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ABSTRACT. LetG = 〈X〉 ≤ GL(d,F) be a classical group in its natural representation defined
over a finite fieldF of even characteristic. We present Las Vegas algorithms to construct standard
generators forG which permit us to write an element ofG as a straight-line program inX, and to
construct an involution as a straight-line program inX. If |F| > 4, then the algorithms run in time
polynomial in the size of the input, subject to the existence of a discrete logarithm oracle forF.

In memory of our friend,́Akos Seress

1. Introduction

Let C ≤ GL(d, q) be a classical group in its natural representation, and letG = 〈X〉 be any
group isomorphic toC. Informally, a constructive recognitionalgorithm forG constructs an
isomorphism betweenG andC and exploits this isomorphism to write an arbitrary element ofG
as a word in its generatorsX. For a more formal definition, see [41, p. 192].

We can realise such an algorithm as follows. For each classical groupC, we define a specific
ordered set ofstandard generatorsS. The first task is to construct, as words inX, an ordered
subsetS ′ of G that is the image ofS under an isomorphism betweenC andG. The second task
is to solve theconstructive membership problemfor G with respect toS ′: namely, expressg ∈ G
as a word inS ′, and so as a word inX. Now the isomorphismϕ : G → C that mapsS ′ to S
is constructive: every element inG is first written as a wordg = w(S ′) in S ′, and the image
ϕ(g) = w(S) is immediately determined as the corresponding word inS. In a similar way, the
inverse ofϕ is constructive.

In this paper, as an important special case, we suppose thatG is given in its natural represen-
tation, soG andC are conjugate inGL(d, q). Since a conjugating element that mapsG toC can
be found readily, we may assume thatG = C. The constructive membership problem forC with
respect toS is solved by work of Costi [20]. It remains to constructS ′ ⊆ G as a set of words in
the given defining generatorsX; by construction,S andS ′ are conjugate inGL(d, q).

Leedham-Green & O’Brien [28] developed a Las Vegas algorithm which solves this problem
for odd q. Subject to the existence of a discrete logarithm oracle, the algorithm runs intime
polynomial in the size of the input. Efficient implementations are publicly available inthe com-
putational algebra system MAGMA [6]. The algorithm uses a recursion to classical groups of
smaller degree. The first step is to find, by a random search inG, an involution with large±1-
eigenspaces. The derived group of the centraliser inG of this involution acts on these eigenspaces
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as the direct product of classical groups in smaller degrees, and thesefactors are used for the re-
cursion.

For evenq, the situation is more complex. Since the proportion of elements inG of even
order is at most5/q (see [22]), it is not practical, for largeq, to find an involution by a random
search. Another obstacle is that the structure of involution centralisers is more complicated than
in odd characteristic, and the two groups for a recursion cannot be found in such a centraliser.

In this paper, we present a constructive recognition algorithm for classical groups in their
natural representation defined over finite fields of even characteristic.Subject to the existence of
a discrete logarithm oracle, we prove that the algorithm runs in time polynomial in the size of the
input (provided thatq > 4). Our implementation is publicly available in MAGMA .

This work contributes to theMatrix Group Recognition Project; its goal is to provide efficient
algorithms to investigate matrix groups defined over finite fields. For an overview of this project,
see the survey articles [37,38].

1.1. The groups and their standard copies.The groups of interest are the special linear
group, the symplectic group, the special unitary group, and the orthogonal groups, all over a finite
field of even characteristic. The definition of all of these groups, except for the first, depends on
the choice of a bilinear or quadratic form. However, the groups defined by two different forms of
the same type are conjugate in the corresponding general linear group. Thestandard copyof a
classical group is its unique conjugate which preserves a chosenstandard form.

We now describe these groups and their standard forms; we refer to [43] for more details. The
form is given as a matrix with respect to some chosen basis. In all cases,d is an integer greater
than 1,q is an even prime-power, andV is the underlying row vector space on which the group
acts by right multiplication. LetGL(d, q) be the group of all invertibled × d matrices over the
field GF(q) with q elements. We denote bydiag(M1, . . . ,Mn) the block diagonal matrix with
blocksM1, . . . ,Mn.

• SL(d, q): the subgroup of elements ofGL(d, q) with determinant 1.

• Sp(d, q): the subgroup of elements ofSL(d, q) that preserve a given non-degenerate alternat-
ing bilinear form onV . The existence of such a form implies thatd is even. The standard
copy is the group that preserves the formF = diag(( 0 1

1 0 ) , . . . , (
0 1
1 0 )).

• SU(d, q): the subgroup of elements ofSL(d, q2) that preserve a given non-degenerate hermit-
ian form onV . The standard hermitian forms for even and odd degree areF anddiag(F, 1),
respectively, withF as defined forSp.

• Ω+(d, q): the derived subgroup ofO+(d, q), the subgroup of elements ofSL(d, q) that pre-
serve a given non-degenerate quadratic form onV of + type. This implies thatd is even, and
we assumed ≥ 4. The standard quadratic form of+ type isQ = diag(( 0 1

0 0 ) , . . . , (
0 1
0 0 )),

which is preserved byg ∈ GL(d, q) if and only if vgQg⊺v⊺ = vQv⊺ for all v ∈ V . The
supported bilinear form isQ+Q⊺ = F .

• Ω−(d, q): defined as forΩ+(d, q), except that the form is of− type. Again,d is even, and we
assumed ≥ 4. If γ is a fixed primitive element ofGF(q2), then the standard quadratic form
of − type isdiag(( 0 1

0 0 ) , . . . , (
0 1
0 0 ) ,

(

1 a
0 b

)

) wherea = γ + γq andb = γq+1. The supported
bilinear form isdiag(( 0 1

1 0 ) , . . . , (
0 1
1 0 ) , (

0 a
a 0 )).

We writeSX(d, q) for a conjugate of one of the above groups; this implicitly means thatq
is even andd ≥ 4 if the group is orthogonal. We callSL, SU, Sp, Ω+, andΩ− the typeof the
group. A basis of the underlying vector space ishyperbolicif SX(d, q) is the standard copy with
respect to it.
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For each standard copy, a specific set ofstandard generatorsis defined in Section 2. This
generating set has cardinality at most 7. Costi [20] developed an algorithm to write an arbitrary
element in the standard copy as a word in these generators; it is deterministic and runs in time
polynomial in the input size, cf. [38,§9.1].

Remark 1.1. We consider only classical groups over finite fields of even characteristic. With
the exceptions ofSp(2, 2) andSp(4, 2), all symplectic groups are simple. With the exception
of SL(2, 2), all special linear groups are perfect, and simple if and only ifgcd(d, q − 1) = 1.
With the exception ofSU(2, 2), all special unitary groups are perfect, and simple if and only if
gcd(d, q + 1) = 1. With the exception ofΩ+(4, 2), all groups of typeΩ± are perfect; with the
exception ofΩ+(4, q), all groups of typeΩ± are simple.

1.2. Main results. Let G = SX(d, q) with q even. We present and analyse a Las Vegas
algorithm that takes as input the type ofG and a generating setX, and outputs the standard
generators ofG as words inX. Usually, these generators are defined with respect to a basis
different to that for whichX was defined, and a matrix relating these bases is also returned. All
words are given asstraight-line programs(SLPs). Intuitively, SLPs are efficiently stored group
words inX; for a formal definition and discussion of their significance, see [41, p.10].

Unless otherwise stated, all complexities are measured in field operations. Let ξ denote
an upper bound to the number of field operations needed to construct an independent (nearly)
uniformly distributed random element of a subgroup ofSX(d, q). Our algorithms assume the
existence of a discrete log oracle: ifG = Ω−(4, q) ∼= PSL(2, q2), then the oracle is required
for GF(q2), otherwise forGF(q). To simplify statements, we ignore alllog log d and log log q
factors; and we useχ to denote an upper bound to the number of field operations equivalent to a
call to a discrete logarithm oracle for the appropriate field.

Our main result is the following theorem.

Theorem 1.2. LetX be a generating set of bounded cardinality forG = SX(d, q). There is a
Las Vegas algorithm that constructs the standard generators forG asSLPsin X. If q > 4, then
the complexity isO(d((log2 q/ log d)ξ + d3 + d2 log d log3 q + log4 q + χ log q)).

Guralnick & Lübeck [22] proved that the proportion of elements of even order inSX(d, q)
is at most5/q, so a random search for an involution is not feasible for large fields. While the
algorithm of Theorem 1.2 can be used to construct an involution, we describe an alternative
which is much more efficient.

Theorem 1.3. LetX be a generating set of bounded cardinality forG = SX(d, q). There is a
Las Vegas algorithm which constructs an involution ofG as anSLP in X. If q > 4, then the
complexity isO(ξ + d3 log d log3 q + log4 q + χ log q).

Thecorankof a matrix involutioni is the rank ofi − 1. A modification of the algorithm of
Theorem 1.2 yields an algorithm to construct involutions of large corank. While the theoretical
complexity is as in Theorem 1.2, this algorithm is more efficient in practice.

Theorem 1.4. LetX be a generating set of bounded cardinality forG = SX(d, q). There is a
Las Vegas algorithm with the same complexity as in Theorem1.2 that constructs an involution in
G with corankr as an SLP inX, wherer is as follows. IfG is linear or unitary, thenr = ⌊d/2⌋.
If G has typeSp or Ω+, thenr = 2⌊d/4⌋. If G has typeΩ−, then⌊d/4⌋ − 1 ≤ r ≤ d/2.

Remark 1.5. The restriction toq > 4 arises from Theorem 5.1, proved by Praeger, Seress &
Yalçınkaya [40] under this assumption. However, in practice our algorithms also work with
comparable efficiency forq ∈ {2, 4}.



1.3. Related work. Kantor & Seress [26] developedblack-boxconstructive recognition al-
gorithms (see [41, p. 17]) for classical groups. The complexity of thesealgorithms involves a
factor of q. Using a discrete logarithm oracle and [18, 19], Brooksbank and Kantor [10–13]
demonstrate that the complexity of these algorithms can be made polynomial inlog q.

Brooksbank [9] devised Las Vegas algorithms to construct standard generators forSp(d, q),
SU(d, q), andΩ±(d, q) in their natural representations; subject to the existence of a discrete
logarithm oracle, the complexity isO(d(ξ+d2 log q(d+log d log3 q+d2 log q))+χ log q). The
algorithm of Celler & Leedham-Green [17] forSL(d, q) has complexityO(d4q). In all cases, the
algorithms construct Steinberg generators for the group.

1.4. Other directions. We have generalised our algorithms to classical groups in arbitrary
representations [14]. Costi [20] developed an efficient algorithm to write an element of a classical
group, given in an arbitrary absolutely irreducible representation in defining characteristic, as an
SLP in the standard generators. A black-box algorithm for this task was developed by Ambrose
et al. [1].

2. Standard generators for classical groups

We now define the standard generators forG = SX(d, q), whered = 2n or d = 2n + 1. Let
{e1, f1, . . . , en, fn}, or {e1, f1, . . . , en, fn, w}, be a hyperbolic basisB of the naturalG-module
V , according asd is even or odd. All matrices of degreed are given with respect toB. A
matrix of degree2k is given with respect to{e1, f1, . . . , ek, fk}; it represents an automorphism
of V which acts on{e1, f1, . . . , ek, fk} as the given matrix, and trivially on the remainingd −
2k basis elements. Permutation matrices are described by the corresponding permutation. To
facilitate uniform exposition, we introduce trivial generators. If the dimension required to define
a generator is greater than the dimension of the group, then the generator isassumed to be the
identity. For an integerk ≥ 0 let 1k be thek × k identity matrix; if the degree is clear from the
context, then we also write1 = 1k. Analogously, we denote the zero matrix by0k or 0.

Definition 2.1. The standard generators ofSX(d, q) areS(d, q, SX) = {s, t, δ, u, v, x, y} as
defined in Table1, whereω is a specified primitive element of the underlying fieldF; if the type
is SU thenF = GF(q2), otherwiseF = GF(q). ForΩ−(d, q), we choose a primitive elementγ
of GF(q2) so thatω = γ(q+1).

The group generated byS(3, 2, SU) as given in Table1 has index 2 inSU(3, 2), so we choose
a different element fort.

The generatorv is the cycle of SX(d, q); all other standard generators ofSX(d, q) lie in
SX(4, q). This observation is significant since we construct the standard generators by a recursion
to classical groups of smaller degree.

Lemma 2.2. The standard copy ofSX(d, q) is generated byS(d, q, SX).

PROOF. The standard generators forSL, Sp, Ω+, andSU(2n, q) are independent of the charac-
teristic, cf. [28,§3]. ForΩ− andSU(2n + 1, q), we use a slight modification of the generating
sets for odd characteristic; the proof is similar. �
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Group s t δ u v x y

SL(2n, q) (e1, f1)
(

1 1
0 1

)

(

ω 0

0 ω−1

)

1d (e1, . . . , en)(f1, . . . , fn) (e1, f1, e2, f2) 1d

SL(2n + 1, q) (e1, f1)
(

1 1
0 1

)

(

ω 0

0 ω−1

)

1d (e1, . . . , en)(f1, . . . , fn, w) (e1, f1, e2, f2) 1d

Sp(2n, q) (e1, f1)
(

1 1
0 1

)

(

ω 0

0 ω−1

)

(e1, e2)(f1, f2) (e1, . . . , en)(f1, . . . , fn)

(

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

)

1d

SU(2n, q) (e1, f1)
(

1 1
0 1

)

(

ω 0

0 ω−1

)q+1

(e1, e2)(f1, f2) (e1, . . . , en)(f1, . . . , fn)

(

1 0 1 0
0 1 0 0
0 0 1 0
0 1 0 1

)

(

ω 0 0 0

0 ω−q 0 0

0 0 ω−1 0

0 0 0 ωq

)

SU(2n + 1, q) (e1, f1)
(

1 1
0 1

)

(d, q) 6= (3, 2)

(

ω 0

0 ω−1

)q+1

(e1, e2)(f1, f2) (e1, . . . , en)(f1, . . . , fn)

(

1d−3

1 η 1

0 1 0
0 1 1

)

η = Tr(ω,GF(q))−1ω





1d−3

ω 0 0

0 ω−1 0

0 0 ωq−1





Ω+(2n, q) (e1, f2)(e2, f1)

(

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

)

(

ω 0 0 0

0 ω−1 0 0
0 0 ω 0

0 0 0 ω−1

)

(e1, e2)(f1, f2) (e1, . . . , en)(f1, . . . , fn)

(

1 0 1 0
0 1 0 0
0 0 1 0
0 1 0 1

)

(

ω 0 0 0

0 ω−1 0 0

0 0 ω−1 0
0 0 0 ω

)

Ω−(2n, q)





1d−4

0 1 0 0
1 0 0 0
0 0 1 0
0 0 η 1





γ ∈ GF(q2) primitive

ω = γq+1

η = γ + γq





1d−4

1 1 1 0
0 1 0 0
0 0 1 0
0 η 0 1









1d−4

ω 0 0 0

0 ω−1 0 0
0 0 1 a
0 0 b c





a = γ−1 + γ−q

b = γ + γq

c = γ−q+1 + γq−1 + 1

(e1, e2)(f1, f2)

if n > 2

(e1, . . . , en−1)(f1, . . . , fn−1) 1d 1d

TABLE 1. Standard generators for classical groups in even characteristic
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3. General approach and structure of this paper

We outline our strategy to construct the standard generatorsS for G = SX(d, q) = 〈X〉. If d
is “small”, thenG is abase caseand we use specialised algorithms to solve the problem. These
define a single algorithm,BaseCase, described in Section 10. Here and later a “⋆” within a
matrix denotes a submatrix that is not further specified, and whose dimensionsare implied by the
context.

Definition 3.1. SX(d, q) is a base case if eitherd ≤ 6, or it is one of the following individual
groups:SL(8, 2), SU(7, 2), SU(9, 2), Ω−(8, 4), Ω−(10, 4), or Sp(d, 2) with d ∈ {8, 10, 12}, or
Ω±(d, 2) with d ∈ {4, 6, 8, 10, 12, 14}.

If G is not a base case, then we proceed as follows. The first step is to find a naturally
embedded subgroupH ∼= SX(m, q) of G wherem lies in a prescribed range, for example,
m ∈ [d/3, 2d/3]. If G has typeSL or SU, thenm is even andSX(m, q) has the same type asG;
otherwiseSX(m, q) has typeΩ+ andm is a multiple of 4. We describeFirstSX, the algorithm
to constructH, in Section 5. Via a base change, we may assume that

H =
(

SX(m,q) 0
0 1d−m

)

≤ G.

By recursion, we construct a base change matrixb = diag(⋆, 1d−m), the standard generators
SH of SX(m, q) in Hb, and a certain involutioniH ∈ Hb of corankm/2; all elements are
described by SLPs inX. For simplicity, letb = 1d in the following. In the centraliserCG(iH)
we find

K =
(

1m 0
0 SX(d−m,q)

)

≤ G

whereSX(d−m, q) has the same type asG. We describeSecondSX, the algorithm to construct
K, in Section 8. By another recursion, we construct a base change matrixc = diag(1m, ⋆) and
the standard generatorsSK of SX(d−m, q) in Kc. Again, letc = 1d for simplicity.

With the exception of the cyclev of G, all standard generators ofG lie in SH ∪ SK . The
missing generator is constructed as follows. First, the elements ofSH ∪ SK are used to write
down a specific involutioni ∈ G. Second, inCG(i) a certain subgroupT of degree 4 (degree
8 if G is symplectic or orthogonal) is constructed. Finally, aglue elementg is found inT : if
vK ∈ SK andvH ∈ SH are the cycles inK andH, respectively, thenv = vKgvH is the cycle of
G. To perform this task, we introduce the algorithmGlueCycles in Section 9.

We now summarise the main algorithm,StandardGenerators, and discuss it in detail
in Section 11.

1) If G is a base case, then applyBaseCase, otherwise:

2) Construct the subgroupH with FirstSX.

3) Recursively applyStandardGenerators toH.

4) Construct the subgroupK with SecondSX.

5) Recursively applyStandardGenerators toK.

6) Find the glue element and combine recursive solutions withGlueCycles.

The main difference between this algorithm and that for odd characteristic [28] is the con-
struction of the two subgroups for the recursion. In odd characteristic,these subgroups can be
constructed simultaneously in the centraliser of an involution, and this involutionis found by
a random search. In even characteristic, we constructH using a different technique, and then
constructK as a subgroup of the centraliser inG of an involution of large corank inH.
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In Section 12 we present two algorithms to construct involutions. The algorithm to construct
an involution of large corank is similar toStandardGenerators, but avoids the gluing of
the cycles. Our algorithm to construct an involution of small corank uses recursion to construct
H ∼= SX(m, q) for some smallm, usuallym ≤ 6, as a naturally embedded subgroup ofG. We
then apply specialised algorithms to construct an involution inH.

4. Algorithmic preliminaries

If f andg are real valued functions, defined on all sufficiently large integers, then f = O(g)
means|f(n)| < c|g(n)| for some positive constantc and all sufficiently largen.

A Monte Carloalgorithm is a randomised algorithm that always terminates, but may return
a wrong answer with probability less than any specified value. ALas Vegasalgorithm is a ran-
domised algorithm that never returns an incorrect answer, but may report failure with probability
less than any specified value.

Babai [3] presented a Monte Carlo algorithm to construct, in polynomial time, independent
nearly uniformly distributed random elements of a finite group. An alternativeis theproduct
replacement algorithmof Celler et al. [16], which runs in polynomial time by a result of [39].
For a discussion of both algorithms we refer to [41, pp. 26–30].

Our algorithms usually search for elements ofG having a specified property. If1/k is a lower
bound for the proportion of such elements inG, then we can readily prescribe the probability of
failure of the corresponding algorithm. Namely, to find such an element by random search with a
probability of failure less than a givenǫ ∈ (0, 1) it suffices to choose (with replacement) a sample
of uniformly distributed random elements inG of size at least⌈− loge(ǫ)k⌉. We do not include
such factors as part of each theorem.

Often it is necessary to investigate the order ofg ∈ GL(d, q), which, due to problems with
integer factorisation, cannot be determined in polynomial time. We can, however, determine its
pseudo-order, a good multiplicative upper bound for|g|, and the exact power of any specified
prime that divides|g|, using a Las Vegas algorithm with complexityO(d3 log d+ d2 log d log q).
A Las Vegas algorithm with the same complexity allows us to compute large powersgn where
0 ≤ n < qd. Multiplication and division operations for polynomials of degreed overGF(q)
can be performed deterministically with complexityO(d log d). Using a Las Vegas algorithm,
such a polynomial can be factored into its irreducible factors with complexityO(d2 log d log q).
The characteristic and minimum polynomials ofg ∈ GL(d, q) can be computed by a Las Vegas
algorithm with complexityO(d3 log d). We refer to [28,§2 & 10] for more details and references.

If a matrix group acts absolutely irreducibly on its natural module, then the form it preserves
(up to scalar multiples) can be determined with complexityO(d3), see [23,§7.5.4]. Conjugating
SX(d, q) to its standard copy amounts to finding a hyperbolic basis with respect to the given form;
this can be done with complexityO(d3 + d2 log2 q), see [33, Theorem 1.1].

The following theorem, proved in [5, Corollary 4.2], implies that two random non-scalar
g, h ∈ SX(d, q) satisfyg|h| 6= 1 with probability at least1/2d. Recall that an element isp-
regular if its order is not divisible byp.

Theorem 4.1. LetG be a finite simple classical group acting naturally on a projective space of
dimensiond−1, and letp be a prime. The proportion ofp-regular elements inG is at least1/2d.

We also use the following result on random generation proved in [25].

Lemma 4.2. Let G = SX(d, q) be perfect. AnO(1) random search inG yields a bounded
generating setX for G such that{x2 | x ∈ X} generatesG.
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5. Constructing the first subgroup

In this section, we assume thatG = SX(d, q) = 〈X〉 is not a base case. The standard generators
of G are constructed via a recursion to two smaller subgroups of classical type. Modulo a base
change with matrixb, these subgroups are

H =
(

SX(m,q) 0
0 1d−m

)

≤ Gb and K =
(

1m 0
0 SX(d−m,q)

)

≤ Gb,

whereSX(d −m, q) has the same type asG. If G is linear or unitary, then so isSX(m, q) and
m is even; otherwise,SX(m, q) has typeΩ+ andm is divisible by 4. In each case,m is usually
required to lie betweend/3 and2d/3.

The construction ofK is considered in Section 8. Here we describe the algorithmFirstSX
used to constructH. We first outline the steps and then discuss them in the subsequent sub-
sections. In the remainder of this section, unless explicitly stated, the characteristic p of the
underlying fieldF can be eitherevenor odd. Recall that ifg ∈ G has order prime toq, theng is
semisimple.

(1) Find a semisimpleg ∈ G with 1-eigenspaceEg of dimensiond − l ∈ [2d/3, 5d/6] (with
some variation for smalld) such thatg acts irreducibly on a complement toEg in V , the
naturalG-module. IfG is orthogonal or symplectic, then require thatl is even.

(2) Construct a random conjugategh, forh ∈ G, such that the intersectionE of the1-eigenspaces
of g andgh has smallest possible dimension (that is,d − 2l) and the images ofg − 1 and
gh − 1 span a complementI toE. ThenH = 〈g, gh〉 leavesE andI invariant, and (in the
non-linear case)E andI are non-degenerate subspaces.

Note that the dimension ofI ism = 2l; if G is orthogonal or symplectic, thenm is divisible
by 4. Let H̃ = H|I be the group generated by the restrictions ofg andgh to I. Lemmas 5.9
and 5.10 show the following:̃H ≤ SX(m, q) (acting onI); if G is orthogonal, thenSX(m, q) is
orthogonal (of possibly different type); ifG = Sp(d, q) with q even, thenSX(m, q) is orthogonal;
otherwiseSX(m, q) has the same type asG.

In Section 5.1 we describe the construction of the elementsg in Step (1). Observe that
g|I ∈ SX(m, q) has a 1-eigenspace of dimensionl = m/2 and acts irreducibly on a complement
in I. Our construction ensures that the order ofg|I is divisible by a certain Zsigmondy prime (see
Definition 5.3).

As we establish in Lemma5.9, the conjugacy class ofg|I in SX(m, q) is determined by its
eigenvalues in its action onI; thereforeg|I andgh|I are conjugate inSX(m, q). Thusgh|I is
random among all conjugates(g|I)c of g|I , for c ∈ SX(m, q), such that the 1-eigenspaces of
(g|I)

c andg|I intersect trivially. In this situation, we can apply the following result of Praeger,
Seress & Yalçınkaya [40].

Theorem 5.1. Let q > 4. There is an absolute constantκ > 0 such that the following holds: if
H̃ ≤ SX(m, q) is as defined above, theñH = SX(m, q) with probability at leastκ.

Our investigations suggest that this theorem also holds forq ≤ 4.
If G is orthogonal or symplectic withq even, thenH̃ = SX(m, q) is orthogonal, see Lemma

5.10. If H̃ has+ type, then we can readily construct the standard generators ofG from the stan-
dard generators constructed forH and for the second subgroupK ≤ G. To simplify exposition,
we consider only the case that̃H is of + type. Theoretically, this is justified by the following
third step ofFirstSX; it does not change the complexity of our main algorithm.

(3) If q is even andH ∼= SX(m, q) is orthogonal of− type, then we constructively recognise
Ω−(m, q), and so obtainΩ+(m− 4, q) as a naturally embedded subgroup ofH (andG); we
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returnΩ+(m − 4, q). If m ≤ 8, then we apply the algorithm of [9] to findΩ+(4, q) as a
naturally embedded subgroup.

If q is even andH̃ is orthogonal, then our investigations suggest that the probability thatH̃
is of+ type is approximately1/2 (or 1/3 if q = 2). In practice, we realise Step (3) by repeatedly
constructing subgroupsH until H̃ is of+ type.

5.1. Finding elements with large 1-eigenspace.We prove thatO(1) random elements in
G suffice, in Step (1), to find one that powers up to a desired element. Forg ∈ G, denote byEg

the1-eigenspace ofg, and byIg the image ofg − 1. Recall that a(q, l)-Zsigmondy primer is
one that dividesql − 1 but noqj − 1 for j < l. If so, thenq has orderl modulor, sor ≥ l + 1.
Zsigmondy primes exist, except for(q, l) = (2, 6) and(q, 2) with q a Mersenne prime, see [35].

Let F̄ be an algebraic closure of the underlying fieldF of G, and define the map

Φ: F̄ → F̄, a 7→ aεq,

whereε = −1 in caseSU andε = 1 in all other cases. The multiset of eigenvalues oft ∈ G in
F̄ is invariant underΦ, sinceΦ preserves the characteristic polynomial oft. Let λ(t) ⊢ d be the
partition ofd describing the cycle lengths ofΦ acting on this multiset. IfG is of typeSU, andl
is even, thenl′′ := l andl′ := l/2; if G is of typeSU, andl is odd, thenl′′ := 2l andl′ := l; in
all other casesl′′ = l′ := l.

Definition 5.2. For l ∈ {2, . . . , d/2− 1}

Pl(G) = {g ∈ G | g is semisimple,g acts irreducibly onIg, anddim(Eg) = d− l}.

Definition 5.3. Let P̃l(G) be the set of allt ∈ G with the following properties:l appears exactly
once inλ(t); l′ does not divide any other entry ofλ(t); and there is a(q, l′′)-Zsigmondy primer
dividing |t|.

Lemma 5.4. Elements of̃Pl(G) power up to elements ofPl(G).

PROOF. If a ∈ F̄ is an eigenvalue oft ∈ G corresponding to a cycle lengthe in λ(t), then the
order ofa divides(εq)e− 1. It is easy to see that a(q, l′′)-Zsigmondy prime does not divide|a| if
l′ ∤ e. Let t ∈ P̃l(G) with (q, l′′)-Zsigmondy primer dividing |t|. Let e1, . . . , ek be the entries of
λ(t) not equal tol, and letb = |((ǫq)e1 −1) · · · ((ǫq)ek −1)|. Thentb hasd− l eigenvalues equal
to 1, andl eigenvalues of order divisible byr. To construct a semisimple element with the same
properties, we powertb by pj , wherepj is the largest power ofp that divides|t|; in particular,
j = 0 if t has pairwise different eigenvalues. The non-trivial eigenvalues of this powerg of t lie
in a field extension ofF of degree preciselyl′′, sog acts irreducibly onIg. �

Lemma 5.5. a) If l is odd andG has typeSp or Ω±, thenP̃l(G) is empty. In all other cases
the following holds: For every constantα ∈ (0, 1/2) there exists a constantc > 0 such that
for everyd > 1, every prime powerq, and every integerl ∈ [αd, d/2) for which (q, l′′)-
Zsigmondy primes exist, the proportion|P̃l(G)|/|G| is greater thanc/l.

b) There exists a constantc′ > 0 such that, for everyd > 5 and every prime powerq, if G =
SX(d, q) andP =

⋃

l P̃l(G), wherel runs over all integers in[d/6, d/3], then|P |/|G| > c′.

PROOF. a) The proof is based on [31]. First,̃Pl(G) is obviously closed under conjugation, and
it contains an element ofG if and only if it contains its semisimple part. Therefore the proportion
|P̃l(G)|/|G| can be determined as in [31, Lemma 2.3]. This reduces the estimate to considering
the proportion of elements iñPl(G) in maximal tori ofG, and to counting elements in the Weyl
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group ofG corresponding to tori with many elements iñPl(G). The conjugacy classes of maxi-
mal tori inG are parametrised either by partitions ofd in cases SL and SU, or by signed partitions
of ⌊d/2⌋. A maximal torus is in all cases a subgroup of a direct product of cyclic groups of order
qj − 1 or qj + 1, wherej corresponds to an entry in the partition. For a detailed description
see [31,§3].

Consider first the typesSL andSU. For2 ≤ l < d/2, we consider partitions with one entry
equal tol, and all other entries not divisible byl′. From the description of the structure of the
corresponding maximal tori, it is clear that these contain elements ofP̃l(G), and the proportion
of such elements is at least1 − 1/r ≥ 2/3 for every(q, l′′)-Zsigmondy primer. LetW ∼= Sd
be the Weyl group, the symmetric group of degreed. For the proportion of elements inW whose
cycle type is one of these partitions, a lower bound is given by [31, Lemma 4.2a), b)]. Using
this, and the estimatesl ≥ αd andd1/d < 3/2, part a) follows forSL andSU.

The remaining types are dealt with similarly. The explicit description of maximal tori shows
that cycles induced byΦ on the eigenvalues oft ∈ G come either in pairs or they have even
length. This establishes the last statement of a), and we now assume thatl is even. Here we
consider maximal tori corresponding to elements ofW with a negative cycle of lengthl/2 such
that l/2 does not divide any other cycle length. It follows, from the description of the structure
of these tori, that they contain elements inP̃l(G), and the proportion of such elements is at least
2/3. The estimate for the proportion of elements in the Weyl group that are considered is reduced
to the caseS⌊d/2⌋ using [31, Lemma 4.2 c), d)].

b) This follows from a): for larged there are at leastd/12 − 1 different l to consider and for
d > 5 there is always at least one appropriatel, and every element ofG can lie in at most5
differentP̃l(G): there can be at most5 cycles of different lengths at leastd/6. �

Let P andc be as defined in Lemma 5.5 b). For small rank, sayd < 60, one can easily
compute quite accurate values for the constantc, using [31, Lemma 2.3]. IfG has typeSL or SU,
then ford ≤ 20 the proportion of elements inP (if not empty) lies in[0.18, 0.4], and for largerd
in [0.4, 0.5]. For the other types, the proportion is about half as large, which is as expected from
the proof above.

Remark 5.6. If t ∈ G, whereG has type other thanSU, then the cycle lengths induced by
Φ on the multiset of eigenvalues oft are the degrees of the irreducible factors overF of the
characteristic polynomial oft. Now letG have typeSU. If f is the minimum polynomial overF
of somea ∈ F̄×, then we denote bỹf the minimum polynomial ofa−q. To computef̃ from f :
raise the coefficients to theq-th power, reverse coefficients, and normalise. IfΦ induces a cycle of
odd lengthl on the eigenvalues oft, then the characteristic polynomial oft contains an irreducible
factorf = f̃ of degreel overF whose zeroes are the elements of the cycle. IfΦ induces a cycle
of even lengthl, its elements are the zeroes of two irreducible factorsf andf̃ 6= f of degreel/2
overF. Therefore, in all cases, elements inP are easy to detect by computing and factorising
characteristic polynomials.

Remark 5.7. If d is small, thenP may be empty. We usually solve this problem by extending
the range forl in the definition ofP to [2, d/2). For d ∈ {3, 4} we search for elementsg that
have one eigenvalue with multiplicity1, and another with multiplicityd− 1. We take the derived
subgroup of〈g, gh〉 asH. Such elementsg are easy to find. For example, in case SL, ift ∈ G
satisfiesλ(t) = (1, d − 1), theng = tb with b = (qd−1 − 1)/(q − 1) is a desired element, with
probability1− 1/q.
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We summarise the resulting algorithmFindElement: it takes as input the generating set
X of G and returnsg ∈ P̃l(G) for somel ∈ [d/6, d/3] (with some variation for smalld).

(i) Construct randomt ∈ G, factorise its characteristic polynomial, and computeλ(t) as in
Remark 5.6, so determiningl.

(ii) If t ∈ P̃l(G), then powert up tog ∈ Pl(G) and returng, otherwise go back to (i).

Lemma 5.5 shows that it suffices to selectO(1) random elementst in order to constructg.
This, and the results cited in Section 4, shows the algorithm is Las Vegas and has complexity
O(ξ + d3 log d+ d2 log d log q).

5.2. Constructing the subgroupH. We now show that it is easy to find a conjugate ofg ∈
P̃l(G) in sufficiently general position. Recall thatV is the naturalG-module,Eg = ker(g − 1),
andIg = im (g − 1).

Lemma 5.8. Let g ∈ Pl(G) and letT be the set ofh ∈ G such thatdim(Eg ∩ Egh) = d − 2l
(the smallest possible value) andV = (Eg ∩Egh)⊕ Ig ⊕ Igh. There exists an absolute constant
c > 0, independent ofl and the type ofG, such that|T |/|G| > c.

PROOF. We give a detailed proof only forG of typeSL; the proportion|T |/|G| is larger ifG is
not of this type.

Sinceg is semisimple,V = Eg ⊕ Ig. We choose an ordered basis ofV such that the first
d− l vectors generateEg, and the lastl vectors generateIg. We estimate the cardinality ofT by
counting images of these basis vectors under a suitable linear transformationh ∈ T . We start by
mapping the firstl basis vectors such that their images, together withEg, span the whole space.
This ensures thatEg ∩ Egh has minimal dimension.

For 1 ≤ j ≤ l, we map thej-th basis vector to a vector outside the span of the union ofEg

with the set of previously chosen images; there areqd−qd−l+j−1 possible choices. Then we map
the remainingd−2l basis vectors ofEg to arbitrary vectors outside the span of the already chosen
images. Ifl + 1 ≤ j ≤ d− l, then there areqd − qj−1 choices for thej-th basis vector. Finally,
we map the basis vectors ofIg so that their images span a complement to(Eg ∩Egh)⊕ Ig. Thus
the image of thej-th basis vector ford− l+1 ≤ j ≤ dmust be outside the span of the previously
chosenj− 1 images, and outside the span of the union of(Eg ∩Egh)⊕ Ig with the set of images
of the basis vectors indexed byd− l+1 to j−1. These two subspaces of dimensionj−1 > d/2
have an intersection of dimension at least2j − 2− d. This yields at leastqd − 2qj−1 + q2j−2−d

possible images (the last one divided byq − 1 to get an element with determinant1).
Comparing with|G| = (

∏d
j=1(q

d − qj−1))/(q − 1) we get a lower bound

|T |/|G| ≥
∏l

j=1

qd − qd−l+j−1

qd − qj−1
·
∏d

j=d−l+1

qd − 2qj−1 + q2j−2−d

qd − qj−1
.

For the first factor of the product, observe that

∏l

j=1

(

1−
qd−l+j−1 − qj−1

qd − qj−1

)

>
∏l

j=1

(

1−
qd

qd − qj−1
·

(

1

q

)l−j+1
)

>
∏l

k=1

(

1−
4

3
·

(

1

q

)k
)

.

For fixedq, this last expression converges to some positive constant asl → ∞ (because the
geometric series

∑

j 1/q
j converges). For the second factor, we find a positive lower bound with

a similar estimate; the critical term is the last, but it is easily checked that it is at least 1/2. �

Evaluations of the formulae show thatc, for q = 2 or 4, is bounded below by0.08 and0.47
respectively. Our investigations suggest that forq = 2 the proportion|T |/|G| is about0.25.
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Lemma 5.9. Letg ∈ Pl(G), and leth ∈ T as in Lemma5.8.

a) E = Eg ∩ Egh andI = Ig ⊕ Igh are invariant under〈g, gh〉.

b) If G preserves some form, thenE andI are mutually orthogonal, and non-degenerate spaces.

c) If G is orthogonal, thenE and I are non-degenerate quadratic spaces, possibly of type
different to that ofG.

d) If G is not an orthogonal group in even dimension, then the conjugacy class ofa semisimple
element inG is determined by its eigenvalues inF̄ (with multiplicities). In the remaining case
this is true if and only if the element has an eigenvalue 1, otherwise there aretwo semisimple
classes whose elements have the same eigenvalues.

e) The restrictionsg|I andgh|I are conjugate within the group preserving the form specified in
b) andc).

PROOF. a) Clearly,Eg ∩Egh andIg ⊕ Igh are fixed by each ofg andgh; for example, ifv ∈ Ig,
thenvgh = v + v(gh − 1) ∈ Ig ⊕ Igh.

b) SupposeG preserves a formβ(·, ·). Let v = w(g − 1) ∈ Ig, andw′ ∈ Eg. Thenβ(v, w′) =
β(wg,w′) − β(w,w′) = β(w,w′g−1) − β(w,w′) = 0, thusIg andEg are orthogonal. Hence
Eg ∩ Egh is orthogonal toIg ⊕ Igh. SinceV is the direct sum of these spaces,Ig ⊕ Igh is the
orthogonal complement ofEg ∩Egh. Thus the form restricted to each ofEg ∩Egh andIg ⊕ Igh
is non-degenerate.

c) LetQ be the quadratic form preserved byG with associated bilinear formF = Q + Q⊺. By
part a), the naturalG-module decomposes intoV = E ⊥ I, and with respect to a suitable basis,
the matrixF has block diagonal form; we may also assume thatQ is an upper triangular block
matrix. Note thatvkQk⊺v⊺ = vQv⊺ for everyv ∈ V andk ∈ 〈g, gh〉. Since the 1-eigenspaces
of g|I andgh|I intersect trivially,Q is a block diagonal matrix.

d) The semisimple conjugacy classes ofG are parametrised by orbits of the Weyl group on ele-
ments of a maximal torus, see [15, Propositions 3.7.2 & 3.7.3]; in characteristic2 the centralisers
of semisimple elements are connected, but the proof of [15, Proposition 3.7.3] remains correct
even if the group is not of simply-connected type. An explicit description ofmaximal tori in the
natural representation and the Weyl group action is given in [31, Section 3]; our claim follows
easily from that description.

e) Since both restrictions have 1 as an eigenvalue, the result follows fromd). �

Let g ∈ Pl(G), andm = 2l. By Lemma 5.8 and Theorem 5.1, the construction ofO(1)
random elements is sufficient to findh ∈ G such thatH = 〈g, gh〉 is isomorphic toSX(m, q).
We can verify the latter using the one-sided Monte Carlo recognition algorithmof [35]; this has
complexityO(ξ + d3 log d log3 q).

We now suppose thatG = Sp(d, q) andq is even. The next lemma shows that in this case
H preserves a quadratic form, henceH ∼= SX(m, q) is orthogonal by Theorem 5.1. Recall that
g acts irreducibly on the orthogonal complementIg of its 1-eigenspaceEg, andIg ∩ Igh = {0}.
Sinceg is semisimple, it has odd order.

Lemma 5.10. There is a quadratic form onIg ⊕ Igh preserved byg andgh.

PROOF. Write U = Ig. Let β be a non-degenerate bilinear form left invariant bySp(d, q); so
β is unique up to multiplication by a non-zero scalar. The spaceU , together with the restriction
γ = β|U×U , is a symplectic space, and every semisimple element ofSp(U) lies in a maximal
torus of an orthogonal group onU . Thus, there exists ag-invariant quadratic formB1 onU which
supportsγ: namely,B1 is ag-invariant quadratic form withB1(u+v) = B1(u)+B1(v)+γ(u, v)
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for all u, v ∈ U . ConjugatingB1 by h defines agh-invariant quadratic formB2 on Uh. Now
define a quadratic formB onU ⊕Uh byB(v1+ v2) = B1(v1)+B2(v2)+β(v1, v2) for v1 ∈ U
andv2 ∈ Uh. We prove that this form is invariant under the action ofg2; sinceg has odd order,
this shows thatB is g-invariant. SinceU is g-invariant, it suffices to prove thatB(vg2) = B(v)
for all v ∈ Uh. Forv ∈ V definef(v) = vg − v. Sinceg centralisesV/U it follows thatf takes
values inU , and hence, by restriction, defines a linear map fromUh toU . Letv ∈ Uh. It follows
from vg2 = f(v)(g + 1) + v and theg-invariance ofB1 that

B(vg2) = B1(f(v)(g + 1)) +B2(v) + β(f(v)(g + 1), v)

= β(f(v)g, f(v)) +B2(v) + β(f(v)(g + 1), v),

so it suffices to prove thatβ(f(v)g, f(v)) = β(f(v)(g + 1), v). But this follows from

β(v, f(v)) = β(v, vg) = β(vg, vg2)

= β(vg, v(g2 − 1) + v)

= β(vg, f(v)(g + 1) + v)

= β(v + f(v), f(v)(g + 1) + v).

SimilarlyB is preserved bygh. �

If q is even andH is orthogonal, then we apply Step (3) to ensure thatH is of + type.
Algorithm FirstSX returnsH ∼= SX(m, q), a base change matrix reflecting the decomposition
V = Ig ⊕ Igh⊕ (Eg ∩ Egh), andm. Observe thatm ∈ [d/3, 2d/3] with variations for smalld.
Hence, our previous discussion proves the following.

Lemma 5.11. AlgorithmFirstSX is correct and Las Vegas; ifq > 4, then it has complexity
O(ξ + d3 log d log3 q + log4 q).

6. Centralisers of involutions

We considerG = SX(d, q) with d ≥ 4, andd ≥ 8 if G is orthogonal. An involutioni in G
is good inG if eitherG is linear or unitary, ori has even corank andvF i⊺v⊺ = 0 for all v in
the naturalG-module, whereF is the alternating form preserved byG. (Recall thatΩ±(d, q)
preserves the alternating form supported by the quadratic form.) Aschbacher & Seitz [2] describe
the centraliser of an involution in Chevalley groups over fields of even size. (Our good involutions
are those of typecr as defined in [2].) The next theorem follows from [2, (4.2), (4.3), (6.2), (7.6),
(7.7), (7.9), (8.5), (8.6), (8.10), (8.12)].

Theorem 6.1. Let i ∈ G = SX(d, q) be a good involution of corankr ≤ d/2 and letF be the un-

derlying field ofG. There exists a base change matrixc ∈ GL(d,F) such thatic =

(

1r 0 1r
0 1d−2r 0
0 0 1r

)

and the elements ofCGc(ic) have upper block triangular form with diagonal blocksa, b, a, of de-
greer, d− 2r, andr, respectively. Consider the homomorphism

ψ : CGc(ic) → GL(r,F)×GL(d− 2r,F),
(

a ⋆ ⋆
0 b ⋆
0 0 a

)

7→ (a, b).

If G is linear, unitary, or symplectic, then the image ofψ containsSX(r, q) × SX(d − 2r, q)
with both factors of the same type asG. Otherwise, in the orthogonal case, the image contains
Sp(r, q)′ × SX(d− 2r, q), whereSX(d− 2r, q) has the same type asG.

We calli∗ := ic thestandard formof i. The centraliser of a good involutioni ∈ G in standard
form has the structure given in Theorem 6.1. The following easy observation is used in Sections
11 and 12.
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Lemma 6.2. LetG = SX(d, q) and

H =
(

SX(m,q) 0
0 1d−m

)

≤ G and K =
(

1m 0
0 SX(d−m,q)

)

≤ G.

If iH ∈ SX(m, q) and iK ∈ SX(d − m, q) are good involutions, thendiag(iH , iK) is a good
involution inG.

The centraliserCG(i) of an involutioni ∈ G can be constructed using an algorithm of Bray
[7]. If g is an arbitrary element ofG, then[i, g] either has odd order2k+1, in which caseg[i, g]k

commutes withi, or has even order2k, in which case both[i, g]k and[i, g−1]k commute withi.
If g is random among the elements ofG for which [i, g] has odd order, theng[i, g]k is random
in CG(i), see [36, Theorem 11]. Such an elementg[i, g]k is aBray generatorof CG(i). Bray &
Wilson [8] prove the following.

Theorem 6.3. LetG = SX(d, q) and leti ∈ G be an involution. There is a constantc > 0 such
that the proportion ofg ∈ G with [i, g] of odd order is bounded below byc/ log d.

The equivalent theorem for odd characteristic is proved in [36]. Our investigations suggest that
the proportion for even characteristic is greater than some absolute positive constant independent
of the rank.

Let i ∈ G be a good involution in standard form. A subgroupC of CG(i) is sufficientif its
imageψ(C) under the projection in Theorem 6.1 is the same asψ(CG(i)).

Theorem 6.4. Let i be a good involution inG = SX(d, q) in standard form. A bounded generat-
ing set for a sufficient subgroup ofCG(i) can be constructed using a Monte Carlo algorithm with
complexityO(log d(ξ + d3 log d+ d2 log d log q)).

PROOF. Theorem 6.3 shows that it suffices to considerO(log d) random elements to construct a
random element ofCG(i). The results cited in Section 4 imply that the test for each element –
to decide if it has even order and to compute a power – requiresO(d3 log d+ d2 log d log q) field
operations.

LetK be the image of the projection ofψ(CG(i)) into one of the direct factors of the range of
ψ, that is, intoGL(r,F) or GL(d− 2r,F). The probability that two random elements of a cyclic
groupC generateC is

∏

(1 − 1
p2
) > 6

π2 , where the product is over all primesp dividing |C|.
Hence we obtain elements whose image in the cyclic quotientQ := K/K ′ generatesQ, so we can
construct a generator ofQ. By multiplying a random element ofCG(i) by an appropriate power
of the preimage of this generator, we obtain random elements ofK ′. Kantor & Lubotzky [25]
prove that a bounded number of random elements generateK ′. �

6.1. An involution that is not good. We now consider a certain involution of corank4 in
a group of typeSp andΩ±. In contrast to our previous discussion, this involution isnot good.
Its centraliser is, up to conjugacy, described in [2]. However, in Section9 we need explicit
knowledge of the centraliser structure with respect to a particular hyperbolic basis.

LetF1 be the matrix of a non-degenerate alternating form of rankd− 8, and let

F =

(

04 0 F2
0 F1 0
F2 0 04

)

with F2 =

(

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1

)

.

ThenF is the matrix of a non-degenerate alternating form. LetQ1 be the matrix of a quadratic
form of+ or− type supportingF1, that is,Q1 +Q⊺

1 = F1, and define

Q =

(

Q2 0 F2
0 Q1 0
0 0 Q3

)
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whereQ2 = diag(0, 1, 1, 1) andQ3 = diag(0, 0, 0, 1). NowQ is a matrix of a quadratic form
supportingF , of the same type asQ1. Let G1 = Sp(d, q) andG2 = Ω±(d, q) be the groups
preservingF andQ, respectively. In the remainder of this section we determineCG1(i) and
CG2(i), where

i =

(

14 0 14
0 1d−8 0
0 0 14

)

(6.1)

is a non-good involution of corank 4 contained inG1 andG2.

Lemma 6.5. Let∆ ≤ SL(4, q) be the subgroup of elements

δ =

( 1 0 0 0
u1 a1 a2 0
u2 a3 a4 0
v w1 w2 1

)

∈ SL(4, q) where ( u1
u2 ) = ( a2 a1

a4 a3 ) (
w1
w2 ) .

Then
CG1(i) =

{

g =
(

δ ⋆ ⋆
0 x ⋆
0 0 δ

)

| δ ∈ ∆, x ∈ Sp(d− 8, q)
}

,

whereSp(d− 8, q) preserves the formF1, and the entries⋆ are subject to the sole constraint that
g lies inG1. (Such entries may be found for every choice ofδ andx.) The same holds whenG1

is replaced byG2; herex ∈ Ω±(d − 8, q) is required to preserve the associated quadratic form
Q1.

PROOF. The centraliser ofi in GL(d, q) is the set of matrices of the same shape as the matricesg
in the lemma, except that∆ is replaced byGL(d, 4), andx may be any element ofGL(d− 8, q),
and there is no restriction on the entries marked⋆. Thus we need only consider the condition that
a matrix of this shape should lie inG1 orG2.

TakingG1 first, and considering the copy ofδ in the bottom right corner, it is easy to see
that a necessary condition forg to lie in G1 is for δ to lie in ∆. Conversely, ifδ ∈ ∆ and
x ∈ Sp(d− 8, q) thendiag(δ, x, δ) ∈ G1, as is straightforward to check.

Now considerCG2(i) and letδ ∈ ∆ andx ∈ Ω±(d− 8, q) as in the statement of the lemma.
Then

(

δ 0 δ′
0 x 0
0 0 δ

)

∈ CG2(i) if δ′ =

( 0 0 0 0
0 a2+a3 a1+a4 0
0 a1+a4 a2+a3 0
0 w2 w1 0

)

. �

A routine calculation proves the following.

Lemma 6.6.

g =

(

14 0 y
0 1d−8 0
0 0 I4

)

∈ G1 if and only ify has the form

( y11 y12 y13 y14
y21 y22 y23 y13
y31 y32 y22 y12
y41 y31+y12 y21+y13 y11+y14

)

,

andg ∈ G2 if, in addition,y14 = 0 andy213 = y23 andy212 = y32 andy211 + y41 + y11 = 0.

For j ∈ {1, 2} letAj be the subgroup ofGj consisting of matricesg as in Lemma 6.6. Note
that the set of elements

(

δ 0 δ′
0 x 0
0 0 δ

)

∈ CGj (i) with δ =

(

1 0 0 0
0 a1 a2 0
0 a3 a4 0
0 0 0 1

)

∈ ∆

andδ′ = 0 if j = 1, forms a group,Sj ≤ CGj (i), isomorphic toSL(2, q). Also Sj acts by
conjugation onAj ; or, equivalently, on the corresponding additive group of matrices of the form
y, also by conjugation.

Remark 6.7. As S1-module,A1 is isomorphic to the direct sum of three copies ofGF(q) with
trivial S1-action, twoGF(q)-modules each of dimension 2 with naturalSL(2, q)-action, and one
copy of sl(2, q), the group of2 × 2 matrices overGF(q) of trace zero. AsS2-module,A2 is
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isomorphic to the direct sum of one copy ofGF(q), one copy of the natural module, and one
copy ofsl(2, q).

It follows from the above analysis thatCGj (i) is a split extension ofO2(CGj (i)) bySL(2, q)×
SX(d − 8, q). For j = 1 a stronger statement holds:CG1(i) is a split extension of a normal2-
subgroup by∆× Sp(d− 8, q).

7. Extracting sections from involution centralisers

Let G = SX(d, q) and leti ∈ G be a good involution of corankr in standard form. It follows
from Theorem 6.1 that a sufficient subgroupC of CG(i) has sectionsSX(r, q) andSX(d−2r, q).
We now describe how to constructSX(d − 2r, q) as a subgroup ofC. For this task, two Monte
Carlo algorithms are introduced. The first constructs

B̂ =

(

1r ⋆ ⋆
0 SX(d−2r,q) ⋆
0 0 1r

)

≤ C,

and the second constructs

B =

(

1r 0 0
0 SX(d−2r,q) 0
0 0 1r

)

≤ B̂.

7.1. Constructing direct factors. LetD = SX(n, q)×SX(m, q) be described by a bounded
generating setX. We want to find generators forSX(n, q) andSX(m, q) as SLPs inX. This
problem is considered in [28,§11] for odd characteristic; the same strategy works for evenq.
The general approach is the following: repeatedly construct random(g1, h1), (g2, h2) ∈ D with
g1, g2 ∈ SX(n, q) andh1, h2 ∈ SX(m, q) until these power up to(g′1, 1) and(g′2, 1) with orders
divisible by certain Zsigmondy primes. For sufficiently large degreen, in generaln ≥ 10, a
result of [35] is applied to estimate the probability thatg′1 andg′2 generateSX(n, q). It is proved
in [28, Lemma 11.5] that this algorithm to constructSX(n, q) is Monte Carlo with complexity

O( d
log d(ξ log

2 q + d3 log d+ d2 log d log q))(7.1)

whered = n+m.
For n ≤ 9, which includes thenon-generic casesof [35], we follow the approach of Babai

& Beals [4]. The first step is to find a random(g, h) ∈ D with non-scalarg. If |g| has a
prime divisor coprime toq − 1, then(g′, 1) = (g, h)|h| is non-scalar with probability1/2m,
see Theorem 4.1. IfSX(n, q) is quasisimple, then it can be constructed as the normal closure
of 〈(g′, 1)〉 in SX(d, q), which essentially amounts to constructing the normal closure of〈g′〉 in
SX(n, q). Sincen is bounded, the normal closure algorithm described in [41, Theorem 2.3.9]
has complexityO(ξ log2 q), see [42]. The generating set returned by this algorithm has length
O(log q); Lemma 4.2 is used to find a bounded one. The groupΩ+(4, q) is not quasisimple, but
a direct product of two copies ofSL(2, q) if q > 2, see [43, Corollary 12.39]. Thus we can use a
similar normal closure construction ifSX(n, q) = Ω+(4, q).

We use these results to design a Monte Carlo algorithmKillFactor. LetG = SX(d, q)
and leti ∈ G be a good involution of corankr in standard form. LetY be a bounded generating
set for a sufficient subgroup ofCG(i), and letpos be either “middle” or “top”. The input to
KillFactor isY andpos. If posis “middle” thenKillFactor returns a bounded generating
set for

Â =
{( a ⋆ ⋆

0 1d−2r ⋆
0 0 a

)

| a ∈ SX(r, q)
}

≤ CG(i);

otherwise it returns one for

B̂ =
{(

1r ⋆ ⋆
0 b ⋆
0 0 1r

)

| b ∈ SX(d− 2r, q)
}

≤ CG(i).
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In our application of the theoretical results cited above, it suffices to determine the pseudo-
order of a diagonal block only, which can be computed in polynomial time [28,§2.2]. Thus
KillFactor has complexity stated in Equation (7.1).

7.2. Extracting the middle section.We now describe the algorithmExtractMiddleBlock
which constructs

B =

(

1r 0 0
0 SX(d−2r,q) 0
0 0 1r

)

≤ C.

Variations of the following lemma have been employed by Conway, Parker, Kleidman and Wil-
son; see [29,§4.10].

Lemma 7.1. Let R = Q ⋉ M whereM has exponent 2. Letf ∈ Q have odd order and
assume it acts fixed-point freely onM . If r = qm ∈ R whereq ∈ CQ(f) andm ∈ M , then
q = fr(ff r)(|f |−1)/2.

PROOF. Write o = |f | and note thatf r = fmfm. A straightforward computation shows that
fr(ff r)(o−1)/2 = qfomfo−1

mfo−2
. . .mfm. Sincef − 1 is invertible, the lemma follows from

0 = (fo − 1)(f − 1)−1 = fo−1 + fo−2 + . . .+ f + 1. �

It suffices to use the pseudo-order off .

Algorithm 1 : ExtractMiddleBlock(Y, f)
/* Y is a bounded generating set for a sufficient subgroupC of CG(i), wherei ∈ G = SX(d, q) is a good

involution of corankr in standard form; assume the middle block ofC is notΩ+(4, 2) and

f =
(

c 0 ⋆
0 1 0
0 0 c

)

∈ C with c fixed-point free of odd order. Return a bounded generating set for

B =

(

1r 0 0
0 SX(d−2r,q) 0
0 0 1r

)

≤ C

whereSX(d− 2r, q) has the same type asG. */
begin1

B̂ := KillFactor(Y, “top”);2

letϕ : B̂ → SX(d− 2r, q) be the projection onto the middle diagonal block;3

by a random search in̂B find a bounded subsetgensuch thatimϕ = 〈{ϕ(x2) | x ∈ gen}〉;4

Return{(hg(hhg)(|h|−1)/2)2 | g ∈ gen} whereh := f2;5

end6

Lemma 7.2. AlgorithmExtractMiddleBlock is correct, Monte Carlo, and has complexity
stated in Equation(7.1).

PROOF. An O(1) random search in̂B is sufficient to find the subsetgen in Line 4, see Lemma
4.2. The elementh in Line 5 has odd order. It follows from Lemma 7.1, and can also be verified
directly, that ifg in genhas diagonal blocks1, v, 1, then

(

hg(hhg)(|h|−1)/2
)2

=
(

1 0 ∗
0 v 0
0 0 1

)2
=
(

1 0 0
0 v2 0
0 0 1

)

. �

WhereExtractMiddleBlock is applied, the elementf is constructed simultaneously
with the involutioni.
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8. Constructing the second subgroup

Recall that usually the standard generators ofG = SX(d, q) are constructed via a recursion to
two smaller subgroups of classical type. Modulo a base change with matrixb, these subgroups
are

H =
(

SX(m,q) 0
0 1d−m

)

≤ Gb and K =
(

1m 0
0 SX(d−m,q)

)

≤ Gb,

whereSX(d −m, q) has the same type asG. If G is linear or unitary, then so isSX(m, q) and
m is even. Otherwise,SX(m, q) has typeΩ+ andm is divisible by 4. In both cases,m usually
lies betweend/3 and2d/3. In Section 5 we described the construction ofH. We now describe
the construction ofK. Again,X is a bounded generating set forG, and we assume thatG is not
a base case.

LetH, b, andm be the output ofFirstSX and we assume that, via a base change,H ≤ Gb

is the standard copy. We also assume that, by recursion, we have found the standard generators of
SX(m, q) as elements inH and, in addition, a good involutioni ∈ H of corankm/2. Algorithm
SecondSX acceptsH, b, andi as input and returns

K =
(

1m 0
0 SX(d−m,q)

)

≤ Gb,

whereSX(d−m, q) has the same type asG.
The first step is to construct a base change matrixc = diag(⋆, 1d−m) such thatcic−1 =

diag(
(

1r 1r
0 1r

)

, 1d−m). Using Theorem 6.4, we find a bounded generating setY of a sufficient

subgroup of the centraliser ofcic−1 in Gbc−1
. Now letu = diag(

(

f ⋆
0 f

)

, 1d−m) ∈ Hc−1
with

f fixed-point free of odd order;u can be found by anO(1) random search in the centraliser of

cic−1 in cHc−1, see [34]. Letw = diag(1r,
(

0 1r
1d−m 0

)

) be a base change matrix. NoŵK is

constructed as the output ofExtractMiddleBlock(wY w−1, wu2w−1). Note that

wcic−1w−1 =

(

1r 0 1r
0 1d−m 0
0 0 1r

)

and wu2w−1 =

(

f2 0 ⋆
0 1d−m 0

0 0 f2

)

.

We verify thatK̂ ∼= SX(d−m, q) using the one-sided Monte Carlo algorithm of [35], and return
K = K̂w.

Lemma 8.1. AlgorithmSecondSX is correct, Las Vegas, and has complexity

O((d log2 q/ log d)ξ + d4 + d3 log d log3 q).

PROOF. The complexity follows from that stated in Equation (7.1) forExtractMiddleBlock,
Theorem 6.4, and [35]. �

9. Gluing the cycles

Let G = SX(d, q) be a non-base case, sod > 6. Using the algorithms of the previous section,
modulo a base change, we have constructed

H =
(

SX(m,q) 0
0 1d−m

)

≤ G and K =
(

1m 0
0 SX(d−m,q)

)

≤ G,

wherem = 2r is even andd −m > 2. Via a recursion and another base change, the standard
generatorsSH andSK of SX(m, q) andSX(d − m, q) are obtained inH andK, respectively.
We assume thatSX(m, q), SX(d −m, q), andG are standard copies. Writed as2n or 2n + 1,
and let{e1, f1, . . . , en, fn}, or {e1, f1, . . . , en, fn, w}, be the corresponding hyperbolic basisB
of theG-moduleV .
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All standard generators ofG, except the cyclev, are inSH ∪ SK . If vH andvK are the
cycles ofSX(m, q) and SX(d − m, q) in H andK, respectively, thenv = vKgvH , where
g = (er, er+1)(fr, fr+1) ∈ G is the glue element. We now describeFindGlueElement,
the algorithm that constructsg. We findg in the centraliser of a specific involutioni ∈ G con-
structed from the elements inSH andSK . We first provide more details for the different types of
G, and then describe the algorithm.

9.1. The casesSL andSU. The groupsSX(m, q) andSX(d−m, q) have the same type asG,
and all standard generators ofG, except the cyclev, are contained inSH . First, letd−m > 3. The
elements ofSH andSK are used to constructi = (er, fr)(er+1, fr+1) andf = diag(x1, 14, x2),
wherex1 andx2 have degreesm− 2 andd−m− 2 respectively, and both are fixed-point free of
odd order. We usei andf as input toFindGlueElement. If d −m = 3, which only occurs
for oddd ≤ 9, thenx2 = 1 is not fixed-point free, but a similar construction can be used to find
the glue element. The base cased = 6 andm = 2 can be processed in the same way.

9.2. The casesSp and Ω+. The degreem is divisible by 4, andd − m = 2 if and only
if d = 6, which is a base case. Hence,d − m ≥ 4. Via a base change, we swapSX(m, q)
andSX(d −m, q): namely, we assume thatSX(m, q) with m ≥ 4 has the same type asG, and
SX(d −m, q) has typeΩ+ with d −m divisible by 4. The elements ofSH andSK are used to
constructi = (er−1, fr−1)(er, fr)(er+1, fr+1)(er+2, fr+2) andf = diag(x1, 18, x2), wherex1
andx2 have degreesm−4 andd−m−4 respectively, and both are fixed-point free of odd order.
We usei andf as input toFindGlueElement.

9.3. The caseΩ−. The groupSX(m, q) has typeΩ+ withm divisible by 4, andSX(d−m, q)
has typeΩ− with d−m ≥ 4. With the exception of the cyclev, all standard generators ofG are
contained inSK . If d−m ≥ 6, then we constructi andf as in the caseSp. If d−m = 4, then
we constructf as in the caseSp, and an involution

i = diag(1m−4, ( 0 1
1 0 ) , (

0 1
1 0 ) , (

0 1
1 0 ) ,

(

0 ωq/2

ωq/2−1 0

)

),

whereω is as specified in Definition2.1.

9.4. Algorithm FindGlueElement. We use the notation of the previous sections and
consideri andf as constructed in Sections 9.1–9.3. LetG be of typeSp or Ω±. We choose a
new ordered basis forV , namely

{er−1, er, er+1, er+2} ∪ B′ ∪ {er−1 + fr−1, er + fr, er+1 + fr+1, er+2 + fr+2},

whereB′ is the basisB with es andfs deleted fors ∈ {r − 1, r, r + 1, r + 2}. With respect to
this basis, the matrix off is

(

14 0 0
0 c 0
0 0 14

)

with c of odd order acting fixed-point freely on its underlying space of dimension d − 8; the
matrix of i is given in Equation (6.1), and its centraliser is described in Section 6.1.

By [2, (7.7), (8.5), (8.12)], two non-good involutions inSX(d, q) of the same even corank
are conjugate inSX(d, q). Thus, there exists a base change matrixb ∈ CSL(d,q)(i) such that
(CG(i))

b = CGb(i) is the centraliser described in detail in Section 6.1. Note thatdiag(δ, 1d−8, δ) ∈
CG(i) for δ a4× 4 matrix if and only ifδδ⊺ = 14.

Lemma 9.1. The subset ofSL(4, q) consisting of matrices of the form
( 1 0 0 0

0 a2+1 a1+1 a1+a2+1
0 a4+1 a3+1 a3+a4+1
0 a2+a4+1 a1+a3+1 a1+a2+a3+a4+1

)
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is a subgroupS isomorphic toSL(2, q), andT = {diag(s, 1d−8, s) | s ∈ S} is a subgroup of
Ω±(d, q) ≤ Sp(d, q) when referred to the above basis forV .

PROOF. It is routine to check that these matrices form a group isomorphic toSL(2, q), the ele-
ment ofS displayed in the statement of the lemma mapping to the matrix( a1 a2

a3 a4 ), and that the
bilinear form definingSp(d, q) is preserved. One readily checks that the quadratic form defining
Ω±(d, q) is preserved byT . �

The groupT of the lemma contains the required glue elementg = (er, er+1)(fr, fr+1). We
now describe how to construct a generating set forT , and thus findg.

LetG = Sp(d, q) and define∆ = {δ ∈ SL(4, q) | diag(δ, 1d−8, δ) ∈ CG(i)}; note that∆ is
conjugate to the subgroup∆ in Section 6.1. We outline the construction of elements of

A1 =
{(

δ ⋆ ⋆
0 1 ⋆
0 0 δ

)

| δ ∈ ∆
}

≤ CG(i) and A2 =
{(

δ 0 ⋆
0 1 0
0 0 δ

)

| δ ∈ ∆
}

≤ A1,

so that we can findT as a subgroup ofA2. First,KillFactor is used to obtain elements ofA1.
To construct an element ofA2 from s ∈ A1 we use Lemma 7.1 withh = f : namely,s is replaced
by fs(ffs)(|f |−1)/2 ∈ A2. We show that this construction yields elements that are sufficiently
random inA2, as described below.

Note thatA2
∼= T ⋉ U whereT ∼= SL(2, q) andU � CG(i) is the unipotent kernel of the

natural map ofA2 ontoS. Lemmas 6.5 and 6.6 show thatU has a normal seriesU = U0 > U1 >
· · · > U9 = 0 such that five of the sectionsUj/Uj+1 are isomorphic toGF(q) and are centralised
by T , and four are isomorphic to the naturalSL(2, q)-module. Lettu ∈ A2 with t ∈ T \ {1}

andu ∈ Uj \ Uj+1 be obtained as described above: namely,tu = fs(ffs)(|f |−1)/2 where
s = hk ∈ A1 is constructed inKillFactor for some randomh ∈ CG(i) and some integerk.
SupposeUj/Uj+1 is isomorphic to the naturalSL(2, q)-module. By construction,s = hk andtu
both act ast onUj/Uj+1 and, by [34], we can assume that this action is fixed-point free. Sinceh is
random, we could, with equal probability, have chosenh′ = hv for some randomv ∈ Uj \Uj+1;
then the element obtained fromKillFactor would bes′ = (h′)k = svh

k−1
vh

k−2
. . . vhv. If

v1+h+...+hk−1
= 0 in Uj/Uj+1, then

0 = v(1+h+...+hk−1)(h−1) + Uj+1 = vh
k−1 + Uj+1 = vt−1 + Uj+1 = 0 + Uj+1.

By our assumption,t acts fixed-point freely; therefore,1 + h + . . . + hk−1 is an automorphism
of Uj/Uj+1, which proves thats′ = sv′ wherev′ ∈ Uj is such thatv′ + Uj+1 is random in
Uj/Uj+1. Replacings by s′, one deduces that our initialu ∈ Uj is random in the sense that
u+ Uj+1 ∈ Uj/Uj+1 is random. We calluj = u ahelperin Uj .

We now construct a generating set forT as follows. LetT be a bounded subset ofA2 mapping
onto a generating set forT ; usingKillFactor, the complexity for this task is given in Equation
(7.1). Writeh ∈ T ash = tu, wheret is the image inT of h, and defineM as the normalT -
closure of the group generated by the elementsu that arise in this way. IfM = {0}, thenT is
the generating set we seek. Otherwise, we can easily findj such thatUj ≥M +Uj+1 > Uj+1 as
defined above. Now the object is to replaceT by a different subset that maps onto a generating
set ofT , but where the corresponding groupM is smaller. Iterating this procedure will terminate
in a generating set forT .

Suppose thatM is non-trivial. WriteN = Uj+1. If M lies in the kernel of the natural
homomorphism ofA2 onto∆, then we may regardM as lying in an additive group of4 × 4
matrices overGF(q). Otherwise we need only consider the image ofM modulo this kernel, and
again reduce the problem to linear algebra. There are two cases to consider. Suppose first thatT
centralises(M +N)/N . In this case we replaceT by a bounded set of commutators of elements
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of T that maps onto a generating set forT . This new generating set will give rise to a newM that
lies in the oldN ; in fact, every abelian quotient ofM that is centralised byT will be destroyed
in this way. Now suppose that(M +N)/N is a copy of the naturalSL(2, q)-module. If we have
already found a helperuj ∈ Uj , then every elementtu of T may be pre-multiplied by a product
of T -conjugates ofuj that is congruent toumoduloUj+1, and this defines the new generating set
T whose correspondingM lies in the oldN . If we have not found a helperuj ∈ Uj previously,
then we have found one now and we restart the whole construction with a new T ; this happens at
most 5 times. OnceM is trivial, soT generatesT , the required glue involution is obtained using
the algorithm of [19].

The same algorithm applies toG = Ω±(d, q); but in this case only three sections ofU are
isomorphic to the naturalS-module. In summary, we have shown how to construct the glue
element. We call the resulting Las Vegas algorithmFindGlueElement; it takes as input the
involution i, the groupG, and the elementf constructed in Sections 9.1–9.3, and returns the glue
elementg.

Remark 9.2. If G is linear or unitary, then the involutioni ∈ G is good and has corank 2. If
d −m 6= 3, then the same approach as above can be used to construct, modulo base change, a
subgroupT = diag(SL(2, q), 1d−4, SL(2, q)) of the centraliserCG(i) such thatT contains the
glue element. Ifd−m = 3, that is,d ∈ {7, 9}, then the elementf in Section 9.1 isdiag(12, c, 12)
with c = diag(1, c′) wherec′ is fixed-point free of odd order. In this case,

fy(ffy)(|f |−1)/2 =
(

a ũ ⋆
0 1 w̃
0 0 a

)

for all y =
(

a u v
0 1 w
0 0 a

)

,

andũ andw̃ have only one non-zero column and row, respectively. We proceed asbefore.

Lemma 9.3. AlgorithmFindGlueElement is Las Vegas and has complexity stated in Equa-
tion (7.1).

PROOF. We only consider the more complicated casesSp andΩ±. The complexity for construct-
ing all helpers inA2 is determined byKillFactor, see Equation (7.1), and Lemma 7.1. The
remaining calculations are carried out in4× 4 matrices overGF(q) and are thus independent of
d. We use the algorithm of [19] to find an element inT mapping two given elements of a copy of
the naturalSL(2, q)-module onto each other. �

9.5. The gluing algorithm. Algorithm GlueCycles has inputX, H, K, b, m, SH , SK

whereX generatesG = SX(d, q),

H =
(

SX(m,q) 0
0 1d−m

)

≤ Gb and K =
(

1m 0
0 SX(d−m,q)

)

≤ Gb,

as described in Section 9. The setsSH andSK are the standard generators ofSX(m, q) and
SX(d − m, q) in H andK, respectively. The output is the standard generators forG. The
algorithm is Las Vegas with complexity as in Equation (7.1).

10. Base cases

For small degree, in generald ≤ 6, the standard generators ofSX(d, q) cannot be constructed
recursively, so we use different methods.

• The Las Vegas algorithms of [19] and [30] are used to construct an arbitrary element of
SL(d, q) with d ∈ {2, 3} as an SLP in its defining generators; these algorithms have com-
plexityO(ξ + log q + χ).
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• The Las Vegas algorithm of [9] is used to construct an arbitrary element of Sp(4, q) or
SU(d, q) with d ∈ {3, 4} as an SLP in its defining generators. This algorithm has com-
plexityO(ξ + log4 q + χ log q).

More generally, for boundedd, we could use Brooksbank’s algorithm [9], while still achiev-
ing the complexity of Theorem 1.2. We present alternatives that seem more efficient in practice.

10.1. Special linear and unitary groups.The individual base cases areSL(d, 2) with d ∈
{4, 6, 8}, andSU(d, 2) with d ∈ {5, 6, 7, 9}. Groups of degree 6 withq ≥ 4 are solved recur-
sively using the standard algorithm. We now discuss briefly the outstanding base cases: namely,
SL(4, q) with q ≥ 4, andSL(5, q) andSU(5, q) with q ≥ 2.

10.1.1. Degree 4.LetG = SL(4, q) with q ≥ 4. The first step is to construct an involution
i1 ∈ G of corank 2 in standard form; an algorithm to do this is described in Section 12. In
CG(i1) we find a second involutioni2 =

(

12 k
0 12

)

with non-scalark ∈ GL(2, q): to do this, we

use the algorithm of [19] to construct an element of the form
(

j2 k
0 j2

)

, wherej2 is an involution,

and square this element. LetK be the group generated by sufficient subgroups ofCG(i1) and
CG(i2), soK is a parabolic subgroup ofSL(4, q), fixing a 2-dimensional subspace. Using a
modification ofKillFactor and a random search, we obtain

Â =
(

SL(2,q) ⋆
0 12

)

≤ K, B̂ =
(

12 ⋆
0 SL(2,q)

)

≤ K, and f =
(

12 u
0 f ′

)

∈ B̂,

wheref ′ is fixed-point free, and hence of odd order. Via a base change we arrangeu = 0. (This
requires thatf andf ′ have the same order.) Now Lemma 7.1 is applied to construct

A =
(

SL(2,q) 0
0 12

)

≤ Â and B =
(

12 0
0 SL(2,q)

)

≤ B̂.

Using [19], all standard generators ofG, exceptv andx, are found inA. It suffices to construct
m = diag(1, ( 0 1

1 0 ) , 1) ∈ G, sincex = s′ms, wheres′ = sv is found inB using [19], and
v = x2. To findm, we construct

i = diag(( 1 0
1 1 ) , (

1 1
0 1 )) ∈ A×B

and a permutation matrixc such thati∗ = cic−1 is in standard form andcmc−1 = diag(s, 12).
With the same construction as forA, we start withi∗ (instead ofi1) to constructdiag(SL(2, q), 12).
This group containscmc−1 and, using [19], we findm.

10.1.2. Degree 5.Let G = SU(5, q) with q ≥ 4. In summary, we construct subgroups
H = diag(SU(4, q), 1) andK = diag(12, SU(3, q)) of Gb for some base change matrixb. The
lists of standard generators ofSU(4, q) in H and ofSU(3, q) in K include all of the standard
generators ofG.

In more detail, we useFirstSX and [9] to constructH, b, and the standard generators
of SU(4, q) in H. Let C be the centraliser inGb of the standard generatort ∈ H. We now
obtainK as a subgroup ofC. Modulo a base change, this amounts to constructing the subgroup
B = diag(1, SU(3, q), 1) of

B̂ =
( 1 ⋆ ⋆

0 SU(3,q) ⋆
0 0 1

)

.

Via the same base change, the standard generatorδ ∈ H is diag(ω, 13, ω
−1)q+1. Now we can

constructB ≤ B̂ usingExtractMiddleBlock, since we can choose the required fixed-point
free elementf to beδ.

The approach forG = SL(5, q) with q ≥ 2 is the same. Observe that the cycle ofG is the
product of the cycles constructed inK andH, and no gluing is required.
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10.2. Orthogonal groups.The groupsΩ+(d, 2) with d ≤ 14 are individual base cases, so
let bothd, q ≥ 4. Recall thatΩ+(4, q) is the direct product of two copies ofSL(2, q) arising
from a tensor decomposition of the underlying space, see [43, Corollary12.39]. This tensor de-
composition is readily made explicit: by random selection, we construct an element of Ω+(4, q)
which acts as a scalar on one of the tensor factors and, using the algorithmof [27, §4], con-
struct the tensor factors. We now use [19] to recognise constructivelythe copies ofSL(2, q).
The complexity for solvingΩ+(4, q) is the same as forSL(2, q). SinceΩ+(6, q) is an exterior
square representation ofSL(4, q), see [43, Corollary 12.21], it is constructively recognised by the
algorithm described in [32]; the complexity isO(ξ log q + log2 q).

ForΩ− the individual base cases areΩ−(d, 2) with d ∈ {8, 10, 12, 14}, andΩ−(d, 4) with
d ∈ {8, 10}. Recall thatΩ−(4, q) ∼= SL(2, q2), see [43, Corollary 12.43], and an isomorphism
can be defined by mapping the standard generatorss, t, andδ of Ω−(4, q) to ( 0 1

1 0 ), (
1 1
0 1 ), and

(

γ 0
0 γ−1

)

, respectively, withγ ∈ GF(q2) primitive. The groupΩ−(6, q) is an exterior square

representation ofSU(4, q), see [43, Corollary 12.36]. The algorithm of [21] is used to find the
preimage inSU(4, q) of every standard generator ofΩ−(6, q), andSU(4, q) is solved using [9].
The complexity is that forSU(4, q).

10.3. Symplectic groups.The individual base cases areSp(d, 2) with d ≤ 12. The case
Sp(2, q) = SL(2, q) is solved using [19], and [9] is used for groups of degree 4.

The standard generators{s, t, δ, u, v, x} of Sp(6, q) with q ≥ 4 are found as follows. First,
via a base change, we construct subgroupsH = diag(SL(2, q), 14) andK = diag(12,Ω

+(4, q))
ofG usingFirstSX andSecondSX. The standard generators ofSL(2, q) inH already contain
s, t, andδ, and it remains to findu; observe thatv andx can be constructed fromu and the
standard generators ofΩ+(4, q) in K. We obtainu in the centraliserC of the involutioni =
diag(( 0 1

1 0 ) , (
0 1
1 0 ) , (

0 1
1 0 )), which is constructed using the standard generators ofH andK. Note

thati is not a good involution since its corank is odd. By [2, (7.6) & (7.10)], the naturalC-module
has sections of degrees2, 2, 1, 1, andC acts asSL(2, q) on the factors of degree 2. Hence,u can
be found inC by applying [24] and [19]. The complexity isO(log2 q(ξ + log2 q)).

10.4. The base case algorithm.We summarise these algorithms as a single Las Vegas al-
gorithmBaseCase. It takes as input a bounded generating setX for a base caseG = SX(d, q)
of type type. It returns a base change matrixb and standard generatorsS ⊆ Gb of G. If d is
even andtypeis SL or SU, or d is divisible by 4 andtypeis notΩ−, then it also returns a good
involution i ∈ Gb of corankd/2, otherwisefalse. Following [9], BaseCase has complexity
O(ξ + log4 q + χ log q).

11. Constructing standard generators

Let G = SX(d, q) = 〈X〉. We now describeStandardGenerators which constructs the
standard generators ofG as SLPs inX.

Lemma 11.1. AlgorithmStandardGenerators is correct, Las Vegas, and, ifq > 4, then it
has complexity

O(d((log2 q/ log d)ξ + d3 + d2 log d log3 q + log4 q + χ log q)).

PROOF. The correctness follows from the definition of the functions used in this algorithm. Al-
though most of these functions use Monte Carlo algorithms,StandardGenerators is Las
Vegas. We now discuss some details.
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Algorithm 2 : StandardGenerators(X, type)
/* X is a generating set forG = SX(d, q) of typetype. Return base change matrixb and standard generators
S ⊆ Gb of G. If d is even andG is linear or unitary, ord is divisible by 4 andG is of typeSp orΩ+, then
also return a good involutioni ∈ Gb of corankd/2, otherwisefalse. */

begin1

if G is a base casethen return BaseCase(X, type);2
construct first subgroup and make first recursive call:
H, b,m := FirstSX(X, type);3

letA be the group of typetypeA generated by all upper leftm×m blocks inH;4

SA, bA, iA := StandardGenerators(XA, typeA) whereXA is a generating set ofA;5

SH := {diag(u, 1d−m) | u ∈ SA} andiH := diag(iA, 1d−m);6

H := Hs andb := bs wheres := diag(bA, 1d−m);7
construct second subgroup and make second recursive call:
K := SecondSX(X,H, b,m, iH );8

K := Ke wheree := diag(1m, ⋆) such thatGbe and lower block ofKe are standard copies;9

b := be;10

letB be the group generated by all lower right(d−m)× (d−m) blocks inK;11

SB , bB , iB := StandardGenerators(XB, type) whereXB is a generating set ofB;12

SK := {diag(1m, u) | u ∈ SB}, andK := Kt andb := bt wheret := diag(1m, bB);13
construct involution and swap groups:

if iB 6= falsethen iK := diag(1m, iB) andi := iH iK elsei := false;14

if typeis Sp then swapH andK, and, accordingly, all other elements,m := d−m;15
glue cycles:
S := GlueCycles(X,H,K, b,m,SH ,SK );16

return S, i, b;17

end18

Definez = 2 if G is linear or unitary, andz = 4 otherwise. In Line 7,SH ⊆ H and

H =
(

SX(m,q) 0
0 1d−m

)

≤ Gb

wherem is divisible byz. If G is linear or unitary, then so isSX(m, q), otherwise its type isΩ+.
Observe thatiA ∈ A is a good involution of corankm/2 sincem is divisible byz.

In Line 10,

H =
(

SX(m,q) 0
0 1d−m

)

≤ Gb and K =
(

1m 0
0 SX(d−m,q)

)

≤ Gb

whereSX(d − m, q) has the same type asG, and all ofSX(m, q), SX(d − m, q), andGb are
standard copies. In Line 15, we ensure thatSX(m, q) has the same type asG, unlessG has
type Ω− in which caseSX(m, q) has typeΩ+ andSX(d − m, q) has typeΩ−. In Line 16,
GlueCycles completes the construction of the standard generators.

We now show thatStandardGenerators returns a good involution ifd is divisible byz
andG is not of typeΩ−. This is true for the base cases and, by induction, we can assume that
iA ∈ A is a good involution of corankm/2. By construction,m is divisible byz, and so isd−m.
Again, by induction,iB ∈ B is a good involution of corank(d −m)/2. Lemma 6.2 shows that
i = iHiK is a good involution of corankd/2.

The cost of the base cases for the algorithm isO(d(log4 q + χ log q)). As shown in [28,
Lemma 2.4], the cost of the recursive calls does not affect the complexity of the overall algorithm.
The claim follows. �
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12. Constructing involutions

LetG = SX(d, q) = 〈X〉. For large evenq, we cannot find an involution by a random search in
G. The combination ofStandardGenerators and Costi’s algorithm [20] allows us to write
everyg ∈ G as an SLP inX. Since the algorithm of [20] has complexityO(d3 log q), this proves
Theorems 1.3 and 1.4. We provide an alternative approach which is more efficient in practice.

In the following we describe the construction of two involutions inG; one of unspecified
(small) corank and one of large corank. Again, we use recursion to classical groups of smaller
degree.

12.1. Base cases.First, we consider the base cases for the recursion. Again, we could use
[9], but we present alternatives that seem more efficient in practice. Observe that for all individual
base cases (and smallq in general) we could use a random search to find an involution. However,
if we want to construct one of large corank, then this may not be efficient.

• TypesSL andSU. The base cases ared ∈ {2, 3, 4, 5, 7} with q ≥ 4 (and some individual
groups); we use [19], [30], and [9] ford ∈ {2, 3}. If d ∈ {5, 7}, thenFirstSX is used to
construct a group of degreed− 1. Degree 6 is handled by recursion to groups of degree 4 and 2.
Degree 4 is handled as follows. First, we recurse to a group of degree 2to find an involution of
corank 1 in standard form. In its centraliser we construct elements

jf =

(

1 ⋆ ⋆ ⋆
0 1 f ⋆
0 0 1 ⋆
0 0 0 1

)

with f ∈ GF(q)

using the algorithm of [19]. Note that the order ofjf divides4, and [j1, jf ] is an involution,
usually with corank 2.

• TypesSp andΩ+. In degree 6, we recurse toΩ+(4, q). For degree 4 we use [9] and the
methods described in Section 10.2.

• TypeΩ−. There is no good involution inΩ−(4, q), andΩ−(6, q) has only good involutions of
corank 2. An involution of corank at least⌊d/4⌋ − 1 in Ω−(d, q) is found either by a random
search (for small fields), or by recursion toΩ+(m, q) for somem ≥ d/2 divisible by 4.

In summary, the resulting algorithmInvolutionBaseCase is Las Vegas. For our theo-
retical analysis, we may assume that the complexity of the base case algorithm isO(ξ+ log4 q+
χ log q); see the comment at the beginning of Section 10.

12.2. Small corank. We construct involutions of small corank by recursion to subgroups of
smaller degree (usingFirstSX) until we can apply a base case method. We do not require a
good involution, so for smallq we could randomly search. The resulting algorithm is Las Vegas
and, ifq > 4, then its complexity isO(ξ + d3 log d log3 q + log4 q + χ log q), see Lemma 11.1.

12.3. Large corank. To construct involutions of large corank,StandardGenerators is
modified as follows: we replaceBaseCase by InvolutionBaseCase and omit the calls to
GlueCycles. While the theoretical complexity remains unchanged, in practice the algorithm
is more efficient.

If d is even andG is of typeSL andSU, or d is divisible by4 andG is of typeSp or Ω+,
then Lemma 11.1 shows that the algorithm returns a good involution of corankd/2. For all other
groups, the involution returned has corank precisely⌊d/2⌋, or at least⌊d/4⌋ − 1 for Ω−.

13. An implementation

Our implementation of these algorithms is available in MAGMA [6]. We use Brooksbank’s im-
plementations ford = 3 and 4 of the algorithms in [10, 13], and O’Brien’s implementations of
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the algorithms in [19,30]. The current implementation of [10] ford = 4 is not optimal, requiring
a search through the defining field.

We apply the MAGMA function COMPOSITIONTREE [38] to all individual base cases. All
computations were carried out using MAGMA V2.18-8 on a computer with 28GB RAM and
3.07GHz processor. In Table 2, we list the CPU time in rounded seconds taken to construct the
standard generators, involutions, and large corank involutions respectively. The time is averaged
over three runs.

group /d 12 20 40 100

SL(d, 24) 1 2 5 18

SL(d, 28) 2 4 11 61

SL(d, 212) 2 4 13 64

Sp(d, 24) 2 4 11 35

Sp(d, 28) 4 8 19 93

Sp(d, 212) 13 19 34 105

Ω+(d, 24) 2 4 10 34

Ω+(d, 28) 3 6 17 85

Ω+(d, 212) 3 8 21 90

Ω−(d, 24) 2 4 10 34

Ω−(d, 28) 3 6 17 85

Ω−(d, 212) 3 7 21 90

SU(d, 22) 2 2 5 21

SU(d, 24) 6 12 30 122

SU(d, 26) 13 26 57 185

group /d 12 20 40 100

SL(d, 24) 0 0 0 0

SL(d, 28) 0 0 0 2

SL(d, 212) 0 0 1 3

Sp(d, 24) 0 0 0 0

Sp(d, 28) 0 1 1 4

Sp(d, 212) 0 1 1 5

Ω+(d, 24) 0 0 0 0

Ω+(d, 28) 2 1 3 4

Ω+(d, 212) 1 1 1 6

Ω−(d, 24) 0 0 0 0

Ω−(d, 28) 0 0 1 4

Ω−(d, 212) 0 1 1 6

SU(d, 22) 0 0 0 0

SU(d, 24) 0 0 0 3

SU(d, 26) 0 0 1 4

group /d 12 20 40 100

SL(d, 24) 0 0 1 5

SL(d, 28) 0 1 4 29

SL(d, 212) 0 1 4 25

Sp(d, 24) 1 2 5 17

Sp(d, 28) 2 4 8 41

Sp(d, 212) 2 3 9 38

Ω+(d, 24) 1 2 5 17

Ω+(d, 28) 1 3 8 40

Ω+(d, 212) 2 3 9 39

Ω−(d, 24) 1 1 4 13

Ω−(d, 28) 1 2 6 27

Ω−(d, 212) 1 2 7 32

SU(d, 22) 1 1 1 6

SU(d, 24) 1 1 4 37

SU(d, 26) 1 2 4 25

TABLE 2. Times for standard generators, involutions, and involutions of large corank
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