*.

In particular, if P, = 2 and P, =g 25%8, then either C =4 C(7) or P3 €¢ Z given
in the proof Case (2.3); if P, = 25%8 and |C| > 2, then P, €¢ Z, where Z is identified
as a subset of ®(Ms, 2).

Case (5.1). By MAGMA, Ny, (2678.2) = 2678.2. 4, = N(2°78.2) and we may take
®(2078.2.4,,2) = {268.2, 264893 9119221 G C ®((, 2)

and Nys+s o 4.(R) = N(R) for each R € ®(2678.2.4;,2). Let £7(2'.22.2%) and
£°(2'1.22.2%) be the subfamilies of R defined by (5.6) with 3 replaced by 26*8 36
by 268.2 and @ by 2!'.22.2%. Then we may suppose

C ¢ (L£T(2M.22.2Y) u £0(2".22.2%)),
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so that if P, = 2578 then P, #¢ 2'1.22.2%, and moreover, if P, =g 27%.2, then
Py €6 ®(25+5.2.4,,2)\{26+8.2, 21192 94}

Case (5.2). By MAGMA, Ny, ((22 x 21+8).2.24) = (22 x 214%) 2.903(Sy x S3) =
N((2? x 217%).2.2*) and we may take

O(N((22 x 217%).2.2%),2) = {(22 x 2178).2.2%, 2678 Dy, 2112224 S} C 9(G, 2)

and NN((22X21+8)_2_24)(R) = N(R) for each R € ®(N((2% x 2118).2.2%),2).
Case (5.3). By MAGMA, Ny, (26+8)(207%.2) = 2978.2. A5 and we may take

D (2018.2.4¢,2) = ®(2018.2.4,, 2).

In addition, Nos+sp 4,(R) = N(R) for R € {2678.23 S} and Nys+s g ,(2'1.22.2%) =
Ny, 2o+8)(2'1.22.2). Suppose D € {20+8.23, S}, Let 7*(D) and T°(D) be the sub-
families of R defined by (5.10) with 2% x 218 replaced by 28 and 2!1.2¢ by 26+8.2.
Then we may suppose (5.11) holds with D € {2678.23 S}, Let HT(2!1.22.2%) and
HO(211.22.2%) be the subfamilies defined by (5.12) with 2% x 218 replaced by 257® and
211 24 by 26+8 2. Then we may suppose

C & (HF(2M.22.2%) U HO(211.22.2%)).

Case (5.4). By MAGMA, Ny, (2s+5)((2% x 24%%).2.2) = (2°x21%%).2.2%.(S3 x S3) and
we may take ®((22 x 2478).2.24.(S5 x S3),2) = ®(N((22 x 248).2.2%),2). In addition,
N(22 ><2£r+8).2.24.(53><53)(R) = N(R) for R € {26+8-D8, S} and

N(22X21++8)_2_24_(53X53)(211.22.24) =2'1222%5;.

Suppose D € {2678 .Dg, S}. Let 7 (D) and T°(D) be the subfamilies of R defined by
(5.10) with 22 x 21*8 replaced by 26® and 2''.2% by (22 x 2%).2.2*. Then we may
suppose (5.11) holds with D € {2°78.Dg, S}.

Let C':1 <2< 20%8 < (22 x 2178).2.24 < 211222 < S and

g(C") 11 < 20%8 < (22 x 2118) 2.2 < 211 222% < .

Then N(C') = N(9(C")) = N(S), so that (5.5) holds and we may suppose C' #¢
¢, 9(C").

It follows that if P, =g 25%8 then C €4 {C(8),C(9),C(12),C(13)}; if P, =g 2 and
Py =¢ 2%%8 then C €5 {C(7),C(10),C(11),C(14)}.

Case (6). Suppose P, = 2?2 = 0y(M,), so that we may take P, € ®(Ms,2) which
is given in the proof (5) of Lemma 4.4. Let M™(Dg) and M%(Dg) be the subfamilies
of R defined by (5.3) with 31*® replaced by 2% and R by Ds. Then we may suppose
C & (M*(Dg) UM®(Dg)). In particular, P, #¢ Dg and if P, =¢ 2, then P, #¢g Ds.

Case (6.1). As shown in the proof (5) of Lemma 4.4, Ny, (2'') = 2'1.13(4).2 and
we may take

®(2'1.L3(4).2,2) = {21,212, 211 2% 2648 9 26+8 92 9ll 92 93 9ll 92 94 G}
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and Ny, @1)(R) = Nap, (R) for each R € ®(2'".L3(4).2,2). Moreover, we may suppose
B(211.Ly(4).2,2) C B(Mp, 2).

Given Q € ®(2'1.L3(4).2,2)\{2"}, let LT(Q) and L£L°(Q) be the subfamilies of R
defined by (5.6) with 3 replaced by 22, 3% by 2''. Then we may suppose (5.7) holds
with Q replaced by ®(2'1.15(4).2,2)\{2!'}. Thus if P, =g 2? and P, =¢ 2!!, then
C =g C(17); if P, =g 22, then P, €g ®(M,, 2)\P(2M.L3(4).2,2).

Case (6.2). As shown in the proof (5) of Lemma 4.4,

Nap, (22 x 2178) = (2% x 2178).U4(2).2
and we may take

®((2° x 2178).U4(2).2,2) = {27 x 2118 (2 x 211%).2,2"1 .2,
(2% x 211%).2.24 2 .22.2% 2048 Dy 2112224 S}

and Ny, o2.01+5(R) = Nap(R) for each R € (22 x 2478).U4(2).2,2). We may
suppose ®((2? x 217%).U4(2).2,2) C ®(M>, 2).

Given Q € V = {(2% x 2118).2, (2% x 2148).2.24 2648 Dg}, let £L7(Q) and L%(Q) be
the subfamilies of R defined by (5.6) with 3 replaced by 22, 3° by 2% x 213, Then we
may suppose (5.7) holds with Q replaced by V. Thus if P, =¢ 2? and P, =¢ 2% x 2118,
then Py € ®((2% x 2178).U4(2).2,2)\V; if P, =g 2%, then P, ¢ V.

Case (6.3). By MAGMA, N(22X2#+8)_2.24_U4(2).2(211_24) = Ny, (211.24) = 211,24 S5 and
we may take

®(2'.2.55,2) = {2'1.2% 211.22.23 211 22.9' G} C ®(M,,2)

and Nou g1 5, (R) = Ny, (R) for each R € ®(2'1.24.55, 2).
Let P € ®(2!1.2%.55,2)\{2!1.2%}, and let H*(P) and H°(P) be the subfamilies of
R defined by (5.12) with 2 replaced by 22. Then we may suppose

C¢ U (KT (P)UH'(P)).
Pea(211.24.55,2)\{211.24}
So if P| =¢ 2% and P, =¢ 2* x 21*®, then C € {C(19),C(26)}.
Case (6.4). As shown in the proof (5) of Lemma 4.4, Ny, (2678) = 26¥8 (3 x A45).2.2
and we may take

*(Nap, (2079),2) = {2018.2,22.2418 2 (2 x 2178).2.2%, 2048 22 211 2224 2648 Dy}

and Ny,, (os+8)(R) = Nay, (R) for each R € ®(Ny, (2°%),2), where ®*(Ny, (2°7%),2) =
O (Ny, (2678),2)\ {278, S}. We may suppose ® (N, (2678),2) C ®(Mo, 2).

Let £1(22.2478.2) and £°(22.24%8.2) be the subfamilies of R defined by (5.6) with
3 replaced by 22, 3% by 26+8 and @) by 22.24*%.2. Then we may suppose

C ¢ (LT(22.2'8.2) u £°(2%.2*1%.2)).

Thus if P, =¢ 2% and P, =¢ 26%8, then P; #4 22.24%8.2; if P, =4 22, then P, #¢
229448 9.
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Case (6.5). By MAGMA, Nasts (3 45).2.2(2°7%.2) = Npp, (2078.2) = 2678.2.5;, and we

may take
(2578.2.55,2) = {26182, 264892 911 9221 G} C & ( My, 2)

and Nos+s 5 5.(R) = Npy, (R) for each R € ®(2°78.2.55,2).

Let P € ®(26%8.2.55,2)\{2%%.2}, and let H*(P) and H°(P) be the subfamilies of
R defined by (5.12) with 2 replaced by 22, 22 x 28 by 2678 and 2!1.2* by 26¥8.2. Then
we may suppose (5.13) holds. So if P, =g 2% and P, =¢ 2°®, then either C =g C(28)
or Py €¢ {(22 x 218) 2,24 2648 D},

Case (6.6). By MAGMA, Nos+s (3545)2.2((2% % 2118).2.2%) = Ny, ((2% x 2178).2.2%) =
(22 x 2178).2.2%.(S5 x S3), and we may take

®(Naup, (22 x 2478).2.2%),2) = {(2% x 211%).2.2%)2%8. Dg, 21122 2% S} C ®(M>, 2)

and NNMQ((22X2_1|_+8)_2_24)(R) = N, (R) for each R € (N, ((22 x 2478).2.2%), 2).

Let H*(2578.Dg) and H°(25%8.Dg) be the subfamilies of R defined by (5.12) with
2 replaced by 22, 2% x 2118 by 26+8 211 24 by (22 x 2478).2.2¢ and P by 2678 .Dg. Then
we may suppose (5.13) holds with P = 268 Ds.

Let C':1 < 2% < 2678 < (22 x 21%98).2.2% < 2M1.22.2' < S and

g(C") : 1< 22 <2078 < (22 x 2178) 22" < &.

Then N(C') = N(g(C")) = N(S), so that (5.5) holds and we may suppose C' #¢
', g(C).

So if Py =G 22 and P =G 26+8, then C' € {0(21), 0(28), 0(30), 0(31)}

Case (7). Suppose P, = 2 = Oy(M;) and P, = 22 = Oy(M;). Then Ny, (22) =
22.Us(2) and we may suppose P53 € ®(22.Ug(2), 2), which is given in Case (2.4) above.

Case (7.1). Now Noz2 179)(2% x 248) = (2% x 2178).U,(2) and we may take

B((2% x 217%).U4(2),2) = {2* x 218,212 (2% x 211%).2.2% 5},

and in addition, N(22><23r+8).U4(2) (R) = Na2.yg2)(R) for each R € ®((2% x 211%).U4(2), 2).
We may suppose ®((2% x 2178).U4(2),2) C ®(22.Us(2), 2).

Given P € ®((2% x 217%).U4(2),2)\{2? x 2178}, let H*(P) and H°(P) be the sub-
families of R given by (5.12) with 2% x 21® replaced by 2? and 2'1.2* by 2% x 218,
Then (5.13) holds for each P. So if P, =g 2 and P, =¢ 22, then P3 ¢g ®((2? x
2178).U4(2), 2)\{22 x 2%} and if moreover, P; =¢ 2% x 21*8, then C =¢ C(20).

Case (7.2). By MAGMA, N2 () (261%) = 20%8.(3 x A;).2 and we may take

(2045.(3 x Aj).2,2) = {2018,20%8 2, (2% x 217%).2.2% §'} C B(22.U5(2),2)
and Nos+s(3xa5)2(R) = N(R) for each S' # R € ®(2°78.(3 x A5).2,2). Let H1(207%.2)
and H°(267%.2) be the subfamilies of R given by (5.12) with 22 x 21*® replaced by 22,

211.2% by 268 and P by 26%8.2. Then (5.13) holds for P = 26+8.2.
Let C":1 <2< 2% <268 < 8 and

g(C") 11 <2 <22 <208 < (22 x 211%).220 < &
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Then N(C') = N(g(C")), so that (5.5) holds and we may suppose C #g C’, g(C").
Thus if Pl =G 2, Pg =G 22 and P3 =G 26+8, then C €a {0(22), 0(29)}
Case (7.3). By MAGMA, Na2 py(2)(2'') = 2''.L3(4) and we may take

®(2'1.L3(4),2) = {21, 2M.2%,26%8.2  §"} C ®(22.Us(2),2)

and N211.L3(4) (R) = N22.U6(2) (R) for each R € @(211.L3(4), 2).

Let C":1<2<22 <2 < S and g(C") : 1 <2< 2?2 <2 < 26782 < §. Then
N(C") = N(g(C")), so that (5.5) holds and we may suppose C #¢ C’, g(C"). Thus if
Pl =G 2, P2 =G 22 and P3 =G 211, then C €a {0(18),0(25),0(27),0(32)}

This completes the classification of the radical 2-chains, and the determination of
the normalizers of these chains. O

B Proof of Theorem 6.2

Proor: We may suppose B has a non-cyclic defect group.

(1). Suppose p = 5, so that by Lemma 4.5 (a), B = By or By. Let C = C(2),
C' = C(3), so that by Lemma 5.1, N(C) ~ Fi x S; and N(C'") ~ F} x K, where
K = Ns,(5) = F! x 2. If b(C) € BIk(N(C)) with b(C)¢ = B, then b(C) has a
defect group 52 and b(C) = by X by, where b; € Blk(FZ) and by € Blk(S7). In addition,
D(by) ~ D(by) ~ 5 and b; = By(F2). Similarly, if b(C") € Blk(N(C")) with b(C")S = B,
then b(C") = by x b for some bx € Blk(K) with D(bx) ~ 5. We may suppose b3 = bs.
Since by has a cyclic defect group, each character of both bx and by has height 0 (or
defect 2) and [Irr(bg)| = |[Irr(by)|. It follows that

K(N(C), B;,d) = k(N(C"), B;, d)

for j = 0,1 and all integers d > 0. By MAGMA, N(C(4)) ~ (F& x F# x 2).2.3
has 40 irreducible characters, all of 5-defect 2. In addition, N(C(4)) has two blocks,
bo(C(4)) = Bo(N(C(4))) and b,(C(4)), and each has 20 irreducible characters. It
follows by Lemma 4.5 (a) that

20 ifd=2,

0 otherwise,

K(G, B;,d) = k(N(C(4))), By, d) = {

where 7 = 0,1. Thus the result follows when p = 5.

(2). Suppose p = 3, so that by Lemma 4.5 (b), B = By. First, we consider the
radical 3-chains C(j) with d(N(C(j))) = 10, so that 2 < j < 9.

By MAGMA, N(C(2)) = S3 x O7(3) and N(C(3)) = S3 x 3°:U,(2):2 have 174
and 228 irreducible characters, respectively, whose degrees are given in Tables C-28
and C-29. In addition, N(C(2)) has two blocks and the principal block contains 171
irreducible characters.
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It follows that

(54 if d =10,
63 ifd=09,
a; ifd=S8,
k(N(C),By,d) =<9 ifd=T,
18 if d =6,
ay ifd =25,
(0 otherwise,

where C € {C(2),C(3)} and (aq,a2) = (24,3) or (84,0) according as C' = C(2) or
C(3).

The subgroups N(C'(4)) =~ S; x 3%73:32:25, and N(C(5)) ~ S5 x 3%"3: L3(3) have
237 and 138 irreducible characters, respectively, whose degrees are given in Tables C-30
and C-31.

It follows that

(54 if d = 10,
36 ifd=29,
k(N(C),By,d) =4 8 ifd=38,
9 ifd=T,

(0 otherwise,

where C' € {C(4),C(5)} and 8 = 138 or 39 according as C' = C(4) or C(5).
The subgroups N(C(6)) =~ S5 x 316.3: 25, and N(C(9)) = S”.2% have 219 and 309
irreducible characters, respectively, whose degrees are given in Tables C-32 and C-33.
It follows that

(54 if d =10,
63 ifd=9,
Y1 lfd:8,
K(N(C), By, d) =
WO Bod) =154 spa=1,
Y2 lfd:6,

L0 otherwise,

where C' € {C(6),C(9)} and (y1,72) = (39,9) or (138,0) according as C = C(6) or
C(9).

The subgroups N(C(8)) >~ S3x3°:3%: (Syx2) and N(C (7)) =~ S3x3L16.(244x Ay).2
have 300 and 252 irreducible characters, respectively, whose degrees are given in Tables
C-34 and C-35.

It follows that

(54 if d =10,
90 ifd=09,
0, ifd=8,
k(N(C),Bg,d) =4 54 ifd=T,
09 ifd =26,
03 if d =5,
(0 otherwise,
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where C € {C(8),C(7)} and (d1,02,93) = (84,18,0) or (24,27,3) according as C =
C(8) or C(7). Thus

9

> (=1)/DK(N(C(2)), Bo, d) = 0.

i=2

Next we consider the chain C(j) with d(N(C(j))) = 12, so that 11 < j < 22.

The subgroups N(C(15)) ~ 33.3%: L3(3) and N(C(16)) ~ 33:3%:32:25, have 139
and 259 irreducible characters, respectively, whose degrees are given in Tables C-36
and C-37.

It follows that

(45 if d =12,
15 ifd =11,
aq ifd= 10,
k(N(C), By, d) = 4
W@ Bod) =1 ) spa—o,
4 ifd=38,

(0 otherwise,

where C' € {C(15),C(16)} and (a1, as) = (45,30) or (81,114) according as C' = C(15)
or C'(16).
The subgroups N(C(20)) ~ 3178:32:25, and N(C(21)) ~ S5'.2% have 261 and 372
irreducible characters, respectively, whose degrees are given in Tables C-38 and C-39.
It follows that

(45 ifd =12,

78 ifd =11,

b, if d =10,
k(N(C),Bg,d) =4 by ifd=09,
54 ifd =8,
by ifd=7,

(0 otherwise,

where C' € {C(20),C(21)} and (by,by,b3) = (45,30,9) or (81,114,0) according as
C = (C(20) or C(21). Thus

ifd =7,

otherwise.

> ()ORNC), Bod) = { 7

i€{15,16,20,21}

The subgroups N(C(11)) ~ N(C(17)) =~ 3%.3%:32.(2S; x 2) and N(C(18)) =~
N(C(22)) ~ S'.23 have 269 and 372 irreducible characters, respectively, whose degrees
are given in Tables C-40 and C-41.

It follows that

(54 ifd=12,

C1 ifd= 11,
72  ifd=10

k(N(C), By, d) = ’
(N(C), Bo, d) Y120 ifd=0,
Co ifd= 8,

L0 otherwise,
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where C € {C(11),C(18)} or {C(17),C(22)} and (¢1, o) = (18,5) or (72, 54) according
as C € {C(11),C(17)} or C € {C(18),C(22)}.

The subgroups N(C(12)) =~ 32.3% (L3(3) x 2) and N(C(13)) = 31+8.3% (25, x 2)
have 149 and 261 irreducible characters, respectively, whose degrees are given in Tables
C—-42 and C-43.

It follows that

(54 ifd =12,

d; ifd =11,

36 if d =10,
k(N(C),By,d) =4 36 ifd=09,
dy ifd=38,
ds ifd=1,

(0 otherwise,

where C' € {C(12),C(13)} and (di,ds,ds) = (18,5,0) or (72,54,9) according as C =
C(12) or C(13).

The subgroups N(C(14)) ~ 3% L4(3): 2 and N(C(19)) ~ 31+8.3.217.(S; x S3) have
159 and 271 irreducible characters, respectively, whose degrees are given in Tables C-44
and C-45.

It follows that

(54 if d =12,
€1 1fd=11,
45 if d = 10,
31 ifd=9
k(N(C), By, d) = ¢ ’
(N(C), Bo,d) eo ifd=8,
€3 lfd:7,

6 ifd=6,
(0 otherwise,
(

where C' € {C(14),C(19)} and (dy,d2, ds) = (18,5,0) or (72,54,9) according as C =
C(14) or C(19). Thus

22 , 9 ifd="7
> (1) COK(N(C (@), Bo,d) = { ! (6.1)
i—11 0 otherwise.

Finally, we consider the chain C'(j) with d(N(C(j))) = 13, so j € {1, 10,23, 24}.

The subgroups N(C(23)) ~ 317#.3172: (25, %x2) and N(C(24)) ~ 3%.3.3%.3%: (L3(3) x
2) have 206 and 128 irreducible characters, respectively, whose degrees are given in
Tables C-46 and C-47.
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It follows that

(27 ifd =13,
24 ifd =12,
fioifd=11,
48 if d = 10,
k(J\f(C),BO,d):<f2 td_o
fy ifd=S8,
fi o ifd=T1,

(0 otherwise,

where C € {C(23),C(24)} and (fi, fo, f3, f1) = (41, 36,26,4) or (8,18,2,1) according
as C'=(C(23) or C(24).

Since N(C(10)) ~ 31+8:2176: 31+2: 25, is a maximal subgroup of Fiyg, its character
table and that of N(C(1)) = Figs are stored in the GAP library. Thus N(C(10)) and the
principal block By of Figs (see Lemma 4.5 (b)) have 181 and 94 irreducible characters,
respectively; the degrees of characters of Irr(/N(C(10))) are given in Table C—48.

It follows by Lemma 4.5 (b) that

(27 if d =13,
24 ifd =12,
g1 ifd =11,
21 if d =10,
gy ifd=09,
k(N(C), By, d) = 1 5 ifd=8,
g4 ifd=T,
6 ifd =6,
1 ifd=35,

(0 otherwise,

where C' € {C(1),C(10)} and (g1, g2, 93, 94) = (8,4,2,1) or (41, 22,26, 13) according as
C =C(1) or C(10). Thus

> (-)CORWNE@) By = { 0 T T (62
i€{1,10,23,14} 0 otherwise.
Theorem 6.2 follows by (6.1) and (6.2). O
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C Character tables for chain normalisers

Degree 1 22 26 176 231 252 385 440 260
Number 1 1 3 3 1 1 1 1 1
Degree 616 770 792 | 1155 | 1232 | 1386 | 1540 | 2464 | 3080
Number 4 2 3 3 3 1 1 3 5
Degree || 3360 | 3520 | 4620 | 4928 | 5544 | 6160 | 6930 | 7776 | 8064
Number 6 1 1 1 4 11 1 3 1
Degree || 9240 | 9856 | 10395 | 11264 | 12320 | 13608 | 13860 | 14784 | 15840
Number 3 3 ) 4 9 3 1 1 3
Degree || 18480 | 18711 | 20790 | 21384 | 22176 | 24640 | 25515 | 27720 | 30240
Number 3 2 2 3 3 10 2 3 3
Degree || 32768 | 37422 | 40095 | 44352
Number 4 1 1 3
Table C—1: The degrees of characters in Irr(22.Ug(2))
Degree | 1| 3 5110 15| 16| 20| 30| 40
Number 1 2 1| 4| 2 9 4 1 6| 12
Degree || 48 | 60 | 64 | 80 | 96 | 120 | 160 | 192 | 240 | 320
Number || 8| 2| 4|31| 6| 24 8 6 8 4
Table C-2: The degrees of characters in Irr(2'.2%.45)
Degree | 1| 3| 4| 5| 15| 16| 20| 30|40
Number | 2| 4| 2| 2 8 6 6 8|12
Degree || 48 | 60 | 64 | 80 | 120 | 160 | 240 | 320
Number || 12 |16 | 6 | 30| 16 4| 19 2
Table C-3: The degrees of characters in Irr(26+8.2.4;)
Degree | 1| 2| 3| 4| 6| 8| 9| 12| 16| 18
Number | 6| 3| 2| 6| 4| 3| 8 2| 60 1
Degree || 24 | 32 | 36 | 48 | 64 | 72| 96 | 128 | 144 | 192
Number || 25 |30 | 16 | 21 |24 | 12|22 | 12| 20 2

Table C—4: The degrees of characters in Irr((2* x 2/+%).2.2.3.5;)
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Degree 1] 20| 21| 35 45 51§) 63 64 84 | 105
Number 1 1 1 3 2 3 4 1 1 1
Degree || 120 | 210 | 280 | 315 | 336 | 360 | 420 | 448 | 504 | 560
Number 3 21 10 4 3 6 1 6 3 4
Degree || 630 | 720 | 840 | 960 | 1008 | 1260 | 1344 | 1680 | 2240
Number 6 3 3 3 6 1 3 3 1
Table C-5: The degrees of characters in Irr(2''.L3(4))
Degree 1 5) 6 10 15 16 | 20| 24| 30| 40
Number 1 2 1 2 2 4 1 1 3 8
Degree | 45| 60| 64 80 81 96 | 120 | 135 | 160 | 216
Number 2 1 1 11 1 41 10 21 20 6
Degree || 240 | 270 | 320 | 360 | 384 | 405 | 480 | 540 | 640 | 720
Number 21 1| 10 8 4 6| 18 2 8| 10
Degree || 810 | 864 | 960 | 1024 | 1080 | 1296
Number 1 6 5 4 7 7
Table C-6: The degrees of characters in Irr((2% x 21+8).U4(2))
Degree 1 2 3 4 ) 6 811016 | 20| 30
Number 2 1 4 2 2 2 11 1] 6 6 3
Degree 32| 40| 45| 48| 60| 64| 80|90 |96 | 120 | 128
Number 3| 15 81 12 8 6| 36| 1| 6 4 3
Degree || 160 | 180 | 240 | 320 | 360 | 480 | 640
Number 19 8| 15 41 12 6 1

Table C-7: The degrees of characters in Irr(25+8(3 x Aj5).2)

Degree | 1| 3[4 |6|12]16]24|48 |64 |96

Table C-8: The degrees of characters in Irr(S’.3)

40
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Degree 1 21 45 55 77 99| 154 | 176 | 210
Number 1 1 2 1 1 1 1 2 1
Degree 231 | 280 330| 385 | 616 | 672 | 693 | 770 | 990
Number 1 2 1 3 4 1 1 1 2
Degree || 1056 | 1155 | 1760 | 1980 | 2310 | 2464 | 2640 | 3360 | 3465
Number 2 2 4 1 4 4 3 2 2
Degree || 3696 | 4620 | 5544 | 6160 | 6720 | 6930 | 7392 | 8064 | 9856
Number 2 1 2 5 2 2 1 2 1

Table C-9: The degrees of characters in Irr(2'!. M)

Degree 1 6 10 15 16 20 24 30 32 40
Number 2 1 4 4 3 2 2 1 4
Degree 60 64 80 81 90 96 | 120 | 135 | 160 | 192
Number 3 2 5 2 1 4 8 4 5 1
Degree 216 | 240 | 270 | 320 | 384 | 405 | 432 | 480 | 540 | 640
Number 4 17 2 14 4 4 2 15 4 4
Degree 720 | 768 | 810 | 864 | 960 | 1024 | 1080 | 1280 | 1296 | 1440
Number 4 1 4 4 13 4 6 4 6 5
Degree || 1728 | 1920 | 2048 | 2160 | 2592
Number 2 1 1 2 2

Table C-10: The degrees of characters in Irr((2? x 21%).U4(2).2)

Degree 1 5 8 9 10 16 | 18| 20| 32
Number 1 4 4 2 4 4 1 1 1
Degree 45 60| 8| 90| 96| 120 | 128 | 135 | 144 | 160
Number 4 4 8 4 4 6 4 4 21 14
Degree || 180 | 192 | 240 | 256 | 270 | 288 | 320 | 360 | 384 | 480
Number 5 2 9 2 2 9 5 2 41 10
Degree || 540 | 576 | 720 | 768 | 960 | 1080 | 1440
Number 8 41 10 2 7 2 5

Table C-11: The degrees of characters in Irr(2578(S; x Ag))

Degree | 12| 3|4] 6[8[12[16]24 32|48 |64 |96 | 128 192

Number || 4 [2]12 410 |2

| 2

2|16 ]32]26 37| 8|33] 10|

Table C-12: The degrees of characters in Irr(2!1.22.24.53)

41

4



Degree 1 78 352 429 1001 1430 2080
Number 1 1 1 1 1 1 2
Degree 3003 3080 5824 10725 13650 13728 27456
Number 1 1 4 1 1 2 1
Degree 30030 32032 43680 45045 48048 50050 75075
Number 1 1 1 1 3 2 3
Degree 81081 | 105600 | 114400 | 123200 | 133056 | 138600 | 146432
Number 1 2 1 1 1 2 2
Degree 150150 | 205920 | 228800 | 235872 | 289575 | 300300 | 320320
Number 1 1 1 2 1 1 3
Degree 360855 | 370656 | 400400 | 436800 | 450450 | 480480 | 576576
Number 1 1 6 2 2 2 1
Degree 577368 | 579150 | 582400 | 600600 | 675675 | 686400 | 720720
Number 1 1 2 3 1 2 1
Degree 800800 | 852930 | 915200 | 938223 | 972972 | 982800 | 1029600
Number 1 1 2 1 1 2 1
Degree || 1201200 | 1297296 | 1360800 | 1372800 | 1441792 | 1663200 | 1791153
Number 3 2 1 1 2 2 1
Degree || 1876446 | 2027025 | 2050048 | 2196480 | 2316600 | 2358720 | 2402400
Number 1 1 1 2 1 2 3

Degree || 2555904 | 2729376

Number 4

1

Table C-13: The degrees of characters in Irr(2.Figy)

Degree 1 5 8 91 10| 15| 16| 30| 45
Number 2 4 4 2 2 4 2 4 4
Degree | 60| 80| 90| 96 | 120 | 128 | 144 | 160 | 180
Number 5 8 6 4 4 4 21 10| 13
Degree || 240 | 288 | 360 | 384 | 480 | 720 | 960
Number 9 8 6 41 12 7 2
Table C-14: The degrees of characters in Irr(2°78.2. 4¢)

Degree | 1| 2| 3| 4| 6| 8 9 12| 16| 18| 24
Number || 4| 4| 4| 5| 4| 4 8 5| 17 41 14
Degree || 32 | 36 | 48 | 64 | 72 | 96 | 128 | 144 | 192 | 256 | 288
Number || 34 | 16 |23 |21 |12 |23 | 14| 16| 11 5 7

Table C-15: The degrees of characters in Irr((2? x 2}78)2.2%.(S; x S3))
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Degree | 1| 4| 5 6| 10| 15| 16| 20| 30| 32| 40| 60
Number | 2| 2| 4 1 5| 10 4 2 6 1 8 6
Degree || 64 | 80 | 96 | 120 | 128 | 160 | 192 | 240 | 320 | 384 | 480 | 640
Number 4118 8| 20 11 20 2| 15 6 3 2 1
Table C-16: The degrees of characters in Irr(2!1.24.5j)

Degree 1 20 21 35 45 56 64 70 84 | 105
Number 2 2 2 2 4 2 2 1 2 2
Degree 112 | 120 | 126 | 210 | 240 | 280 | 315 | 336 | 360 | 420
Number 1 2 2 4 1 8 4 2 4 2
Degree || 504 | 560 | 630 | 672 | 720 | 840 | 896 | 960 | 1008 | 1120
Number 2 7 5 1 4 2 3 2 1 1

Degree || 1260 | 1344 | 1440 | 1680 | 1920 | 2016 | 2240 | 2688 | 3360
Number 4 2 1 3 1 3 2 1 1
Table C-17: The degrees of characters in Irr(2'.L3(4).2)
Degree 1 2 4 5 6 8| 10 12| 16| 20| 30
Number 4 2 4 4 2 2 2 1 4 4 2
Degree | 32| 40| 45| 60| 64| 80| 90| 96 | 120 | 128 | 160
Number 41 12 8 9 5| 21 4 6 6 41 28
Degree || 180 | 192 | 240 | 256 | 320 | 360 | 480 | 640 | 720 | 960
Number 8 3 7 1] 14| 10| 10 2 4 2

Table C-18: The degrees of characters in Irr(2°678(3 x Aj5).2.2)
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Degree 1 22 56 112 176 231 252 352 385
Number 2 2 2 1 2 2 2 1 2
Degree 440 560 616 792 | 1155 | 1232 | 1386 | 1540 | 1584
Number 2 2 4 2 2 3 2 3 1
Degree || 2310 | 2464 | 3080 | 3520 | 4620 | 4928 | 5544 | 6160 | 6720
Number 1 3 2 2 2 3 4 4 3
Degree || 6930 | 7776 | 8064 | 9240 | 9856 | 10395 | 11088 | 11264 | 12320
Number 2 2 2 2 2 2 1 4 7
Degree || 13608 | 13860 | 14784 | 15552 | 15840 | 18480 | 18711 | 19712 | 20790
Number 2 2 2 1 2 3 4 1 2
Degree || 21384 | 22176 | 22528 | 24640 | 27216 | 27720 | 30240 | 31680 | 32768
Number 2 2 1 8 1 2 2 1 4
Degree || 36960 | 37422 | 40095 | 41580 | 42768 | 44352 | 49280 | 51030 | 55440
Number 1 2 2 1 1 3 4 1 1
Degree || 60480 | 65536 | 88704
Number 1 1 1
Table C-19: The degrees of characters in Irr(22.U(2).2)
Degree || 1| 4| 5| 6| 15| 16| 20| 30| 32| 40
Number 4| 4| 2 8 4 4| 10 21 10
Degree || 60 | 64 | 80 | 96 | 120 | 128 | 160 | 240 | 320 | 480
Number || 18 | 4|16 | 6| 16 21 20| 15 4 7
Table C-20: The degrees of characters in Irr(2678.2.55)
Degree 1 6 10 14 15| 21 30 35 45
Number 2 2 4 4 4 2 1 2 4
Degree 90| 105 | 112 | 120 | 140|180 | 210 | 240 | 280
Number 4 2 2 2 4 1 3 1 8
Degree | 336 | 420 | 560 | 630 | 840 | 896 | 1008 | 1120 | 1260
Number 4 9 4 2 6 4 2 2 4
Degree || 1344 | 1680 | 2016 | 2520 | 3360
Number 4 7 2 2 1

Table C-21: The degrees of characters in Irr(2°78.2.4;)
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Degree 1 2 3 4 6 8 91 12| 16| 18
Number 10 4 8 6| 10 4 9 8 4
Degree || 24| 27| 32| 36| 48| 64| 72| 96| 108 | 128
Number 6 41 10 91 19 8| 14| 26 81| 10
Degree || 144 | 192 | 216 | 256 | 288 | 384 | 432 | 576 | 768 | 864
Number | 17| 19 8 4 8 6 8 1 1 1
Table C-22: The degrees of characters in Irr((2? x 217%)2.2%.3.(S3 x S3))
Degree 1 4 5 6 8| 10| 15| 16| 20 30
Number 2 1 2 4 3 1 9 6 2 4 3
Degree | 32| 40| 45| 48| 60| 64| 8| 90| 96 | 120 | 128
Number 1 1 4 2 4 2 4 4 3| 16 1
Degree || 160 | 192 | 240 | 288 | 320 | 360 | 480 | 640 | 720 | 960 | 1152
Number 9 2 17 ) 41 14 8 1 4 2 1
Table C-23: The degrees of characters in Irr(2!1.24.3.55)
Degree 1 22 45 230 231 253 506 770 896
Number 1 1 2 1 3 2 1 2 2
Degree 990 | 1035 | 1288 | 1518 | 2024 | 2530 | 3542 | 3795 | 5313
Number 2 1 1 1 1 2 3 2 1
Degree || 7084 | 8855 | 10120 | 10626 | 11385 | 12880 | 14168 | 17710 | 20608
Number 1 1 1 3 2 3 2 1 2
Degree || 22770 | 26565 | 28336 | 30360 | 32384 | 35420 | 56672 | 57960 | 70840
Number 3 1 1 1 1 1 1 1 1
Table C-24: The degrees of characters in Irr(2M.My3)
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Degree 1 2 6 10 12 15 16 20 24 30
Number 2 1 2 3 1 4 2 5) 2 4
Degree 32 40 48 60 64 80 81 90 96 | 120
Number 1 1 3 6 2 3 2 3 2 7
Degree || 128 | 135| 160 | 162 | 192 | 240 | 270 | 288 | 320 | 360
Number 1 4 3 1 1 9 4 2 5 6
Degree || 384 | 480 | 540 | 640 | 648 | 720 | 768 | 810 | 960 | 1024
Number 2 6 5 1 4 11 1 2 13 2
Degree || 1080 | 1152 | 1215 | 1280 | 1296 | 1440 | 1620 | 1920 | 2048 | 2160
Number 4 2 4 3 2 13 1 3 1 2
Degree || 2592 | 2880 | 3072 | 3240 | 3840 | 3888 | 4320
Number 5 3 2 4 1 4 1
Table C-25: The degrees of characters in Irr((2? x 217%).(3 x Uy(2)).2)
Degree 1 2 6 10 12 14 15 20 21 28
Number 2 1 2 4 1 4 2 2 2 2
Degree 30 35 42 45 70| 112 | 135 | 140 | 210 | 224
Number 1 2 1 2 1 2 4 4 2 1
Degree || 270 | 280 | 315 | 336 | 360 | 420 | 560 | 630 | 672 | 840
Number 2 10 2 4 2 8 8 2 2 4
Degree || 896 | 1008 | 1120 | 1260 | 1344 | 1680 | 1792 | 2016 | 2240 | 2520
Number 4 2 4 5 4 7 2 3 1 2
Degree || 2688 | 3360 | 3780 | 4032
Number 2 6 4 1

Table C-26: The degrees of characters in Irr(25%8.(S3 x A7))

Degree 1|1 2| 3| 4| 6| 8 9 12| 16| 18| 24
Number 4|1 8| 8| 4] 8| 8 4| 14 4 4| 12
Degree || 32 | 36 | 48 | 64 | 72 | 96 | 128 | 144 | 192 | 288 | 384
Number | 8| 821 | 4|22 21 81 20| 10 9 2

Table C—27: The degrees of characters in Irr(2'1.22.24.F})
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Degree 1 2 78 91 105 156 168 182 195
Number 2 1 2 2 2 1 2 3 2
Degree 210 260 273 336 364 390 520 546 819
Number 1 4 2 1 1 1 2 3 2
Degree 910 | 1092 | 1365 | 1560 | 1638 | 1820 | 2106 | 2184 | 2457
Number 4 3 4 4 3 4 2 3 2
Degree || 2730 | 2835 | 3120 | 3276 | 3640 | 4095 | 4212 | 4368 | 4536
Number 6 2 2 1 1 4 1 3 2
Degree || 4914 | 5265 | 5460 | 5670 | 5824 | 6552 | 7020 | 7280 | 7371
Number 1 2 8 1 4 2 4 6 2
Degree || 8190 | 8736 | 9072 | 10530 | 10920 | 11648 | 13104 | 14040 | 14560
Number 6 1 1 1 3 4 1 2 3
Degree || 14742 | 16380 | 16640 | 17472 | 17920 | 19683 | 21840 | 22113 | 23296
Number 3 4 4 4 4 2 2 2 1
Degree || 29484 | 32760 | 33280 | 34944 | 35840 | 39366 | 43680 | 44226
Number 1 1 2 2 2 1 1 1
Table C—28: The degrees of characters in Irr(S; x O7(3))
Degree 1 2 6 10 12 15 20 24 30 40
Number 4 2 4 2 2 8 7 4 8 3
Degree | 48 | 60 64 72 80 81 90 | 120 | 128 | 144
Number 2 8 4 4 14 4 14 3 2 2
Degree || 160 | 162 | 180 | 240 | 360 | 480 | 540 | 640 | 648 | 720
Number 7 2 13 4 23 10 6 6 4 20
Degree || 810 | 960 | 1080 | 1152 | 1280 | 1296 | 1440 | 1620 | 1920 | 2304
Number 4 8 3 2 3 2 5 2 2 1

Table C—29: The degrees of characters in Irr(S3 x 3°: Uy(2): 2)

Degree | 1| 2| 3| 4| 6| 8| 12| 16| 18|24
Number | 4| 8| 4| 5| 8|17 9 16| 20| 3

Degree || 32 | 36 | 48 | 54 | 72 | 96 | 108 | 144 | 288
Number | 4|28 | 8| 6|45 | 4 3| 36 9

Table C-30: The degrees of characters in Irr(S3 x 3373:3%:235))
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Degree 1 2| 12| 13| 16 24 26 | 27| 32
Number 2 1 2 2 8 1 13 2 4
Degree || 39| 52| 54| 78 | 104 | 156 | 208 | 234 | 312
Number 21 12 1 9 3 10 6| 14 3
Degree || 416 | 468 | 624 | 702 | 936 | 1248 | 1404
Number 3| 19 6 4 6 3 2

Table C-31: The degrees of characters in Irr(Ss; x 33%3: L3(3))

Degree | 1| 2| 3| 4 6 8| 12| 16| 24| 32
Number 4114 4|14 4 8 1| 10| 24 4
Degree || 48 | 54 | 72 | 96 | 108 | 144 | 162 | 216 | 288 | 324
Number || 24 | 18 | 24| 6| 27| 14 6 9 1 3

Table C-32: The degrees of characters in Irr(S; x 316.3:25;)

Degree | 1| 2| 4] 6[8[12]18]24|36|54|72]108
Number || 824 |18 |28 4|28 | 72| 7[56[36|10| 18

Table C-33: The degrees of characters in Irr(S"”.23)

Degree | 1| 2| 3| 4| 6 81 12| 16| 18| 24| 32
Number || 8 | 20| 8| 8|16 41 24| 10 8| 25| 4
Degree || 36 | 48 | 54 | 72 | 96 | 108 | 144 | 162 | 288 | 324
Number || 30 | 14 | 36 |33 | 3| 18| 12| 12 1 6

Table C—34: The degrees of characters in Trr(S3 x 3%: 3% (S, x 2))

Degree 1 2 3 4 6 8 9| 12| 18| 24
Number 41 14 8| 14| 12 4 4 6 2 9
Degree || 32| 48| 54| 64| 96| 108 | 128 | 144 | 162 | 192
Number 41 22| 18| 10| 21| 27 4 8| 12| 10
Degree || 216 | 288 | 324 | 384 | 486 | 576 | 648 | 972
Number 9 8| 12 2 2 2 3 1

Table C-35: The degrees of characters in Irr(S; x 3170.(24,4 x Ay).2)
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Degree 1 12 13| 16| 26 27 39 52 | 78
Number 1 1 1 41 15 1 1 12 4
Degree || 208 | 234 | 468 | 624 | 702 | 1404 | 1872 | 2106
Number | 12| 15| 15 9| 17 12 15 4

Table C-36: The degrees of characters in Irr(32.3%: L3(3))

Degree | 1| 2 3 4 8| 16| 18| 36
Number 21 3 2 1| 26| 13| 27|27
Degree || 48 | 54 | 108 | 144 | 162 | 216 | 432
Number | 13 | 21 | 12| 27 41 54| 27

Table C-37: The degrees of characters in Irr(33%: 3%:3%:25,)

Degree | 1| 2 3 4 6 8| 16| 24
Number | 2| 15 2| 13 4 21 13| 24
Degree || 48 | 72 | 144 | 162 | 216 | 324 | 432 | 486
Number || 48 | 30 | 15| 27| 24| 27 6 9

Table C-38: The degrees of characters in Irr(3478: 3%:25,)

Degree | 1| 2| 4| 6]12] 18|36 |54 | 108 | 162
Number | 4 | 28 | 13 |26 | 52 |54 |27 [ 78| 36| 54

Table C-39: The degrees of characters in Irr(S’.2?)

Degree | 1| 2 3 4 8| 16| 18| 32| 36| 48|54
Number || 4| 6 4 21 20| 18| 14 41 24| 10|18
Degree || 72 | 96 | 108 | 144 | 162 | 216 | 288 | 324 | 432 | 864
Number || 10 | 4| 18| 14 41 39| 10 1] 36 9

Table C—40: The degrees of characters in Irr(32.35: 3%: (25, x 2))

Degree | 1| 2| 4] 6]8|12]18]24 |36 |54 | 72108162 | 216 | 324

8
Number || 8 |24 |18 |20 |4 [32]28]20 34|60 | 10| 48| 36| 12| 18

Table C—41: The degrees of characters in Irr(S’.2%)
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Degree 1 12 13 16 26 27 39| 52| 78
Number 2 2 2 8 14 2 21 12 4
Degree 104 | 156 | 208 | 234 | 416 | 468 | 624 | 702 | 936
Number 4 1 8 6 4 12 6| 14 6
Degree || 1248 | 1404 | 1872 | 2106 | 2808 | 3744 | 4212
Number 3 17 6 4 3 6 1

Table C-42: The degrees of characters in Irr(33.3%: (L3(3) x 2))

Degree || 1 2 3 4 6 8| 12| 16| 24| 32| 48 |72
Number | 4| 14 4| 14 4 8 1] 10| 16 41 28112

Degree || 96 | 144 | 162 | 216 | 288 | 324 | 432 | 486 | 648 | 864 | 972
Number | 19 | 18 | 18| 24 6 27| 10 6 9 2 3

Table C-43: The degrees of characters in Irr(343.3% (25, x 2))

Degree 1 26 39 92 65 90 234 260
Number 2 4 2 2 4 2 8 12
Degree 351 390 416 468 520 585 729 780
Number 2 2 4 2 3 4 2 2
Degree 832 | 1040 | 1170 | 1280 | 1404 | 1560 | 2080 | 2340
Number 1 8 4 2 4 3 3 7
Degree | 3510 | 4680 | 5616 | 6240 | 7020 | 8320 | 9360 | 10530
Number 8 3 4 8 8 6 4 4
Degree || 12480 | 14040 | 14976 | 16640 | 18720 | 18954 | 21060
Number 1 3 4 3 ) 4 1
Table C—44: The degrees of characters in Irr(3%: L,(3): 2)
Degree 1 2 4 6 8 9 12 16 18 24 | 32
Number 41 10 8 2] 10 4 4 4 2 8 4
Degree | 48 | 64| 72| 96| 128 | 144 | 162 | 192 | 216 | 288 | 324
Number | 12| 10| 16| 13 4 8 18 18 8 8 9
Degree || 384 | 432 | 576 | 648 | 864 | 972 | 1152 | 1296 | 1458 | 1728
Number | 15| 12 6| 18 9 9 1 9 6 2

Table C—45: The degrees of characters in Irr(348.3.217.(S; x S3))
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Degree 1 2 3 4 6 8| 12 16 18
Number 4 6 4 2 6 8 6 6 4
Degree | 32| 36| 48| 54| 772|108 | 144 | 162 | 216
Number 1 6 8 41 16 41 12 8 25
Degree || 288 | 324 | 432 | 486 | 648 | 864 | 972 | 1296 | 1458
Number 3 6| 14| 14| 12 1] 12 10 4

Table C-46: The degrees of characters in Irr(348.312: (25, x 2))

Degree 1] 12| 13 16 26 27 39 52 54
Number 2 2 2 8 8 2 2 3 1
Degree | 78 | 104 | 156 | 208 | 234 | 416 | 468 | 624 | 648
Number 8 1 6 2 2 1 3 6 1
Degree || 702 | 864 | 936 | 1404 | 1458 | 2106 | 4212 | 5616 | 6318
Number 13 4 3 16 1 11 6 12 2

Table C-47: The degrees of characters in Irr(3%.3.3%.33: (L3(3) x 2))

Degree 1 2 3 4 6 8 12 16 18 24
Number 2 3 2 1 3 4 3 4 1 2
Degree 27 32 36 48 54 64 72 81 96 108
Number 2 1 4 3 3 2 4 2 3 1
Degree 128 144 | 162 | 288 | 324 | 486 | 512 | 576 864 972
Number 1 2 3 2 3 7 4 6 4 6
Degree 1024 | 1152 | 1296 | 1458 | 1728 | 2048 | 2304 | 2592 | 3072 | 3456
Number 4 8 6 2 4 1 4 5 8 5
Degree | 3888 | 4374 | 4608 | 5832 | 6912 | 7776 | 8748 | 9216 | 10368 | 11664
Number 7 3 5 6 2 6 3 4 3 5
Degree || 13122 | 18432
Number 1 1

Table C—48: The degrees of characters in Irr(3}8: 21+6: 31+2: 2.5,)
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