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Abstract

Using the local subgroup strategy of [3] and [4], we classify the radical sub-
groups and chains of the Fischer simple group Fiss and verify the Alperin weight
conjecture and the Uno reductive conjecture for this group; the latter is a refine-
ment of the Dade reductive and Isaacs-Navarro conjectures.

1 Introduction

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [11] generalized the Knorr-Robinson version of the Alperin weight conjecture
and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [12] presented several other forms
of his conjecture and announced that his final conjecture needs only to be verified
for finite non-abelian simple groups; in addition, if a finite group has a cyclic outer
automorphism group, then the projective invariant conjecture is equivalent to the final
conjecture. Recently, Isaacs and Navarro [16] proposed a new conjecture which is a
refinement of the Alperin-McKay conjecture, and Uno [19] raised an alternating sum
version of the Isaacs-Navarro conjecture which is a refinement of the Dade conjecture.

In [3] and [4], we presented a local subgroup strategy to decide the Alperin and
Dade conjectures for the finite simple groups and demonstrated its computational ef-
fectiveness by using it to verify the Alperin and Dade conjectures for the Conway simple
group Coy and the Fischer simple group Fiss. In this paper, we apply the strategy to
verify the Alperin and Uno conjectures for the Fischer simple group Figs. Although
the outlines of our computations and proofs are similar to those of the Alperin and
Dade conjectures for Cos and Figs, the details are significantly more complex, since
we must verify Uno’s invariant conjecture for Fiss, the projective invariant conjecture
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for the 2-covering group 2.Fiy, and the projective conjecture for the 3- and 6-covering
groups, 3.Fiss and 6.Fis,.

The challenge in deciding the conjectures for these groups is to determine the char-
acter tables of the normalizers of the radical 2- and 3-chains. Our approach to de-
termining the character tables of the normalizers is similar to that employed in Fiag,
but the calculations are more complicated because of the large degrees, 185328 and
370656, of the faithful permutation representations of 3.Fisy and 6.Fisy. If a relevant
normalizer is a maximal subgroup of a covering group, then its character table is usually
available in a character table library supplied with the computational algebra system
GAP [18]. Otherwise, we constructed a “useful” representation of the normalizer and
attempted to compute directly its character table; if this construction failed, we used
lifting of characters of quotient groups, and induction and decomposition of characters
of subgroups of the normalizer to obtain its character table. We present the details in
Section 6.

The paper is organized as follows. In Section 2, we fix notation and state the
Alperin weight conjecture, the Isaacs-Navarro conjecture, the Dade and Uno invariant,
projective, and projective invariant conjectures, and state a useful lemma. In Section
3, we recall our (modified) local subgroup strategy and explain how we applied it to
determine the radical subgroups of Fiss. In Section 4, we classify the radical subgroups
of Figs up to conjugacy and verify the Alperin weight conjecture. The classification
of radical 2-subgroups of Fiyy was given in [4, p. 631]; we report these in detail in
Section 4 because many subgroups there will be used in the next section to construct
radical 2-chains. In Section 5, we do some cancellations in the alternating sum of Uno’s
conjecture when p = 2 or 3, and then determine radical chains (up to conjugacy) and
their local structures. In Section 6, we verify Uno’s invariant conjecture for Fisy. In
Section 7, we verify Uno’s projective invariant conjecture for 2.Figs, and in Sections 8
and 9, we verify Uno’s projective conjecture for 3.Fiys and 6.Fiss, respectively.

2 The conjectures and a lemma

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R, where
O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) = Ng(R). Denote
by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set
of p-blocks, B € BIk(G) and ¢ € Irr(N(R)/R). The pair (R, ¢) is called a B-weight if
d(¢) = 0 and B(p)“ = B (in the sense of Brauer), where d(p) = log,(|G|,)—log,(x(1),)
is the p-defect of ¢ and B(y) is the block of N(R) containing ¢. A weight is always
identified with its G-conjugates. Let W(B) be the number of B-weights, and ¢(B) the
number of irreducible Brauer characters of B. Alperin conjectured that W(B) = {(B)
for each B € Blk(G).
Given a p-subgroup chain

C:Ph<P<---<P, (2.1)
of G, define |C| = n, the k-th subchain Cy : Py < P, < -++ < Py, and

N(C) = Na(C) = N(P) A N(P) N+ N N(B,). (2.2)



The chain C' is radical if it satisfies the following two conditions:

(a) Py =0,(G) and (b) P, = O,(N(Cy)) for 1 <k <n.
Denote by R = R(G) the set of all radical p-chains of G. Let B € BIk(G) and let
D(B) be a defect group of B. The p-local rank (see [2]) of B is the number

plr(B) =max{|C|:CeR, C: P <P <---< P, <D(B)}.

Let Z be a cyclic group and G = Z.G a central extension of Z by G, and C' € R(G).
Denote by N (C') the preimage (N (C)) of N(C) in G, where 7 is the natural group
homomorphism from G onto G with kernel Z. Let p be a faithful linear character
of Z and B a block of G covering the block B(p) of Z containing p. Denote by
Irr(Ng(C), B, d, p) the set of irreducible characters 1 of N (C') such that ¢ lies over
p, d(¥) = d and B(¢))¢ = B and set k(N (C), B, d, p) = |Irr(Ng(C), B, d, p)|.
Dade’s Projective Conjecture [12]. If O,(G) = 1 and B is a p-block of G covering

A

B(p) with defect group D(B) # O,(Z), then

Z (_1)‘C|k(NG(C)7 B7da P) =0,
CeR/G

where R/G is a set of representatives for the G-orbits of R.

Let H be a subgroup of a finite group G, ¢ € Irr(H) and let r(¢) = r,(¢) be the
integer 0 < r(p) < (p — 1) such that the p'-part (|H|/(1)), of |H|/p(1) satisfies

(%) = 1(p) (mod p).

~ ~

Given 1 <r < (p—1)/2,let Irr(H, [r]) be the subset of Irr(H) consisting of characters ¢
such that r(¢) = £r (mod p), and let Irr(H, B, d, p, [r]) = Irr(H, B, d, p) NIrr(H, [r])
and k(H, B, d, p, [r]) = |Irx(H, B, d, p, [])].

Suppose Z = 1 and let B = B € BIk(G) with a defect group D = D(B) and the
Brauer correspondent b € Blk(Ng(D)). Then k(N(D), B,d(B),[r]) is the number of
characters ¢ € Irr(b) such that ¢ has height 0 and r(p) = £r (mod p), where d(B)
is the defect of B.

Isaacs-Navarro Conjecture [16, Conjecture B]. In the notation above,

k(G, B,d(B),[r]) = k(N(D), B,d(B),|[r]).

The following refinement of Dade’s conjecture is due to Uno.

Uno’s Projective Conjecture [19, Conjecture 3.2]. If O,(G) = 1 and if D(B) #
0,(Z), then for all integers d > 0, faithful p € Irr(Z) and 1 <r < (p—1)/2,

>° (=DIYK(NG(C), B, d, p, []) = 0. (2.3)
CeR/G

Similarly, if Z = 1, then the projective conjecture is the ordinary conjecture.
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Note that if p = 2 or 3, then the conjecture is equivalent to Dade’s conjecture.

If, moreover, £ is an extension of G centralizing Z and Nz(C, ) is the stabilizer
of (Ng(C),¥) in E, then Np o(C,4) = Np(C,4)/Ng(C) is a subgroup of £/G. For
a subgroup U < F/G, denote by k(Ng(C), B,d,U, p, [r]) the number of characters 1
in Irr(Ng(C), B, d, p, [r]) such that Nge(Cop) = U. In the notation above, Uno’s
projective invariant conjecture is stated as follows.

Uno’s Projective Invariant Conjecture. If O,(G) = 1 and B is a p-block of G

A~

covering B(p) with D(B) # O,(Z), then

ST (-1)K(Ns(C), B,d, U, p,[r]) = 0. (2.4)
CeR/G

In addition, if £ / G is cyclic and u = |U |, then we set
k(NG(C)v Ba d7 u, P) = k(Né(O), B, d, U, p)

In particular, if Z = 1 and p is the trivial character of Z, then G = G and B is a block
B of G; we set U = U and

k(N(C), B,d,U) = k(N4(C), B, U, p).
Then the Projective Invariant Conjecture is equivalent to the Invariant Conjecture.
Uno’s Invariant Conjecture. If O,(G) = 1 and B is a p-block of G with defect
d(B) > 0, then

> (=1)“k(N(C), B,d,U,[r]) = 0. (2.5)
CeR/G

Remark 2.1 Suppose p = 5 and G is a covering group of G = Fiss. Then an ele-
mentary abelian group p* is a Sylow subgroup of G. Let B € BIk(G) with D(B) ~ p?,
so that B has p-local rank two (see [2]). Let R be a radical subgroup of G such that
R < D(B) and b € Blk(Ng(R)) with b = B. Then b has p-local rank one or zero, and
by [2, Theorem 1.4/, Uno’s projective conjecture holds for b. In particular,
k(Ng(R),b,d, p, [r]) = k(Ng(D(b)), b, d, p, [r]) (2.6)

~

for any p € Irr(Z(QG)). Thus Uno’s projective conjecture for B is equivalent to the
equation

k(G, B, d, p,[r]) = k(N(D(B)), B,d, p, [r]). (2.7)
In Section 5, we will use the following lemma, whose proof is straightforward.

Lemma 2.2 Let 0 : O,(G) < P < ... <P, 1 <Q=P,<Ppn1<...<Pbea
fixed radical p-chain of a finite group G, where 1 < m < £. Suppose

0 :0,G) <P <...<Pp1<Ppn<..<DPB

is also a radical p-chain such that Ng(o) = Ng(o'). Let R~ (0, Q) be the subfamily of
R(G) consisting of chains C' whose (¢ — 1)-th subchain Cy_y is conjugate to o' in G,
and R° (o, Q) the subfamily of R(G) consisting of chains C whose (-th subchain Cy is
conjugate to o in G. Then the map g sending any O,(G) < Py < ... < P4 < P11 <
< P<...imR(0,Q) o Oy(G) < PA<...<Pp 1 <Q<Ppu<...<P<...
induces a bijection, denoted again by g, from R~ (0,Q) onto R°(c,Q). Moreover, for
any C in R~ (0,Q), we have |C| = |g(C)| — 1 and Ng(C) = Ng(g(C)).



3 The modified local strategy

The maximal subgroups of Fisy were classified by Flaass [14] and Wilson [21]. Using
this classification, we know that each radical 2- or 3-subgroup R of Fiyy is radical in
one of the nine maximal subgroups M of Fis and further that Npi,, (R) = Ny (R).

In [3] and [4], a modified local subgroup strategy was developed to classify the
radical subgroups R. We review this method here. Suppose M is a subgroup of GG such
that NM(R) = Ng(R)

Step (1). We first consider the case where M is a p-local subgroup. Let Q = O,(M),
so that () < R. Choose a subgroup X of M. We explicitly compute the coset action
of M on the cosets of X in M; we obtain a group W representing this action, a group
homomorphism f from M to W, and the kernel K of f. For a suitable X, we have
K = @ and the degree of the action of W on the cosets is usually much smaller than
that of M. We can now directly classify the radical p-subgroup classes of W, and the
preimages in M of the radical subgroup classes of W are the radical subgroup classes
of M.

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a (maximal) subgroup K
of M such that Ng(R) = Ny (R) for each radical subgroup R of M. If K is p-local,
then we apply Step (1) to K. If K is not p-local, we can replace M by K and repeat
Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
possible fusions among the resulting list of radical subgroups can be decided readily
by testing whether the subgroups in the list are pairwise Fiss-conjugate.

In investigating the conjectures for Fisy, we used the minimal degree representation
of Figs as a permutation group on 3510 points. Its maximal subgroups were constructed
using the details supplied in [9] and the black-box algorithms of Wilson [20]. We also
made extensive use of the algorithm described in [10] to construct random elements,
and the procedures described in [3] and [4] for deciding the conjectures. We used the
minimal degree representation of Fig.2 as a permutation group on 3510 points, and
that of 2.Fiyy as a permutation subgroup of Fiy3 on 31671 points. In investigating the
projective conjecture for 3.Fiyy and 6.Fiss, we constructed and used representations of
3.Fiyy (and 3.Fis.2) and 6.Fisy as permutation groups on 185328 and 370656 points,
respectively. The representation of 6.Fiys is available from the ATLAS of Finite Group
Representations [6].

The computations reported in this paper were carried out using MAGMA V.2.6-2
on a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights of Fis

Let ®(G,p) be a set of representatives for conjugacy classes of radical subgroups of
G. For H K < G, we write H <¢ K if z7'Hx < K; and write H € ®(G,p) if
r'Hz € ®(G,p) for some z € G. We shall follow the notation of [9]. In particular,
if p is odd, then pfw is an extra-special group of order p'*?7 with exponent p; if § is
+ or —, then 27?7 is an extra-special group of order 2'*2 with type 4. If X and Y



are groups, we use X.Y and X:Y to denote an extension and a split extension of X
by Y, respectively. Given a positive integer n, we use E,» or simply p" to denote the
elementary abelian group of order p", 7, or simply n to denote the cyclic group of
order n, and D,, to denote the dihedral group of order 2n.

Let G be the simple Fischer group Fisy and E = Aut(G) = G.2. Then

|G| =2'7-37.5%.7-11-13,

and we may suppose p € {2,3,5}, since both conjectures hold for a block with a cyclic
defect group by [11, Theorem 7.1] and [2, Theorem 5.1].

We denote by Irt’(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number log,(|H|). Given R € ®(G,p), let C(R) =
Ce(R) and N = Ng(R). If By = Bo(G) is the principal p-block of G, then (c.f. (4.1)
of [3])

W(Bo) = 3 [In(N/C(R)R), (4.1)
R

where the summation runs over the subgroups R in ®(G, p) for which d(C(R)R/R) =
0. The character table of N/C(R)R can be calculated by MAacMA, and so we find
[Irr®(N/C(R)R)|.

Proposition 4.1 Let G = Fiy and E = Aut(G) = G.2. Then the non-trivial radical
p-subgroups R of G (up to conjugacy) and their local structures are given in Tables 1
and 2 according as p > 3 or p = 2, where S € Syl3(G) is a Sylow 3-subgroup, H*
denotes a subgroup of G such that H* ~ H and H* #¢ H. If p = 3, then T permutes
the pairs (3%73,(3%%2)*) and (3179.3,(3110.3)*) for some T € E\G. If p = 2, then
Ng(R) = N.2 for all radical subgroups R.

R C(R) Ng(R) Ng(R) | It (N/C(R)R)|
5 5 x Ss 5:4 x S5 2 X 5:4 x Sx
52 52 52:4.5, 2 x 5%:45, 16
3 3 x Uy(3):2 S3 x Uy(3):2 N.2
3° 3° 35:U4(2):2 N.2 2
33+3 33 3313:L3(3) N 1
(33+3)* 33 (333)*: L3(3) N 1
31+6 3 31162344322 N.2 4
3116.3 3 3116.3:25, N 2
3°.3? 3 3°.3%.(2 x Sy) N.2 4
(31+6.3) 3 (3119.3)*.25, N 2
30 31+2 32 35:31+2.25, N2 |2
S 3 S.22 N.2 4

Table 1: Non-trivial radical p-subgroups of Fiss with p > 3



PROOF: Case (1). Suppose p = 5, so that by [9, p. 156], G = Fiy has a unique
class of elements z of order 5 and C(x) = 5 x S5 and N({(z)) = 5:4 x S5 (see [21,
p. 207]). Thus S € Syl;(G) is elementary abelian of order 25, N(S) = 5%:45; and
NN(@»(S) = 5:4 X 5:4.

Case (2). Suppose p =3, i € {1,...,4}, and M; is a maximal subgroup of G where
M; = N(3A) >~ S3 x Uy(3):2, My = N(3B) ~ 3116:23+4:32:2 M3 ~ O(3) ~ M,. By
[21, p. 203], we may suppose a 3-local subgroup R of G is a subgroup of some M; with
Ne(R) = Ny (R).

The subgroups M; and M; are normalizers of some 3A and 3B elements, so we can
easily construct them in G. The generators of a maximal subgroup, say M3z ~ O(3)
are identified by Wilson [6], using standard generators of Figy. Construct a maximal
subgroup K =~ 3°:Uy(2):2 of M3 and then use the modified local strategy to obtain
all radical subgroups of K (see Case (2.3) below). One of the radical subgroups R
of K is isomorphic to 3°:31+? with center Z(R) = 3%. The group R has exactly two
conjugacy classes of subgroups, say (1 and @)s, satisfying the following conditions:
Q1] = Q2] = 3% Q1 =~ Q= 3%, Nap, (Q1) = Na(Qr) =~ 3°73: L3(3) and Ny, (Q2) #
Ng(Qq) =~ 3%73: L3(3). The group Ng(Q-) is a maximal subgroup of My ~ O,(3), and
M, can be constructed using Ng(Q2) and some random element of G. We then apply
the modified local strategy to each M;.

Case (2.1) We may take
(Mo, 3) = {3179,3170.3,3°.3%, (3170.3)*, 5}, (4.2)

and moreover, N(R) = Ny (R) for each R € ®(My,3). We may suppose ®(Ms,3) C
®(G,3). Since Ng(3L16.3) = Ng(3179.3) and Npg(3110) = Ng(31+9).2, it follows that T
permutes the pair (31193, (3116.3)*).

Case (2.2) We may take
®(My,3) = {3,3°,3 x 31,5}, (4.3)

and moreover, N(R) # Ny, (R) for R € ®(My,3)\{3} and Ng(R) = Ng(R).2, where
S’ € Syly(M;). In addition, C(3°) = 3°, N(3°) =~ S5 x 355, C(3 x 3") = 32,
N(3 X 3}~_+4) ~ Sg X 3}i-+4'254: 2, C(S/) = 32, N(S/> ~ Sg X 3}F+4'3'D8'

Case (2.3) Let Ly ~ 3170:(2A4, x Ay).2, Ly ~ 3*%3:L5(3) and L3 = 3°:U4(2):2 be the
maximal subgroups of M3 = O7(3) (cf. [9, p. 109]), so that by the Borel-Tits theorem
[8], we may suppose each radical subgroup of O7(3) is a subgroup of ®(L;, 3) for some
i with N(R) = Np,(R).

We may take

®(Ly,3) = {3110,3%:3%, (3119.3)*, S}, (4.4)
and moreover, N(R) = N, (R) = Np, (R) for R € ®(Ly, 3)\{31"°}.

We may take

®(Ly, 3) = {3%13,3110.3,3°:311%, 5} C¢ (G, 3), (4.5)

and then N(R) = Ny, (R) for all R € (Lo, 3).



We may take
®(Ls,3) = {3°,3°:3°,3°:31%%, 5} C¢ ©(G, 3), (4.6)

and so N(R) = Ny, (R) = Np,(R) for all R € (L3, 3).
It follows that

(Ms, 3) = {3°,3%73 3170 (3170.3)*,3%: 3%, 3%: 3112, 51,

and N(R) = Ny, (R) for R € ®(Ms, 3)\ {3176}

Case (2.4) Since M3 and M, are conjugate in £ and Os(Msy) =g O3(Ly), it follows
that
(M, 3) = {3°,(3°+%)%, 31°,3170.3,3%: 3%, 3%: 3172, Y.

R C(R) N Irr®(N/C(R)R)|
2 | 2.Us(2) 2.Us(2)

26 26 26: S5(2) 1
910 910 910. Moo 0
2 x 2L+8 22 (2 x 218:U4(2)):2 |0
26,25 2 20255, |1
210 93 23 210,23 [5(2) 1
25+8 25 2518 (S5 x Ag) | 2
258 9 25 25892 Ag | 2
210 94 22 210946, |0
25+8 92 22 2718 22 (S5 x S3) 1
(2 x 21+8).2.2¢ 22 | (2 x2178).2.24.(S5 x S3) 1
210 92 93 2 2109293 6. |1
210 92 94 22 2109294 6. |1
25+8 Dg 2 2548 Dg.Ss | 1
25+8 93 22 254893 6o ]
25+8 Dg.2 2 258 Dg.2 |1

Table 2: Non-trivial radical 2-subgroups of Fig

Case (3) For 1 < i < 5, let M; be the maximal subgroups of G such that M; ~
2.Us(2), My = 2'9: Moy, My o~ 20.54(2), My =~ (2 x 2178: Uy(2)):2 and Mz =~ 2°73:(S5 X
Ag). If R is a non-trivial radical 2-subgroup of G, then by Wilson [21, Proposition 4.4]
or Flaass [14], we may suppose R € ®(M;,2) such that N(R) = Ny, (R) for some i.

Case (3.1) We may take
(M, 2) = {2x2118,20.25 21021 (2% 2179).2.2% 210.22.23 210,22 21 2518 Dy 2°%8 Dy 2}

and moreover, N(R) = Ny, (R) for each R € ®(My,2).
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Case (3.2) Let Ky = (2 x 2178):U4(2), Ky = 2'%:L3(4), K3 = 2°%8.(3 x A;5).2 be
maximal subgroups of M; ~ 2.Ug(2). Then we may suppose each R € ®(M;,2) is a
subgroup of ®(Kj;,2) for some ¢ such that Ny, (R) = Nk, (R).

We may take

(Ky,2) = {2 x 2118 210.2% (2 x 211%) 2,24 21022 21}
and so Ng,(R) = Ny, (R) # N(R) for each R € ®(K,,2). Moreover, C(R) ~ 2* and

(2 x 2178): U4(2) if R=2x 218
10 94 e _ 910 o4
N, (R) = 292 ﬁz ?fR— 292 ,HS 4
(2 x207%).2.(Ay x Ay).2 if R= (2 x 217°).2.2%,
21092 943 if R =210.2224
We may take

D(K,y,2) = {2'0 21024 258 2 210 92 911

and moreover, Ng,(R) = Ny, (R) # N(R) for each R € ®(Ky,2), C(2'%) = 2%
C(25+8.2) = 25, C(219.2%) = 22 = (C(210.22.24), and Ny, (25+5.2) = 25+5.24;.
We may take

D(K3,2) = {2°78,2578.2 (2 x 21+%)2.24 21022 21},

and moreover, Ng,(R) = Ny, (R) # N(R) for each R € ®(Kj3,2).
It follows that

O(My,2) = {2,2 x 2178, 210 2548 210 914 9548 2 (2 x 2118) 2.2% 21022 21}

and Ny, (R) # N(R) for each R € ®(M;,2)\{2}.
Case (3.3) We may take

O(My,2) = {2'0,210.2% 210 9 2548 9 910 92 93 9548 93 910 92 o4 25+8 Dg.2},

and moreover, N(R) = Ny, (R) for each R € ®(M,,?2).
Case (3.4) We may take

(Ms,2) = {2°78,2°78.2 2548 22 (2 x 2179).2.24 20,2221 258 23 25%8 Dy 2548 Dg.2}

and moreover, for R € ®(Ms,2), N(R) = Nj,(R).
Case (3.5) We may take

O (Ms,2) = {2°,20.25 20,26 2623 24 26 93 24 9 26 25 23 (2625 2%)* S},

where S" € Syl,(Mj3). In addition, N(R) = Ny, (R) for R € {25,26.2°} and N(R) #
N, (R) for R € ®(Ms,2)\{25,25.25}. Moreover,

26,26 I5(2) if R =26.26
262324 (S5 x 95) if R = 26.23.24,

Nyp(R) = 22.22.2;1.2.53 ?f R= 22.22.2;1.2,
26.25.93.9, if R = 262523
(26.25.23)* 5, if R = (26.2°.23)*,
S’ if R=2G5".




This completes the classification of radical 2-subgroups of GG. The centralizers and
normalizers of R € ®(G, 2) are given by MAGMA. O

Lemma 4.2 Suppose p = 2,3 or 5, and suppose G is a covering group of Fisy, and
p a faithful linear character of Z(G). Let By = Bo(G) be the principal block of G,
Irr (G | p) the set of characters of Irr(G) with positive p-defect and covering p, and
BIK* (G, p, p) the set of p-blocks of G with a non-cyclic defect group and covering the
block B(p). If a defect group D(B) of B € Blk(G) is cyclic, then Irr(B) and ((B) are
given by [15, p. 218].

()

If G = Figy, then p is the trivial character, BIK*(G,p,p) = {Bo}, Irr(By) =
Irr (G | p)\(UpIrr(B')) and

16 if p=2>5,
U(By) = { 22 ifp =3,
14 ifp=2,
where B' runs over the blocks of G with cyclic defect groups.

Suppose G = 2.Fig, so that Z(G) has a unique faithful linear character &. If
p = 3,5, then BIK*(G, p, &) = {B1} such that Irr(By) = Irr ™ (G | £)\(Up Irr(B'));
if p =2, then BIK" (G, p, &) = { By, B1} and in the notation of |9, p. 156], Irr(B;) =
{X63; X64, X113, X114}, D(B1) =~ 2% and Irr(By) = Irr ™ (G)\ (Irr( By ) U (Up Irr(B))),
where Irr™ (GQ) is the character in Irr(G) with positive defect and B’ runs over the
blocks of G with cyclic defect groups.

Suppose G = 3.Fig, so that Z(G) has two faithful linear characters (i and (s.
If p= 2,5, then BIK* (G, p, () = {B;}, and Irr(B;) = It ™ (G | ¢;)\(Up Irr(B')); if
p = 3, then BIK*(G,p,(;) = {Bo, Bi} and in the notation of [9, p. 156], we may
suppose

{x;:j €{29,38,49,98,99,114,115,126,127}}  ifi=1,

r(Bi) {{Xj:jG{48,58,65,124,125,156,157,162,163}} ifi=2,

and Irr(By) = Irr ™ (G)\ (Irr(By ) UTrr(By) U (UpIrr(B'))), where B’ runs over the
blocks of G with cyclic defect groups.

Suppose G = 6.Fisy, so that Z(G) has two faithful linear characters n; and ns.
If p = 2,5, then BIK* (G, p,n;) = {B;} and Irr(B;) = Irr™ (G | p;)\(Up/Ire(B')); if
p = 3, then BIK*(G,p,n;) = {B1} such that

(Irr (G | )\ (Up Irr(B))) C Trr(By)

for i =1,2, where B' runs over the blocks of G with cyclic defect groups.

ProoF: If B € Blk*(G, p) is non-principal with D = D(B), then Irt’(C(D)D/D)
has a non-trivial character § and N(0)/C(D)D is a p’-group, where N (0) is the stabilizer
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of  in N(D). By Proposition 4.1, D €¢ {5, 3,2} and D is cyclic. In particular, Irr(B)
and ((B) are given by [15, p.218].

If 7,(G) is the number of p-regular G-conjugacy classes, then ¢(By) can be calculated
by the following equation due to Brauer:

A= U B+ G

BeBIkT (G,p)

Suppose B € BIk*(G, p, p). Using central characters one can show Irr(B) has the
indicated description.
O

Theorem 4.3 Let B be a p-block of G = Figy with a non-cyclic defect group. Then
W(B) = {(B).

Proor: By Lemma 4.2, B = By and the theorem follows by Proposition 4.1, Lemma
4.2 and (4.1). O

5 Radical chains of Fiy

Let G = Fiy, C € R(G) and N(C) = Ng(C). In this section, we do some cancellations
in the alternating sum of Uno’s conjecture. First we list some radical p-chains C(7)
with their normalizers, then reduce the proof of the conjecture to the subfamily R°(G)
of R(G) consisting of the union of G-orbits of all C'(i). The subgroups of the p-chains
in Tables 3 and 4 are given either by Tables 1 and 2 or in the proofs of Proposition 4.1
and Lemma 5.1.

Lemma 5.1 Let G = Fiyp, F = G.2 and let R°(G) be the G-invariant subfamily of
R(G) such that

RO /G — {C(i):1<i<16} with C(i) given in Table 3 if p =3,
(6)/G = { {CG):1<i1<24}  with C(i) given in Table 4 if p = 2,
Then
S (DN E©),B,d )= Y (DIKNQ©),B,d,[r]) (5.1
CeR(G)/G CeRY(G)/G

for all integers d,r > 0. If p = 3, then an element 7 € E\G permutes the pairs
(C(i),C(5)) for (i,5) € {(7,9),(8,10),(11,15),(14,16)}. If p = 2, then Ng(C(i)) =
N(C(i)).2 for each i.

PROOF: Suppose C’ is a radical chain such that

C':1<P <...<P),. (5.2)
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¢ N(C) Ng(C)
c(1) 1 Figy Figy.2
C(2) 1<5 5:4 X Ss N(C) x 2
C(3) 1 <5<5? 5:4 x 54 N(C) x 2
C(4) 1 <52 52:45, N(C) x 2
C(1) 1 Figy Figy.2
C(2) 1<3 Sy x Us(3):2 N(C).2
C(3) 1<3<3 Sy x 34 S N(C).2
C(4) 1<3<3 <y S3 x 3471.3.Dg N(C).2
C(5) 1<3<3x3 | 55 x395,:2 N(C).2
C(6) 1<3 3%:Uy(2):2 N(C).2
c(7) 1 < 3343 < 35:3L+2 3°:31+2: 25, N(C)
C(8) 1 < 33+3 33+3: L4(3) N(C)
C(9) 1 < (33+3) < 35; 3142 3°: 31422, N(C)
C(10) 1< (3%F3) (33+3)*: L3(3) N(C)
C(11) 1 < 3446 < 3146 3 3146325, N(C)
C(12) 1 < 3L+6 3L+6 93+4: 32. 9 N(C).2
C(13) 1 < 3446 < 35:33 35.3%: (2 x Sy) N(C).2
C(14) 1 <30 <3193 < S S.22 N(C)
C(15) 1 < 316 < (3L46; 3)* (31+6:3)*: 28, N(C)
C(16) | 1 < 3f6 < (3#*6.3)* <S8 S.22 N(C)

Table 3: Some radical p-chains of Fiss with p odd

Let C' € R(G) be given by (2.1) with P, € (G, 3).
Case (1) Suppose p =3, and R € ®(Ls,3)\{3°} given by (4.6). Let o(R) : 1 < Q =
3% < R, so that o(R)’ : 1 < R. Then o(R) and o(R)’ satisfy the conditions of Lemma
2.2, so there is a bijection g from R~ (c(R),3”) onto R°(a(R)’,3%) such that N(C") =
N(g(C"), Ng(C") = Ng(g(C") and |C'| = |g(C")| — 1 for each C" € R™(c(R),3?).
Thus
k(N(C"), B,d, u, [r]) = k(N (9(C")), B, d, u, [r]), (5.3)

and we may suppose

c¢g U (R(e(R),3)URe(R),3)).

Re®(L3,3)\{3%}
Thus Py ¢ {3%:3%,3%:3172, 5}, and if P, = 3° then C =¢ C(6). We may suppose
Py e {3,377 (3%%), 317931703, (3179.3)"} C 9(G, 3).

Let C":1 <3< S and g(C") : 1 < 3 < 3x3 < 8’ where §’,3x 31" € ®(M;, 3).
Then N(C") = N(g(C")) and Ng(C') = Ng(g(C")) = S".2 and we may suppose C #¢
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C’, g(C"). Since ®(S3 x 3*: Sg,3) = {35, 5"} Cz ®(My,3), it follows that if P, = 3, then
Ceq{C(2),C03),C4),C06)}

By (4.5), ®((3%3)": L3(3),3) = {(3%+3)*,3176.3,3%:3142. 5}, Let 0 : 1 < Q =
(3313)* < 31+6.3, so that o’ : 1 < 3179.3. A similar proof to above shows that there
is a bijection g from R~ (o, (3373)*) onto R°(o, (3373)*) such that Ng(C") = N(C’) =
N(g(C") = Ng(g9(C") and |C'| = |g(C")|—1 for each C" € R~ (0, (3?73)*), so that (5.3)
holds. We may suppose P; #¢ 3170.3 and if P, =¢ (3%1?)*, then P, € {3%:3112, S},

Let " : 1 < (3%)* < S and ¢(C") : 1 < (3*3)* < 3%:3172 < S. Then N(C') =
N(g(C")), Ng(C") = Ng(g(C")) and we may suppose C' #5 C’,g(C"). Thus if P, =
(333)*, then C €¢ {C(9),C(10)}.

Let 0 : 1 < Q = 3% < (3170.3)*, so that ¢’/ : 1 < (3179.3)*. A similar proof to
above shows that we may suppose

C ¢ (R (0,3) UR"(0,3°%)).

* and moreover, if P, = 3373, then

In particular, we may suppose P, #¢ (317°.3)
Py #¢ (3170.3)*.

Let ¢":1 < 3% < S and g(C") : 1 < 3% < 3%:312 < S. Then we may suppose
C #g C',g(C"). So if P, = 333 then C €q {C(7),C(8)}.

Let C":1 < 3% < Sand g(C") : 1 < 317% < 3%:3% < S. Then N(C') = N(g(C"))
and Ng(C) = Ng(g(C")) = N(C").2, so that (5.3) holds. Thus if P; = 31", then
C e {C®): 11 <i < 16).

Case (2) Let R € ®(M,,2)\{2'°}, and 0(R): 1 < Q =29 < R, so that 0(R) : 1 <
R. A similar proof to that of Case (1) shows that we may suppose

Cé U (R (a(R),2°) UR(a(R),2")). (5.4)
Re®(M>2)\ (210}

Thus if P, = 2!9 then C =g C(14). We may assume

P € {2,202 x 2148 2025 258 258 22 (2 x 2179).2.24 2778 Dy}

Case (2.1) Let
Q= ®(Ky,2)\{2 x 2178} = {21024 (2 x 217%).2.2% 2102221} C &(M,2),

ReQ andlet o(R):1<2<@Q=2x2"% <R sothat 0(R) :1<2< R. A similar
proof to Case (1) shows that we may suppose (5.4) holds with 2'° replaced by 2 x 21®
and ®(Ms, 2)\{2'°} by Q.

Let 25782 € ®(Ky,2) and let 0 : 1 < 2 < Q = 29 < 25782 5o that 0/ : 1 <
2 < 2582, Since Ny, 2)(2°78.2) < Ny, 2)(2"), it follows that we may suppose C' ¢
R~ (0,29 U R (o, 2'0).

Let C" @1 < 2 < 210 < 2102221 ¢(C") 1 1 < 2 < 210 < 21091 < 2109291
C":1 <2< 258 <210222% and ¢g(C”) 1 1 <2 < 278 < (2 x 2148).2.2% < 2102224,
Then N(C") = N(g(C")), Ng(C") = Ng(g(C")) = N(C").2, N(C") = N(g(C")) and
Ng(C") = Ng(g(C")) = N(C").2, so that we may suppose C' & {C’, g(C"),C", g(C")}.
It follows that if P; = 2, then C' €¢ {C(j):2 < j <9},
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C N(C)
c(1) 1 Figy
C(2) 1<2 2.Us(2)
C(3) 1<2<2x 2.8 (2 x 2148): U4 (2)
C(4) 1 <2< 210 <2094 21024 A5
C(5) 1<2< 2 210: 1,5(4)
C(6) 1 <2< 258 < 25189 2582 A5
C(7) 1 <2< 25%8 2548 (3 x Aj).2
C(8) 1 <2< 2748 < (2 x 2148) 2.2 | (2 x 2148).2.(4, x 4).2
C(9) 1 <2< 258 < 25480 < 109294 210 92 24 3

C(10) 1< 26 26_55(2)
C(11) 1 < 26 < 2626 26,26 I5(2)
C(12) 1 <20 < 262321 <2623212 2023242 G5
C(13) 1< 26< 262891 26,93 24(95 x )
C(14) 1 < 210 210: Moy
C(15) 1<2x 2}r+8 < 2625 2625 S
C(16) 1< 2x2Lts (2 x 2148 U,(2)): 2
C(17) 1< 2x 28 <9109 210 24 g,
C(18) 1<2x 2?8 < 26,25 < 2625923 20,25 23 G,
C(19) [ 1 <2x 2f8 < 26,25 < 26,2523 < 2625232 2025232
C(20) 1< 2 x 2LH8 < 26,25 < (26.2523) (26.25.23)* S,
C(21) 1 < 2578 < 25182 2518 2 A
C(22) 1 < 25+8 2548 (S x Ag)
C'(23) 1< 2578 < (2 x 2178).2.21 | (2 x 2178).2.2%.(5;5 x S3)
C(24) 1< 2578 < (2 x 2178) 2,24 < 210 92 94 210 92 24 G,

Table 4: Some radical 2-chains of Fij

Case (2.2) If 26.26 € (M, 2), then Nyg, (26.25) = 2625 L4(2) and Nyyo(2°.20) =
Ng(26.26) = N(20.2°).2. We may take

(20.2°.15(2),2) = {20.29,20.2%.34.2,20.25.23 5"} C ®(Ms3,2),

and Nas 96 152)(R) = Nag,(R), Nago(R) = Nag(R).2 < Npgo(20.29) for each R €
B(25.25.14(2), 2).

Let 26.2° € ®(M3,2), and 0 : 1 < Q = 2° < 2625 so that ¢/ : 1 < 2025, A
similar proof to Case (1) shows that we may suppose C' & R~ (a,2°%) UR(o,25), since
N(26.2) = Ny (26.25) = 26.25.55 and Np(2°.2%) = Nyp2(20.25) = N(26.25).2. In
particular, we may suppose P, #¢g 26.25.

Let R € ®(20.26.13(2),2)\{20.2°}, and o(R) : 1 < 20 < Q = 2.2 < R, so that
o(R) :1< 2% < R. Then we may suppose C' € R™(c(R),2°.2°) UR’(c(R),25.29).
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Similarly, for 26.23.2% € ®(Ms,2), Ny, (20.23.21) = 26.23.21.(S3 x S3) and we may
take

P(20.23.2%.(S3 x S3),2) = {20.2%.2%,26.2%.2% 2 (20.25.2%)* §'} C ®(Ms;,2);
in addition, Nos 93 94 (5, x55)(R) = Nag, (R) and
Ny 2(R) = Nayy (R).2 < Ny, 2(28.2%.24)

for each R € ®(20.23.2.(S3 x S3), 2).

Let 0:1 <20 <@ =20.232% < (26.25.2%)* so that ¢’ : 1 < 20 < (20.2°.23)*. Then
we may suppose C' & R™(0,20.23.2") UR"(o,20.23.24).

Let C": 1 <20 < 262321 < § and g(C") : 1 < 206 < 262321 < 2623212 < &
Then N(C') = N(g(C")), Ng(C') = Ng(g(C")) = 5".2 and we may suppose C' &g
{C’, g(C")}. Tt follows that if P, = 2° then C €4 {C(10),C(11),C(12),C(13)}.

Case (2.3) Let R € {(2 x 2119).2.24 2578 D} C ®(My,2), and o(R) : 1 < Q =
2 x 2178 < R, so that o(R) : 1 < R. Since N(R) = Ny, (R) and Ng(R) = Ny, 0(R) =
N(R).Q7 it follows that we may suppose C' & R™(0(R),2 x 217) UR"(0(R),2 x 21+8).
In particular, Py #¢ {(2 x 217%).2.24,258. Dg} and if P, = 2 x 2148 with |C| > 2, then
Py € O((2 x 2175:U4(2)): 2,2)\ {2 x 21+, (2 x 21+9).2.2¢, 25+8 Dy},

Let 210.2% € ®(My, 2), so that Ny, (219.21) = N(210.2%) = 21021 S5 and Ng(219.24) =
N, 2(219.2%) = N(2%0.2%).2. We may take

(210.2%.55,2) = {210.24 21022 23 210 92 9% g1
and in addition, Naio 91 5. (R) = Ny, (R) and
N 2(R) = Npy, (R).2 < Ny, 0(20.2%)

for each R € ®(21°.24.55,2).

Let R € (219.2.55,2)\{21.2*}, and o(R) : 1 < 2 x 21+ < Q = 2102 <
R, so that o(R) : 1 < 2 x 217 < R. A similar proof to above shows that we
may suppose C' ¢ R~ (c(R),21°.2%) U R(c(R),2'°.21). Thus we may suppose P, ¢
P(219.24.55,2)\{219.2*} and if P, = 2'°.2%, then |C| = 2 and C =g C(17).

Let 26,25 € ®(My,2), so that Ny, (26.2) = N(26.25) = 26.25.S5 and Np(20.2) =
N, 2(20.2%) = 26.2°.(Sg x 2). We may take

®(20.2°.55,2) = {20.2°,20.25.23 (20.2°.2%)* 26.2°.2% 2}

and in addition, Nys s g,(R) = R.S3 or R according as R € {26.2°.23 (20.2°.23)*} or
R =20.2°232 and Ny, 6.95)(R) = Nas 25 5,(R).2 for each R € $(2°.2°.5g,2).

Let €71 < 2 x 214 < 2695 < 2695932 and g(C") : 1 < 2 x 218 < 2695 <
(26.25.23)* < 26.25.23.2. Then N(C") = N(g(C")), Ng(C") = Ng(g9(C")) = N(C").2 and
we may suppose C' € {C”,g(C")}. Tt follows that if P, =2 x 2}7®, then

Ceq {C():15 < j <20}

Case (2.4) Let 25%8.22 € ®(M;,2), and 0 : 1 < Q = 25T < 257822 Since
Ng(2578.2%) = Ny 9(2°78.22), it follows that we may suppose C' & R~ (o,2°T8) U
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RY(0,2°%8), so we may suppose P; #g 2°78.2 and if P, = 2°"® with |C| > 2, then
Py ¢ 274892

If 29482 € ®(Ms,2), then N(2°78.2) = Ny, (2545.2) = 25482 Ag, Np(2+8.2) =
N, 2(2578.2) = N(25%8.2).2 and we may take

B(2°78.2.44,2) = {2°78.2,210.02 24 2518 93 g1

In addition, Nos+s g a,(R) = Ny (R) and Nag o(R) = Ny (R).2 < Ny, 2(2578.2) for
each R € ®(2578.2. 44, 2).

Let R € {210.22.21 257823} "and let 0(R) : 1 < 2578 < Q = 2°78.2 < R. Then we
may suppose C & R~ (a(R),2°78.2) UR (o (R),2°78.2).

If (2 x 214%).2.2¢ € ®(M;,2), then

Np((2 x 2178).2.2Y) = Ny, o((2 x 217%).2.2Y) = N((2 x 217%).2.2%).2,
N((2 x 2148).2.2%) = Ny, (2 x 247%).2.2%) = (2 x 2148).2.2%.(S3 x S3) and we may take
P((2 x 2178).2.20.(95 x S3),2) = {(2 x 21%).2.2%,210.22.21 258 Dy S}
In addition, N(2X21+8).2.24.(53x53)(R) = N, (R) and

N 2(R) = N (R).2 < Ny o((2 x 24798).2.2)

for each R € ®((2 x 24%).2.24.(S5 x S3),2).

Let R € {2°%8.Dg, S}, and o(R) : 1 < 2°78 < @ = (2 x 2178).2.2* < R. Then we
may suppose C' & R™(o(R), (2 x 217%).2.24) UR (0 (R), (2 x 217%).2.2%).

Let C":1 <298 < 29%8.2 < Sand g(C') : 1 < 2°78 < (2 x 217%).2.2¢ < 2102221 <
S. Then (5.3) holds, and we may suppose C' €¢ {C’, g(C")}. Tt follows that if P, = 258,
then C €¢ {C(7) : 21 <i < 24}. O

Remark 5.2 Let G be a covering group of G = Fly, p a faithful linear character of
Z(G) and B a block of G covering the block B(p) containing p. If D(B) # O,(Z(G))
and p = 2,3, then

> (CDYK(NG(C), Bydop, ) = > (=1 K(NG(C), B, d.p, [1])

CER(G)/G CERY(G)/G

for all integers d,u > 0.
The proof of the Remark is the same as that of Lemma 5.1, since N(C") = N(g(C"))
implies Ng(C') = Na(9(C")).

6 Uno’s invariant conjecture for Fiy

Let N(C) be the normalizer of a radical p-chain C. If N(C') is a maximal subgroup of
Fig, then the character table of N(C) can be found in the library of character tables
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distributed with GAP. If this is not the case, we construct a “useful” description of
N(C) and attempt to compute directly its character table using MAGMA.

If N(C) is soluble, we construct a power-conjugate presentation for N(C') and use
this presentation to obtain the character table.

If N(C) is insoluble, we construct faithful permutation representations for N(C)
and use these as input to the character table construction function. We employ two
strategies to obtain faithful representations of N(C).

1. Construct the actions of N(C') on the cosets of soluble subgroups of N(C).

2. Construct the orbits of N(C') on the underlying set of Figy; for the stabilizer of
an orbit representative, construct the action of N(C') on its cosets.

In several cases, however, none of the representations constructed was of sufficiently
small degree to allow us to construct the required character table.

In these cases, we directly calculate the character table of N(C') as follows: first
calculate the character tables of some subgroups and quotient groups of N(C); next
induce or lift these characters to N(C), so the liftings and the irreducible characters
from the induction form a partial character table 7" of N(C'); finally decompose the
remaining inductions or the tensor products of the inductions using the table T'.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 6.1 are available electronically [5].

Theorem 6.1 Let B be a p-block of G = Fiyy with positive defect. Then B satisfies
the Uno’s invariant conjecture.

PROOF: Let E = Aut(G) = Fis.2 and we may suppose D(B) is non-cyclic, so that
B = By by Lemma 4.2.

Case (1) Suppose p =5 and let C' = C(2), C" = C(3), so that N(C) ~ 5:4 x S5,
Ng(C) = N(C) x 2, N(C") ~ 5:4 x 5:4 and Ng(C") = N(C") x 2. It follows by (2.6)
that for all integers u, d

k(N(C), By, d,u,[r]) = k(N(C"), By, d, u, [r]).
Now N(D(B)) = N(C(4)) ~ 5%4S4, Ng(D(B)) = 5%:45, x 2, and so

10 ifd=2,u=2and r =1,
k(G, By, d,u,[r]) =k(N(B(D)), Bo,d,u,[r]) =4 10 ifd=2,u=2andr =2,
0  otherwise.

This proves the theorem when p = 5.

Case (2) Suppose p = 3, so that Dade’s invariant conjecture is equivalent to Uno’s
invariant conjecture. We set k(i,d, u) = k(N(C(1)), By, d, u) for integers i, d, u.

First, we consider the radical 3-chains C'(j) with d(N(C(j))) = 7, so that 2 < j < 5.
The values k(i,d, u) are given in Table 5.
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Defect d || 7| 7| 6| 6| 5| 5|4 | otherwise
Valueu || 2| 1| 2| 1| 2| 1] 2| otherwise
k(2,d,u) || 36 |18 |18 | 0|18 | 0|6 0
k(3,d,u) |36 |18 | 15|12 |18 | 0|0 0
k(4,d,u) |36 | 18 | 15|12 |18 |18 |0 0
k(5,d,u) || 36 | 18 | 18 | 0|18 | 18 |6 0

Table 5: Values of k(i,d,u) when p =3 and d(N(C(4))) =7

It follows that .
S (=) CORN(C()), By, dyu) = 0. (6.1)
i=2
Next we consider the chain C'(j) with d(N(C(j))) =9, so that j =1 or 6 < j < 16.
The values k(i,d, u) are given in Table 6.

Defectd | 9| 9| 8| 8| 7| 7|6] 6|5 |5 |4 ] otherwise
Valueu | 2| 1| 2| 1| 2| 12| 1|2]|1] 2] otherwise
k(l,d,u) |12 6|19 2| 6| 2|1| 2|6|0|2 0
k(6,d,u) |12 6|19 2|16 (12|1]| 2[6{0|0 0
k(7,d,u) =k(9,d,u) || 0|18 0|12| 0[46|0| 3[{0|0|0 0
k(8,d, u) =k(10,d,u) || 0|18 | 0|12| 0[13]|0| 3[0]|0]0 0
k(11,d, u) =k(15,d,u) || 0|18 | 0|21 | O0|[13|0|18[0 |30 0
k(12,d,u) |12] 6|22 8| 6| 26| 12[6|6 |2 0
k(13,d,u) | 12| 6|22 | 816|126 |12|6[0 |0 0
k(16, d, u) = k(14,d,u) || 0|18 | 0|21 | 046|018 [0 |0 |0 0
Table 6: Values of k(i,d, u) when p =3 and d(N(C(7))) =9
It follows that
S (—D)ICOIK(N(C(:)), By, d,u) = 0 (6.2)

i=1,6<i<16
and the theorem follows.

Case (3) First, we consider the 2-chains C'(j) such that the defect d(N(C'(j))) = 15,
so that j € {10,11,12,13,15,18,19,20}. In this case, each element of Ng(C)\N(C)

stabilizes each character of Irr(N(C')). The values k(i,d, u) are given in Table 7.
It follows that

> KN, Buduw= Y KNC@) Budu).  (63)

i€{11,13,15,19} i€{10,12,18,20}

Next we consider the radical 2-chains C'(j) such that the defect d(N(C(j))) = 17, so
that j € {1,14,16,17,21,22,23,24}. The non-zero values k(i,d,u) are given in Table
8.
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Defect d || 15| 14 | 13 | 12 | 11 | 10 | 9 | 6 | otherwise

Valueu || 2| 2| 2| 2| 2| 2|2]| 2| otherwise
k(10,d,u) |[32 16| 4|12| 2| 0|0 |1 0
k(11,d, u) |[ 32| 16 | 12 | 20 0/0]0 0
k(12,d,u) |32 32|60 |28 20| 4|00 0
k(13,d,u) |[32]32 5220 18| 4|00 0
k(15,d,u) |[32 56 |12 20| 6| 8|21 0
k(18,d,u) || 32|56 |44 |28 | 12| 8|2 |0 0
k(19,d, u) |[32 7292|5228 12|20 0
k(20,d, u) |[32] 72|60 |44 |22 (12|20 0

Table 7: Values of k(i,d, u) when p =2 and d(N(C(i))) = 15

Defectd |17 |16 |15 |14 |14 |13 |13 |12 |12 |11 |11 |10 10[9|9| 6
Valuveu | 2| 2| 2| 2| 1| 2| 1| 2] 1| 2| 1| 2| 1]2|1] 2
k(l,d,u) [ 16]12] 2| 4] 4 6] ol of 2/ of 1] ofo]2]1
k(14,d,u) | 16 | 12] 2] 4] 4 o ol ol o of 1] ofolo]o
k(16,d,u) |[16 | 12 |10 |20 | 4 |[10| 6|14 | 4| 8| 4] 3| 01|21
k(17d,w) |16 121024 af11] 2] of 4| 2] o] 3] ofoo]o0
k(21,d,u) |16 | 12 |18 | 10| 4|18 | 2| 4| 0| 0| O] O] 4/0{0|0
k(22,d,u) |16 [12 |18 |10 | 4|19| 6|13| 0| 2| 0| 0| 4]0|2/|0
k(23,d,u) |16 | 12|26 |26 | 4|26| 6|26 | 4| 8| 4| 2| 4|1]2|0
k(24,d,u) || 16 | 12 |26 |30 | 4|27 | 2|21 | 4| 2| O] 2| 4/0{0|0
Table 8: Values of k(i,d,u) when p =2 and d(N(C(i))) = 17
It follows that
Z k(N(C(Z))a By, d, u) = Z k(N(C(Z)), By, d, u) (64)

i€{1,17,21,23} i€{14,16,22,24}

Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 16,
so that 2 < j < 9. The non-zero values k(7, d,u) are given in Table 9.
It follows that

> k(N(C(i)),Bo,d,u)= > k(N(C(2)),Bo,d,u). (6.5)
i€{3,5,7,9} i€{2,4,6,8}
Thus the theorem follows by (6.3), (6.4) and (6.5). This completes the proof. O
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Defect d [[ 16 [ 16 [ 15 15 |14 [ 14 [13 [ 13 [ 12 [12[11[11]10[10[9]9] 6
Valueu | 2| 1| 2| 1] 2| 1] 2| 1| 2| 1| 2] 1| 2| 1]2]1] 2
k(2,d,u) || 8| 8| 4| 4| 4| o|12| 4| 5| 4| 6] 4| 6| 2|2[0]2
k(3,d,u) || 8| 8| 4| 4| 4| o|12|12]13|12| 8|12| 6| 2|2[4|2
k(4,d,u) || 8| 8| 4| 4| 4| o|14| 6|13|10| 6| 0| 4| 2|0[0]|0
k(5,d,u) | 8| 8| 4| 4| 4| o|10| 2| 5| 2| 0| 0| 4| 2]/0/0]0
k(6,d,u) || 8| 8| 4| 4/12/12|10| 2|13 |10 4 41 0(0/0]0
k(7,d,u) || 8| 8| 4| 4|12|12|12] 4|13]12]10 6| 0[2/0]0
k(8,d,u) || 8| 8| 4| 4|12 |12]12|12]21|20|12|12| 6| 8|2[4|0
k(9,d,u) || 8| 8| 4| 4/12/12]14| 6|21 |18|10| 0| 4| 8|0[0]|0

Table 9: Values of k(i,d,u) when p =2 and d(N(C(i))) = 16

7 Uno’s projective invariant conjecture for 2.Fiy

Let C be a radical p-chain of Fiyy. The character tables of Ny p,,(C) and Ny gi,, 2(C')
can either be found in the library of character tables distributed with GAP or computed
directly using MAGMA as in Section 6.

Let H = Nygiy,(C) or Nopi,2(C) and let € be the faithful linear character of
Z(2.Fig). Denote by Irr(H | €) the subset of Irr(H) consisting of characters covering
&. The tables listing degrees of irreducible characters referenced in the proof of Theorem
7.1 are available electronically [5].

Theorem 7.1 Let B be a p-block of G = 2.Fiy with D(B) # O,(G). Then B satisfies
Uno’s projective invariant conjecture.

PROOF: We may suppose B has a non-cyclic defect group. Let N(C') = Ng(C) for
each C' € R(Fiy) and let F = G.2 = 2.Fig.2.
Case (1) Suppose p =5, so that B = By given by Lemma 4.2. Thus

2 ifd=2,u=2andr =2,
2 ifd=2,u=2andr =1,

k(G, By,d,u, &) =k(N(C(4)), B1,d,u,&) =48 ifd=2,u=1and r =2,
8 ifd=2,u=1andr =1,
0

otherwise,

and when j =1 or 2,

1 ifd=2,u=2andr =1,
k(N(O(j))7Bladau7€7 [TD == 24 lfd: 2, u = ]_ and r = 1,

0  otherwise.

This implies the theorem when p = 5.
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Case (2) Suppose p = 3, so that the projective invariant conjecture of Uno
is equivalent to that of Dade. By Lemma 4.2, B = B; and we set k(j,d,u) =
K(N(C(), B, d,u,€).

We first consider the radical 3-chains C'(j) with d(N(C(j))) = 7, so that 2 < j < 5.
The values k(j, d, u) are given in Table 10.

Defect d | 7| 7|/6| 65| 5|4]|4]| otherwise
Valueu || 2| 12| 1]2| 1]2] 1] otherwise
k(2,d,u) [4]50 (3| 6|[0|18|2]|4 0
k(3,d,u) | 45012601800 0
k(4,d,u) [4]50[1[26|6[30|0]|0 0
k(5,d,u) [[4]50 (3| 6|6[30|2]|4 0

Table 10: Values of k(N (C(3)), B1,d,u,&) when p =3 and d(N(C(3))) =7

It follows that .

S (—=D)ICO(N(C (i), By, d, u, £) = 0.

=2
Next we consider the chain C'(j) with d(N(C(j))) =9, so that j =1 or 6 < j < 16.
The values k(i,d, u) are given in Table 11.

Defect d || 9| 98| 8|7| 7|6]| 6| 5| otherwise

Valueu || 2| 12| 12| 12| 1| 1| otherwise

k(l,d,u) [ 4]14 3 18|1] 01| 2| 6 0

k(6,d,u) |[4]14 318|424 (1| 2| 6 0

k(7,d,u) =k(9,d,u) |0 18 |0 [ 12|0[46|0| 3| O 0
k(8,d, u) = k(10,d,u) || 0|18 |0 |12 |0 |13|0| 3| O 0
k(11,d, u) = k(15,d,u) || 0| 18 |0 |21 |0 |13 |0 |18 | 3 0
k(12,d,u) |4 |14 |4 |26 |1 | 0|0 18|12 0

k(13,d,u) | 4144126424 |0| 18] 6 0

k(16,d, u) = k(14,d,u) || 0| 18 |0 |21 |0 |46 |0 |18 | 0O 0

Table 11: Values of k(N (C(7)), By,d, u,&) when p =3 and d(N(C(7))) =9

It follows that
> (=D)YIK(N(C()), Br,d,u, §) =0

i=1,6<i<16
and the theorem follows.
Case (3) Suppose p = 2, so that by Lemma 4.2, B = By or By. If B = By, then
2 ifd=2and u=1,
0 otherwise

k(G, By, d,u, &) = k(N(C(2), By, d, u, ) = {
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and the theorem follows when B = Bj.

Set k(j,d,u) = k(N(C(j)), Bo,d,u,&). We first consider the radical 2-chains C'(j)
such that the defect d(N(C(j))) = 16, so that j € {10,11,12,13,15,18,19,20}. The
values k(i,d, u) are given in Table 12.

Defect d || 14 | 13 | 13 | 12 | 12 | 11 | 11 | 10 | 8 | otherwise

Valueu | 1| 2| 1| 2| 1] 2| 1| 2|1 | otherwise
k(10,d,u) | 16 | 4| 8| 2 0| 4| 14 0
k(11,d,u) |16 | 12| 8| 2 0 4| 110 0
k(12,d,u) || 16 | 12 |40 | 2|24 | 4| 4| 1|0 0
k(13,d,u) || 16 | 4 40| 2|24 | 4| 4| 1|0 0
k(15,d,u) |16 | 4| 8| 2|40| O| 8| 0|4 0
k(18 d,u) |16 12| 8[10[40| 0| 8] 0|0 0
k(19,d,u) || 16 | 12 |40 [ 10 |56 | 4| 8| 0|0 0
k(20,d,u) |16 | 4{40| 2|56| 4| 8| 0|0 0

Table 12: Values of k(N (C(j)), Bo, d,u,&) when p =2 and d(N(C(7))) = 16

It follows that

S KN(C@).Boduf) = Y K(NC@), B dou,&).  (T.1)

i€{11,13,15,19} i€{10,12,18,20}

Next we consider the radical 2-chains C'(j) such that the defect d(N(C(j))) = 18,
so that j € {1,14,16,17,21,22,23,24}. The values k(i,d, u) are given in Table 13.

Defect d || 14 | 13 | 13 | 12 | 12 | 11 | 11 | 10 | 8 | otherwise
Valueu | 2| 2| 1| 2| 1] 2| 1| 11| otherwise
k(l,d,u) || 8| 2|12 4|12 2| 0| 2|4 0
k(14, d, u) 2112 21 0 21 0] 0]0 0
k(16,d,u) |24 | 216 0|20| 2| 4| 2|4 0
k(17d,u) || 24| 2[16| 2| 8| 2| 0| 0|0 0
k(21,d,u) | 8| 2|28 | 2 0 41 010 0
k(22, d, u) 2128 4112 0| 4| 210 0
k(23,d,u) ||24] 2|32 0|20 0| 8| 2|0 0
k(24,d,u) |24 ] 232 2| 8| 0| 4] 00 0

Table 13: Values of k(N (C(7)), By, d, u,&) when p =2 and d(N(C(i))) = 18
It follows that

Z k(N<C(Z)>7B(]7d7u7€> = Z k<N<C(Z))7BU7d7u7£)

i€{1,17,21,23} i€{14,16,22,24}
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Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17,
so that 2 < j < 9. The values k(i,d, u) are given in Table 14.

Defect d || 14 | 13 | 12 | 11 | 10 | 7 | otherwise

Valueu| 1| 1| 1| 1| 1] 1] otherwise
k(2,d,u) |16 |12 20| 8| 2|2 0
k(3,d,u) || 16 | 28 |28 | 8| 6 |2 0
k(4,d,u) |16 | 28| 8| 8| 0|0 0
k(5,d, u) || 16 | 12 81 010 0
k(6,d, u) || 16 | 44 41 010 0
k(7,d,u) || 16 |44 |20 | 4] 2|0 0
k(8, d,u) |16 |60 | 28 [ 12| 6|0 0
k(9,d,u) |16 |60 | 8[12] 0|0 0

Table 14: Values of k(N (C(7)), Bo,d, u,&) when p =2 and d(N(C(7))) = 17
It follows that

> k(N(C(i), Bo,d,u,§) = > k(N(C(i)), Bo, d, v, §).

i€{3,5,7,9} i€{2,4,6,8}

The theorem follows. O

8 Uno’s projective conjecture for 3.Fi

Let C be a radical p-chain of Figs and N3 gy, (C') = 3.Npi,, (C). The character table of
N3 iy, (C) can either be found in the library of character tables distributed with GAP
or computed directly using MAGMA as in Section 6.

Let H = N3 pi,,(C) and let ¢; and let (5 be the faithful linear characters of Z(3.Figs).
Denote by Irr(H | ¢;) the subset of Irr(H) consisting of characters covering (;. The
tables listing degrees of irreducible characters referenced in the proof of Theorem 8.1
are available electronically [5].

Theorem 8.1 Let B be a p-block of G = 3.Fiy with D(B) # O,(G). Then B satisfies
Uno’s projective conjecture.

PROOF: We may suppose B has a non-cyclic defect group and let N(C') = Ng(C)
for each C' € R(Fia).

Case (1) Suppose p =5, so that B = By or By. By [9, pp. 156-159], k(G, By, d, () =
w0 k(G, By(Figz), d, u) for each /.
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If R is a non-trivial radical p-subgroup of G, then R =5 or R = 5 € Syl;(G), and
Ng(R) = 3 X Npiy, (R), so that for i > 2, N(C(i)) = 3 X Npy,,(C(7)), where C(i) is a
radical chain of Figs given by Table 3. Thus

k(N(C( ) Bg,d Cg Zk NF122 Bo(FiQQ),d, u)

u>0

and the proof (1) of Theorem 6.1 can be applied here for blocks B = B; and Bs. This
proves the theorem when p = 5.
Case (2) Suppose p = 3, so that B = By, By or B, given by Lemma 4.2 (c).
Suppose B = Bj or By. Then D(B) ~ 3%, N(D(B)) = N(C(2)) and the theorem
follows by Remark 2.1 and
6 ifd=2,
k(G>B7da Cf) :k(NG<C(2>)7Bad7 Cﬁ) = { .
0 otherwise
for ¢ =1, 2.
Suppose B = By and set k(j,d) = k(N(C(j)), Bo,d, (). We first consider the
radical 3-chains C'(j) with d(N(C(j))) = 8, so that 2 < j < 5. The values k(j, d) are
given in Table 15.

’ Defect d H 7 \ 6 \ 5 \ otherwise ‘

k(2,d) || 54 | 15 | 12 0
k(3,d) | 54| 15| 0 0
k(4,d) || 54 [ 33| 0 0
k(5, d) || 54 | 33 | 12 0

Table 15: Values of k(N (C(7)), By, d, (;) when p =3 and d(N(C(i))) =8

It follows that
> (=) Ok(N(C(0)), B, d, G) = 0
=2
Next we consider the chain C'(j) with d(N(C(j))) = 10, so that j = 1 or 6 < j < 16.

The values k(i,d) are given in Table 16.
It follows that

i=1,6<i<16
and the theorem follows.

Case (3) Suppose p = 2, so that B = B; or Bx.

Let M € {2°78.(3 x Aj5).2,20.56(2), (2 x 217®): Uy(2): 2} be a subgroup of Fig and
H = 3.M the preimage of M in G. Let S be a Sylow 2-subgroup of H, H; = O3(Z(H))
and Hy = ([H, H|,S), where [H, H] is the commutator subgroup of H. Then H =
H, x Hy and Hy >~ M, so that H ~ 3 x M. Let

0=1{3,4,6,7,8,9,10,11,12,13, 15,16, 17, 18, 19, 20, 23, 24}
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’ Defect d H 7 ‘ 6 ‘ 4 ‘ otherwise ‘
k(1,d) || 27| 14 | 2 0
k(6, d) = k(13, d) | 27 0 0
k(7,d) =k(9,d) = k(14,d) =k(16,d) || 9| 2|0 0
k(8, d) = k(10, d) 1 0
k(11,d) =k(15,d) | 9 0 0
k(12,d, u) || 2714 | 0O 0

Table 16: Values of k(N (C(7)), Bo, d, () when p =3 and d(N(C(i))) = 10

and i € 2. Then Ng(C(i)) is a subgroup of some H = 3.M with Np;,,(C(7)) < M, so
that we may suppose

Ne(C(1)) = 3 X Npip, (C(7))-
It follows that for any ¢ € Q, j,¢ € {1, 2},

k(Ng(C< ) d Cg Zk NF122 Bg(Flgg) d, U) (81)

u>0

and k(Ng(C(i)), Bj,d,(;) can be obtained by knowing k(Np,,(C(7)), Bo(Fis), d, u),
which is given in the proof of Theorem 6.1. Since k(N (C(7)), B, d, () is independent
of the choices of j and ¢, we set k(i,d) = k(N (C(4)), B, d, () for integers 1, d.

Now we consider the 2-chains C'(j) such that the defect d(N(C(j)) = 15, so that
j e {10,11,12,13,15,18,19,20} C Q. Thus if C' = C(j), then N(C) ~ 3 x Niy, (C)
and k(j,d) is given by (8.1). It follows by (6.3) that

je{11,13,15,19} j€{10,12,18,20}

for each .

Next we consider the radical 2-chains C'(j) such that the defect d(N(C(j))) = 17,
so that j € {1,14,16,17,21,22,23,24}. The values k(i,d) are given in Table 17.

It follows that

ie{1,17,21,23} i€{14,16,22,24}

Now we consider the radical 2-chains C'(j) such that the defect d(N(C(j))) = 16,
so that 2 < j < 9. The values k(i,d) are given in Table 18.
It follows that

> k(N(C(i),B,d,¢) = Y.  k(N(C()),B,d, ().

i€{3,5,7,9} i€{2,4,6,8}

The theorem follows. O
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| Defect d [ 17 [ 16 | 15 [ 14 | 13 [ 12 [ 11 [ 10 [ 9 | 6 | otherwise |
k(1,d) 1612 2| 4] 3] 9| 2| 1|0]|1 0
k(14,d) |16 |12 2| 4| 4] 0] 0] 1]0]0 0
k(16,d) || 16 | 12|10 |24 |16 |18 |12 | 3|3 |1 0
k(17d) |16 |12 10 |28 |13 [13| 2| 3|00 0
k(21,d) || 16 | 12|18 | 10|20 | 4 0[0]0 0
k(22,d) || 16 |12 |18 | 10|19 |13 ] 2| 0]0 |0 0
k(23,d) |16 | 1226 |30 |32 |30 |12 | 6 /3|0 0
k(24,d) || 16 | 1226 |34 [29[25] 2| 6|00 0

Table 17: Values of k(N (C(i)), B,d, (;) when p =2 and d(N(C(7))) = 17

| Defect d [ 16 [ 15[ 14 [ 13 [ 12 [ 11 [ 10 [ 9 | 6 | otherwise |
k(2,d) |16 | 8| 4]16| 9[10] 4|22 0
k(3,d) |16 | 8| 4[24]25|20| 8|62 0
k(4,d) |16 | 8| 4]20 |23 6/0]0 0
k(5,d) || 16 | 8| 4|12] 7 210]0 0
k(6,d) |16 | 8|24 |12]23| 4| 4|00 0
k(7,d) |16 | 8[24 |16 |25|14] 6|20 0
k(8,d) |16 | 8|24 |24 |41[24]14 /6|0 0
k(9,d) || 16| 8]24]20[39|10[12/0]0 0

Table 18: Values of k(N (C(i)), B, d, (;) when p =2 and d(N(C(i))) = 16

9 Uno’s projective conjecture for 6.Fis

Let C be a radical p-chain of Figs and Ng pi,, (C') = 6.Npi,, (C). The character table of
N Fiy, (C) can either be found in the library of character tables distributed with GAP
or computed directly using MAGMA or GAP as in Section 6.

Let H = Ngpi,,(C) and let ; and 79 be the faithful linear characters of Z(6.Figs).
Denote by Irr(H | ;) the subset of Irr(H) consisting of characters covering 7;. The
tables listing degrees of irreducible characters referenced in the proof of Theorem 9.1
are available electronically [5].

Theorem 9.1 Let B be a p-block of G = 6.Fiy with D(B) # O,(G). Then B satisfies

Uno’s projective conjecture.

PRrOOF: We may suppose B has a non-cyclic defect group. Let N(C') = Ng(C) for
each C' € R(Fig).
Case (1) Suppose p =5, so that B = By or By. Then

k<N(C(4))7 B’ d? Nes [r]) = Z k(NFim(O)v Bl(Z'F122>a d7 U, 57 [TD

u>0
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and the theorem follows by

10 ifd=2andr =1,
k(G, B, d,m, [r]) = kK(N(C(4)), B, d,n, [r]) = { 10 ifd=2andr =2,

0  otherwise.

Case (2) Suppose p = 3, so that B = B;. Then for each ¢, j € {1, 2}, the degrees of
characters in Irr(N(C(7)) | 1) are the same as that of characters in Irr(N3pi,, (C(7)) |
¢;) and so

k(N(C(Z))7 B17 d? 77£) = k(N3'F122 (O(Z))v BO(3'F122)7 d? Cj)7

except when ¢ € {1,2,5,12}, in which case the values k(i,d) = k(N(C(4)), B, d, n)
are given in Table 19.

’ Defect d H 7 \ 6 \ 5) \ 4 \ otherwise ‘
k(l,d) ||27| 5|02 0
k(2,d) || 54| 153 |0 0
k(5,d) || 543330 0

k(12,d) || 54| 5[0 |0 0

Table 19: Values of k(N (C'(i)), B1,d, () when p =3

It follows by Tables 15, 16 and 19 that

14

3 (=1)ICOl(N(C(4)), By, d, &) = 0.

=1

Case (3) Suppose p = 2, so that B = B; or By. The proof is similar to that of
Theorem 8.1.

Let M € {2°7%.(3 x Aj5).2,20.56(2), (2 x 217®): Uy(2): 2} be a subgroup of Fiy and
H = 6.M the preimage of M in G. If H; = O3(Z(H)) and Hs is the subgroup of
H generated by both the commutator subgroup [H, H| and a Sylow 2-subgroup of H,
then H = Hy x Hy and Hy ~ 2.M < 2.Fiyy, so that H ~ 3 x 2.M. Let

Q={3,4,6,7,8,9,10,11,12,13, 15,16, 17, 18, 19, 20, 23, 24}

and ¢ € Q. Then Ng(C(i)) is a subgroup of H = 6.M for some M, and Ny, (C(i)) <
M, so that Ng(C(i)) = 3 X Napi,,(C(i)) and for any i € €2, 5,¢ € {1,2},

k(NG(C(Z))v ij dv W) = Z k(NQ-Fim (C(l))7 BO(Q-FiQQ)v dv u, 5)7 (91)

u>0

where ¢ is the restriction of 1, to O2(Z(G)). Thus k(Ng(C(4)), Bj, d,n,) can be obtained
by knowing k(N gi,, (C(7)), Bo(2.Fig), d, u, ), which is given in the proof of Theorem
7.1.

Since k(N(C(i)), Bj,d,n) is independent of the choices of j and ¢, we set k(i,d) =
k(N(C(2)), B,d,n) for integers i, d.
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Consider the 2-chains C(j) such that the defect d(N(C(j)) = 16, so that j €
{10,11,12,13,15,18,19,20} C Q. Thus if €' = C(j), then N(C) ~ 3 x Nogy,,(C) and
k(j,d) is given by (9.1). It follows by (7.1) that

Y. kW(CG)).Bidn)= > KkN(C()),B,d,mn)

j€{11,13,15,19} j€{10,12,18,20}

for each /.
Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 18,
so that j € {1,14,16,17,21,22,23,24}. The values k(i,d) are given in Table 20.

| Defect d || 14 [ 13 [ 12 [ 11 | 10 | 8 | otherwise |
k(1,d) | 8| 6] 8| 6| 2|4 0
k(14, d) 6| 2] 6/ 0]0 0
k(16,d) || 24 |18 20| 6| 2|4 0
k(17d) |24 |18|10| 2] 00 0
k(21,d) | 8|22 41 010 0
k(22, d) 22 41 20 0
k(23,d) || 24 34|20 8| 2|0 0
k(24,d) |24 3410 4] 0]0 0

Table 20: Values of k(N (C(7)), B,d,n;) when p =2 and d(N(C(7))) = 18
It follows that

> k(N(C(i),B,dne) = Y. k(N(C(>)), B,d,n).

i€{1,17,21,23} 1€{14,16,22,24}

Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17,
so that 2 < j < 9. The values k(i, d) are given in Table 21.

’ Defect d H 14 \ 13 \ 12 \ 11 \ 10 \ 7 \ otherwise ‘
k(2,d) [ 16|12 /20| 4] 22 0
k(3,d) |[16 | 28 |28 | 8| 6 |2 0
k(4,d)|[16 | 28| 8| 8| 0|0 0
k(5,d) || 16 | 12 0| 0]0 0
k(6,d) |[16 44| 4] 0| 0[O0 0
k(7,d) |16 |44 20| 4| 2|0 0
k(8,d) |16 |60 |28 | 12| 6|0 0
k(9,d) |[16 | 60| 8|12| 0|0 0

Table 21: Values of k(N (C(7)), B,d,n;) when p =2 and d(N(C(7))) = 17
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It follows that

> k(N(C(i),B,d,m) = > k(N(C(i)),B,d,n).

i€{3,5,7,9} 1€{2,4,6,8}

The theorem follows. O
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