Constructive recognition of classical groups in even characteristic

Heiko Dietrich, C. R. Leedham-Green, Franideck, and E. A. O'Brien

ABSTRACT. LetG = (X) < GL(d,F) be a classical group in its natural representation defined
over a finite fieldF of even characteristic. We present Las Vegas algorithms to constanctesd
generators fo6& which permit us to write an element 6f as a straight-line program i, and to
construct an involution as a straight-line progranXinIf |F| > 4, then the algorithms run in time
polynomial in the size of the input, subject to the existence of a discretatlogasracle forfF.

In memory of our friendAkos Seress

1. Introduction

Let C' < GL(d, q) be a classical group in its natural representation, and:let (X) be any
group isomorphic ta”. Informally, aconstructive recognitiomlgorithm for G constructs an
isomorphism betwee@' andC' and exploits this isomorphism to write an arbitrary elemen of
as a word in its generatorfs. For a more formal definition, see [41, p. 192].

We can realise such an algorithm as follows. For each classical gfpwe define a specific
ordered set oftandard generators. The first task is to construct, as wordsihn an ordered
subsetS’ of G that is the image of under an isomorphism betweéhandG. The second task
is to solve theconstructive membership probldor G with respect taS’: namely, expresg € G
as a word inS’, and so as a word iX. Now the isomorphisnp: G — C that mapsS’ to S
is constructive every element ir7 is first written as a wordy = w(S’) in &', and the image
v(g) = w(S) is immediately determined as the corresponding wor8.ifn a similar way, the
inverse ofp is constructive.

In this paper, as an important special case, we supposértisagiven in its natural represen-
tation, soGG andC are conjugate ifizL(d, ¢). Since a conjugating element that m&pso C can
be found readily, we may assume tliat= C'. The constructive membership problem €mwith
respect taS is solved by work of Costi [20]. It remains to constr&tC G as a set of words in
the given defining generators; by constructionS andS’ are conjugate ifzL(d, q).

Leedham-Green & O’Brien [28] developed a Las Vegas algorithm whables this problem
for odd ¢. Subject to the existence of a discrete logarithm oracle, the algorithm ruimsen
polynomial in the size of the input. Efficient implementations are publicly availaktlearcom-
putational algebra system A6MA [6]. The algorithm uses a recursion to classical groups of
smaller degree. The first step is to find, by a random sear¢h &n involution with larget1-
eigenspaces. The derived group of the centralisérdfithis involution acts on these eigenspaces
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as the direct product of classical groups in smaller degrees, andfgotses are used for the re-
cursion.

For eveng, the situation is more complex. Since the proportion of elements of even
order is at mosb/q (see [22]), it is not practical, for largg to find an involution by a random
search. Another obstacle is that the structure of involution centralisersresgomplicated than
in odd characteristic, and the two groups for a recursion cannot Ioel iousuch a centraliser.

In this paper, we present a constructive recognition algorithm foricksgroups in their
natural representation defined over finite fields of even characte@stiject to the existence of
a discrete logarithm oracle, we prove that the algorithm runs in time polynomiat sizk of the
input (provided thaty > 4). Our implementation is publicly available in AGMA.

This work contributes to thilatrix Group Recognition Projegtts goal is to provide efficient
algorithms to investigate matrix groups defined over finite fields. For an ievenf this project,
see the survey articles [37, 38].

1.1. The groups and their standard copies.The groups of interest are the special linear
group, the symplectic group, the special unitary group, and the ortlabgowups, all over a finite
field of even characteristic. The definition of all of these groups, exXoephe first, depends on
the choice of a bilinear or quadratic form. However, the groups defipegddifferent forms of
the same type are conjugate in the corresponding general linear grbegtahdard copyof a
classical group is its unique conjugate which preserves a ctstaedard form

We now describe these groups and their standard forms; we refer fof48ore details. The
form is given as a matrix with respect to some chosen basis. In all cagean integer greater
than 1,q is an even prime-power, arid is the underlying row vector space on which the group
acts by right multiplication. LeGL(d, q) be the group of all invertibled x d matrices over the
field GF(q) with ¢ elements. We denote hiiag(M, ..., M,) the block diagonal matrix with
blocksiy, ..., M,.

e SL(d, q): the subgroup of elements 6fL.(d, ¢q) with determinant 1.

e Sp(d, q): the subgroup of elements 8f.(d, ¢) that preserve a given non-degenerate alternat-
ing bilinear form onV'. The existence of such a form implies thais even. The standard
copy is the group that preserves the fafm= diag((9¢),....(93))-

e SU(d, q): the subgroup of elements 8F.(d, ¢*) that preserve a given non-degenerate hermit-
ian form onV'. The standard hermitian forms for even and odd degreé'aneddiag(F, 1),
respectively, with?" as defined fofp.

e O (d,q): the derived subgroup dd*(d, q), the subgroup of elements 8%.(d, ¢) that pre-
serve a given non-degenerate quadratic fornvaf + type. This implies that is even, and
we assumel > 4. The standard quadratic form ef type is@Q = diag(($4)....,(83)),
which is preserved by € GL(d, q) if and only if vgQgTvT = vQuT for all v € V. The
supported bilinear form i€ + QT = F.

e 27 (d, q): defined as fof2™ (d, q), except that the form is of type. Again is even, and we
assumel > 4. If - is a fixed primitive element ofF(¢?), then the standard quadratic form
of — type isdiag((J4),...,(94), (4 %)) wherea = v + 47 andb = 47", The supported
bilinear form isdiag((9§),....(95),(%22)).

We write SX(d, ¢) for a conjugate of one of the above groups; this implicitly means¢hat
is even and! > 4 if the group is orthogonal. We cdliL,, SU, Sp, 2", andQ~ thetypeof the
group. A basis of the underlying vector spacéyperbolicif SX(d, ¢) is the standard copy with
respect to it.
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For each standard copy, a specific sest@ndard generatorgs defined in Section 2. This
generating set has cardinality at most 7. Costi [20] developed an algaativrite an arbitrary
element in the standard copy as a word in these generators; it is determingstiars in time
polynomial in the input size, cf. [389.1].

Remark 1.1. We consider only classical groups over finite fields of even charatiterid/ith

the exceptions ofp(2,2) andSp(4, 2), all symplectic groups are simple. With the exception
of SL(2,2), all special linear groups are perfect, and simple if and onjycdf(d,q — 1) = 1.
With the exception oBU(2, 2), all special unitary groups are perfect, and simple if and only if
ged(d, g + 1) = 1. With the exception of2*(4,2), all groups of type™ are perfect; with the
exception of2* (4, ), all groups of type™ are simple.

1.2. Main results. Let G = SX(d, q) with ¢ even. We present and analyse a Las Vegas
algorithm that takes as input the type Gfand a generating set, and outputs the standard
generators ofy as words inX. Usually, these generators are defined with respect to a basis
different to that for whichX was defined, and a matrix relating these bases is also returned. All
words are given astraight-line programgSLPs). Intuitively, SLPs are efficiently stored group
words inX; for a formal definition and discussion of their significance, see [410p.

Unless otherwise stated, all complexities are measured in field operations; demote
an upper bound to the number of field operations needed to constructigmeimdent (nearly)
uniformly distributed random element of a subgroupSéf(d, ¢). Our algorithms assume the
existence of a discrete log oracle:Gf = Q7 (4, q) = PSL(2,¢?), then the oracle is required
for GF(q?), otherwise forGF(q). To simplify statements, we ignore atlg log d andloglog ¢
factors; and we usg to denote an upper bound to the number of field operations equivalent to a
call to a discrete logarithm oracle for the appropriate field.

Our main result is the following theorem.

Theorem 1.2. Let X be a generating set of bounded cardinality fér= SX(d, ¢). There is a
Las Vegas algorithm that constructs the standard generator&fas SLPsin X. If ¢ > 4, then
the complexity i©)(d((log? ¢/ log d)¢ + d* + d* log dlog® g + log* ¢ + xlog q)).

Guralnick & Lubeck [22] proved that the proportion of elements of even ord8Xi(, q)
is at most5/q, so a random search for an involution is not feasible for large fieldsileVttne
algorithm of Theorem 1.2 can be used to construct an involution, we idesan alternative
which is much more efficient.

Theorem 1.3. Let X be a generating set of bounded cardinality fér= SX(d, ¢). There is a
Las Vegas algorithm which constructs an involutiontbhs anSLPin X. If ¢ > 4, then the
complexity iSO (€ 4 d°log dlog® ¢ + log* ¢ + x log q).

The corankof a matrix involution: is the rank ofi — 1. A modification of the algorithm of
Theorem 1.2 yields an algorithm to construct involutions of large corantkile/the theoretical
complexity is as in Theorem 1.2, this algorithm is more efficient in practice.

Theorem 1.4. Let X be a generating set of bounded cardinality fér= SX(d, ¢). There is a
Las Vegas algorithm with the same complexity as in Thear@rthat constructs an involution in
G with corankr as an SLP inX, wherer is as follows. IfG is linear or unitary, then- = |d/2].

If G has typeSp or QF, thenr = 2|d/4|. If G has type2—, then|d/4] — 1 < r < d/2.

Remark 1.5. The restriction tay > 4 arises from Theorem 5.1, proved by Praeger, Seress &
Yalcinkaya [40] under this assumption. However, in practice our algosthlso work with
comparable efficiency foy € {2,4}.



1.3. Related work. Kantor & Seress [26] developdalack-boxconstructive recognition al-
gorithms (see [41, p. 17]) for classical groups. The complexity of tlaggerithms involves a
factor of q. Using a discrete logarithm oracle and [18, 19], Brooksbank and Kgh@s-13]
demonstrate that the complexity of these algorithms can be made polynorighin

Brooksbank [9] devised Las Vegas algorithms to construct standaetafers forSp(d, q),

SU(d, q), andQ*(d, q) in their natural representations; subject to the existence of a discrete
logarithm oracle, the complexity 8(d(¢ + d? log q(d + log dlog® ¢+ d* log q)) + x log q). The
algorithm of Celler & Leedham-Green [17] f8iL(d, ¢) has complexityO(d*q). In all cases, the
algorithms construct Steinberg generators for the group.

1.4. Other directions. We have generalised our algorithms to classical groups in arbitrary
representations [14]. Costi [20] developed an efficient algorithm ii@&n element of a classical
group, given in an arbitrary absolutely irreducible representation imidgfcharacteristic, as an
SLP in the standard generators. A black-box algorithm for this task weasapeed by Ambrose
etal.[1].

2. Standard generators for classical groups

We now define the standard generators@oe SX(d, q), whered = 2n ord = 2n + 1. Let
{e1, f1,---sen, fn}, Or{e, fi1,...,en, fn, w}, be a hyperbolic basi8 of the naturalz-module
V', according as/ is even or odd. All matrices of degrekare given with respect t8. A
matrix of degre€k is given with respect tdey, f1, ..., ek, fr}; it represents an automorphism
of V which acts on{ey, f1,..., ek, fr} as the given matrix, and trivially on the remainidg-
2k basis elements. Permutation matrices are described by the correspondmgapen. To
facilitate uniform exposition, we introduce trivial generators. If the dinemsequired to define
a generator is greater than the dimension of the group, then the generassuised to be the
identity. For an integek > 0 let 1, be thek x k identity matrix; if the degree is clear from the
context, then we also write = 1;. Analogously, we denote the zero matrix tyyor 0.

Definition 2.1. The standard generators 8K(d, q) are S(d, ¢, SX) = {s,t,6,u,v,z,y} as
defined in Tabld, wherew is a specified primitive element of the underlying fi&ldif the type
is SU thenF = GF(¢?), otherwiseF = GF(q). ForQ2~(d, q), we choose a primitive element
of GF(¢?) so thatw = (@+1),

The group generated I8/(3, 2, SU) as given in Tablé has index 2 ir8U(3, 2), so we choose
a different element fot.

The generatow is the cycle of SX(d, ¢q); all other standard generators $K(d, ¢) lie in
SX(4, q). This observation is significant since we construct the standard gerssiog a recursion
to classical groups of smaller degree.

Lemma 2.2. The standard copy &fX(d, ) is generated bys(d, ¢, SX).

PROOF. The standard generators 8k, Sp, O, andSU(2n, ¢) are independent of the charac-
teristic, cf. [28,53]. ForQ2~ andSU(2n + 1, ¢), we use a slight modification of the generating
sets for odd characteristic; the proof is similar. O
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3. General approach and structure of this paper

We outline our strategy to construct the standard gener&dos G = SX(d,q) = (X). If d

is “small”, thenG is abase casand we use specialised algorithms to solve the problem. These
define a single algorithmBaseCase, described in Section 10. Here and later-& Within a
matrix denotes a submatrix that is not further specified, and whose dimeas#insplied by the
context.

Definition 3.1. SX(d, q) is a base case if either < 6, or it is one of the following individual
groups:SL(8,2), SU(7,2), SU(9,2), 27 (8,4), Q7 (10,4), or Sp(d, 2) with d € {8,10, 12}, or
QF(d,2) with d € {4,6,8,10, 12, 14}.

If G is not a base case, then we proceed as follows. The first step is to fiatlially
embedded subgrouff = SX(m,q) of G wherem lies in a prescribed range, for example,
m € [d/3,2d/3]. If G has typeSL or SU, thenm is even andX(m, ¢) has the same type &§
otherwiseSX(m, ¢) has typeQ™ andm is a multiple of 4. We describéi r st SX, the algorithm
to constructH, in Section 5. Via a base change, we may assume that

H= (5.0 Y<a
By recursion, we construct a base change matrixdiag(*, 14—, ), the standard generators
Sy of SX(m,q) in H®, and a certain involutioriy; € H® of corankm/2; all elements are
described by SLPs iX'. For simplicity, letb = 1, in the following. In the centralise€'c (iz)
we find

K= (16n SX(dO—m,q)> <G

whereSX(d —m, q) has the same type && We describé&econdSX, the algorithm to construct
K, in Section 8. By another recursion, we construct a base change matriiag(1,,,*) and
the standard generata$g of SX(d — m, ¢) in K¢. Again, letc = 1, for simplicity.

With the exception of the cycle of G, all standard generators 6f lie in Sy U Si. The
missing generator is constructed as follows. First, the elemenfg;aff Sk are used to write
down a specific involutionn € G. Second, iNC;(7) a certain subgroufd’ of degree 4 (degree
8 if G is symplectic or orthogonal) is constructed. Finallyglae elemeny is found inT": if
v € Sk andvy € Sy are the cycles i’ and H, respectively, them = v gvy is the cycle of
G. To perform this task, we introduce the algoriti@nueCycl es in Section 9.

We now summarise the main algorith®t, andar dGener at or s, and discuss it in detail
in Section 11.

1) If G'is a base case, then apfigseCase, otherwise:

2) Construct the subgroufd with Fi r st SX.

3) Recursively applyt andar dGener at or s to H.

4) Construct the subgrould with SecondSX.

5) Recursively applyt andar dGener at or s to K.

6) Find the glue element and combine recursive solutions @itheCycl es.

The main difference between this algorithm and that for odd characte@28jdq the con-
struction of the two subgroups for the recursion. In odd characteribise subgroups can be
constructed simultaneously in the centraliser of an involution, and this involigiéound by
a random search. In even characteristic, we consfilucising a different technique, and then
constructK as a subgroup of the centraliserGhof an involution of large corank i .
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In Section 12 we present two algorithms to construct involutions. The algotitconstruct
an involution of large corank is similar t8t andar dGener at or s, but avoids the gluing of
the cycles. Our algorithm to construct an involution of small corank usags®n to construct
H = SX(m, q) for some smalin, usuallym < 6, as a naturally embedded subgrougtofWe
then apply specialised algorithms to construct an involutioH in

4. Algorithmic preliminaries

If f andg are real valued functions, defined on all sufficiently large integers, the- O(g)
means f(n)| < ¢|g(n)| for some positive constantand all sufficiently largex.

A Monte Carloalgorithm is a randomised algorithm that always terminates, but may return
a wrong answer with probability less than any specified valuéas Vegaslgorithm is a ran-
domised algorithm that never returns an incorrect answer, but mast fejpore with probability
less than any specified value.

Babai [3] presented a Monte Carlo algorithm to construct, in polynomial tindependent
nearly uniformly distributed random elements of a finite group. An alternatitbe product
replacement algorithnof Celler et al. [16], which runs in polynomial time by a result of [39].
For a discussion of both algorithms we refer to [41, pp. 26—-30].

Our algorithms usually search for elementgbiiaving a specified property. 1/ k is a lower
bound for the proportion of such elementgiinthen we can readily prescribe the probability of
failure of the corresponding algorithm. Namely, to find such an elementrigjora search with a
probability of failure less than a givenc (0, 1) it suffices to choose (with replacement) a sample
of uniformly distributed random elements @ of size at leasf— log,(e)k|. We do not include
such factors as part of each theorem.

Often it is necessary to investigate the ordeyaf GL(d, q), which, due to problems with
integer factorisation, cannot be determined in polynomial time. We can, lsoweetermine its
pseudo-ordera good multiplicative upper bound fog|, and the exact power of any specified
prime that dividegg|, using a Las Vegas algorithm with complexi®(d> log d + d? log d log q).

A Las Vegas algorithm with the same complexity allows us to compute large pgiwevbere

0 < n < ¢’ Multiplication and division operations for polynomials of degrtever GF(q)
can be performed deterministically with complexi®(dlog d). Using a Las Vegas algorithm,
such a polynomial can be factored into its irreducible factors with compléxti? log d log q).
The characteristic and minimum polynomialsgo& GL(d, ¢) can be computed by a Las Vegas
algorithm with complexityO(d? log d). We refer to [28§2 & 10] for more details and references.

If a matrix group acts absolutely irreducibly on its natural module, then time itgoreserves
(up to scalar multiples) can be determined with comple&ity®), see [23§7.5.4]. Conjugating
SX(d, q) to its standard copy amounts to finding a hyperbolic basis with respect tosdrefgirm;
this can be done with complexity(d® + d?log? q), see [33, Theorem 1.1].

The following theorem, proved in [5, Corollary 4.2], implies that two randamn-scalar
g,h € SX(d, q) satisfy g/"l # 1 with probability at leastl /2d. Recall that an element s
regularif its order is not divisible byp.

Theorem 4.1. Let G be a finite simple classical group acting naturally on a projective space of
dimensiond — 1, and letp be a prime. The proportion gkregular elements i is at leastl /2d.

We also use the following result on random generation proved in [25].

Lemma 4.2. Let G = SX(d,q) be perfect. ArO(1) random search inG yields a bounded
generating se for G such that{z? | z € X} generatess.
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5. Constructing the first subgroup

In this section, we assume that= SX(d, ¢) = (X) is not a base case. The standard generators
of GG are constructed via a recursion to two smaller subgroups of classicalMg#ulo a base
change with matri%, these subgroups are

H:(Sx(gnvq) 0 )ng and K:(lgsx(o )ng,

ld—m dfm’Q)

whereSX(d — m, ¢) has the same type & If G is linear or unitary, then so i$X(m, ¢) and
m is even; otherwise5X(m, ¢) has typeQ* andm is divisible by 4. In each case; is usually
required to lie betweed/3 and2d/3.

The construction ok is considered in Section 8. Here we describe the algorithmst SX
used to constructH. We first outline the steps and then discuss them in the subsequent sub-
sections. In the remainder of this section, unless explicitly stated, the td@stc p of the
underlying fieldF can be eitheevenor odd Recall that ifg € G has order prime tq, theng is
semisimple.

(1) Find a semisimplg € G with 1-eigenspacéZ, of dimensiond — [ € [2d/3, 5d/6] (with
some variation for smalf) such thatg acts irreducibly on a complement g, in V, the
naturalG-module. IfG is orthogonal or symplectic, then require thag even.

(2) Construct arandom conjugat®, for h € G, such that the intersectidii of the 1-eigenspaces
of g andg” has smallest possible dimension (thatds; 2!) and the images of — 1 and
g" — 1 span a complemeritto E. ThenH = (g, ¢") leavesE andI invariant, and (in the
non-linear casel and/ are non-degenerate subspaces.

Note that the dimension dfis m = 2I; if G is orthogonal or symplectic, then is divisible
by 4. LetH = H|; be the group generated by the restrictiong @ind ¢g" to I. Lemmas 5.9
and 5.10 show the followinge < SX(m, q) (acting onl); if G is orthogonal, thesX(m, ¢) is
orthogonal (of possibly different type); @ = Sp(d, ¢) with ¢ even, thersX(m, ¢) is orthogonal;
otherwiseSX(m, ¢) has the same type @&

In Section 5.1 we describe the construction of the elemgnts Step (1). Observe that
glr € SX(m, q) has a 1-eigenspace of dimensioa m /2 and acts irreducibly on a complement
in I. Our construction ensures that the ordey|efis divisible by a certain Zsigmondy prime (see
Definition 5.3).

As we establish in Lemma.9, the conjugacy class @f; in SX(m, ¢q) is determined by its
eigenvalues in its action ofy thereforeg|; and g"|; are conjugate i8X(m, ¢). Thusg”|; is
random among all conjugatés|;)¢ of g|7, for ¢ € SX(m,q), such that the 1-eigenspaces of
(g9]7)¢ andg|; intersect trivially. In this situation, we can apply the following result of Beae
Seress & Yalginkaya [40].

Theorem 5.1. Letq > 4. There is an absolute constant> 0 such that the following holds: if
H < SX(m,q) is as defined above, theh = SX(m, ¢) with probability at leasts.

Our investigations suggest that this theorem also holdg fort.

If G is orthogonal or symplectic with even, thenfl = SX(m, ¢) is orthogonal, see Lemma
5.10. If H has+ type, then we can readily construct the standard generat@?<roim the stan-
dard generators constructed fdrand for the second subgroup < G. To simplify exposition,
we consider only the case that is of + type. Theoretically, this is justified by the following
third step offi r st SX; it does not change the complexity of our main algorithm.

(3) If ¢ is even andd = SX(m,q) is orthogonal of- type, then we constructively recognise
Q™ (m, q), and so obtaif2™ (m — 4, ¢) as a naturally embedded subgrougtbfandG); we
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returnQ* (m — 4,q). If m < 8, then we apply the algorithm of [9] to fin@* (4, ¢) as a
naturally embedded subgroup.

If ¢ is even and is orthogonal, then our investigations suggest that the probabilitythat
is of + type is approximately/2~(or 1/3if ¢ = 2). In practice, we realise Step (3) by repeatedly
constructing subgroupd until H is of + type.

5.1. Finding elements with large 1-eigenspacéle prove thatD(1) random elements in
G suffice, in Step (1), to find one that powers up to a desired elemeny Edk, denote byF,
the 1-eigenspace of, and by, the image ofy — 1. Recall that &g, [)-Zsigmondy primer is
one that divideg' — 1 but nog? — 1 for j < . If so, theng has ordei modulor, sor > [ + 1.
Zsigmondy primes exist, except o, 1) = (2,6) and(q, 2) with ¢ a Mersenne prime, see [35].
LetF be an algebraic closure of the underlying figldf G, and define the map

®:F—=TF, a~ a,

wheres = —1 in caseSU ande = 1 in all other cases. The multiset of eigenvalues af G in
FF is invariant undem®, since® preserves the characteristic polynomiatof et A(¢) I~ d be the
partition of d describing the cycle lengths df acting on this multiset. I€7 is of typeSU, and/
is even, thert” := [ andl’ := [/2; if G is of typeSU, andl is odd, then” := 2/ and!’ := [; in
all other case$’ = 1" :=1.

Definition 5.2. Forl € {2,...,d/2 — 1}
P(G) ={g € G | g is semisimpleg acts irreducibly o/, and dim(£,) = d — 1}.

Definition 5.3. Let P,(G) be the set of alt € G with the following properties! appears exactly
once in\(¢); I’ does not divide any other entry aft); and there is d¢, " )-Zsigmondy prime
dividing |¢|.

Lemma 5.4. Elements of?,(G) power up to elements & (G).

PROOF. If a € [ is an eigenvalue of € G corresponding to a cycle lengthin A(¢), then the
order ofa divides(eq)¢ — 1. Itis easy to see that(g, !”)-Zsigmondy prime does not divide| if

I te. Lett € P,(G) with (¢,1”)-Zsigmondy prime- dividing |t|. Letes, ..., e, be the entries of
A(t) not equal td, and leth = |((eq)®* — 1) --- ((eq)®* — 1)|. Thent® hasd — [ eigenvalues equal
to 1, and! eigenvalues of order divisible by To construct a semisimple element with the same
properties, we powel’ by p/, wherep’ is the largest power gf that divides|t|; in particular,

j = 0if ¢t has pairwise different eigenvalues. The non-trivial eigenvalues®ptiwerg of ¢ lie

in a field extension oF of degree preciselyf, sog acts irreducibly or,. O

Lemma5.5. a) If I is odd andG has typeSp or O+, then P;(G) is empty. In all other cases
the following holds: For every constant< (0, 1/2) there exists a constaat> 0 such that
for everyd > 1, every prime powey, and every integet € [ad,d/2) for which (¢,1”)-
Zsigmondy primes exist, the proportigh (G)|/|G| is greater than:/1.

b) There exists a constq’t > 0 such that, for everyl > 5 and every prime powey, if G =
SX(d,q) and P = | J, P,(G), wherel runs over all integers itd/6, d/3], then|P| /|G| > .

PROOF a) The proof is based on [31]. FirsIE(G) is obviously closed under conjugation, and

it contains an element @f if and only if it contains its semisimple part. Therefore the proportion
|P,(G)|/|G| can be determined as in [31, Lemma 2.3]. This reduces the estimate to corsiderin
the proportion of elements iﬁ’l(G) in maximal tori of G, and to counting elements in the Weyl
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group of G corresponding to tori with many elementsi(G). The conjugacy classes of maxi-
mal tori in G are parametrised either by partitionsiah cases SL and SU, or by signed partitions
of |d/2]|. A maximal torus is in all cases a subgroup of a direct product of cyatioms of order

¢ — 1or¢ + 1, wherej corresponds to an entry in the partition. For a detailed description
see [313§3].

Consider first the typeSL andSU. For2 < [ < d/2, we consider partitions with one entry
equal tol, and all other entries not divisible iy, From the description of the structure of the
corresponding maximal tori, it is clear that these contain eIemenE;(df), and the proportion
of such elements is at leakt- 1/r > 2/3 for every(q,!"”)-Zsigmondy prime-. LetW = S,
be the Weyl group, the symmetric group of dege&or the proportion of elements i whose
cycle type is one of these partitions, a lower bound is given by [31, Lemma)4i®]. Using
this, and the estimatés> ad andd'/¢ < 3/2, part a) follows forSL andSU.

The remaining types are dealt with similarly. The explicit description of maximashmws
that cycles induced by on the eigenvalues af € G come either in pairs or they have even
length. This establishes the last statement of a), and we now assuniesteten. Here we
consider maximal tori corresponding to elementdlofwith a negative cycle of lengthy/2 such
that//2 does not divide any other cycle length. It follows, from the descriptibthe structure
of these tori, that they contain eIementsﬁfmG), and the proportion of such elements is at least
2/3. The estimate for the proportion of elements in the Weyl group that are @esic reduced
to the case| 4/2) using [31, Lemma 4.2 c), d)].

b) This follows from a): for largel there are at least/12 — 1 different/ to consider and for
d > 5 there is always at least one approprigtand every element af can lie in at mosb
different P,(G): there can be at moStcycles of different lengths at leagt6. O

Let P andc be as defined in Lemma 5.5 b). For small rank, day. 60, one can easily
compute quite accurate values for the constaosing [31, Lemma 2.3]. I has typeSL or SU,
then ford < 20 the proportion of elements iR (if not empty) lies in[0.18, 0.4], and for largew
in [0.4,0.5]. For the other types, the proportion is about half as large, which is &&gfrom
the proof above.

Remark 5.6. If t € G, whereG has type other thaBU, then the cycle lengths induced by
® on the multiset of eigenvalues ofare the degrees of the irreducible factors o¥eof the
characteristic polynomial af Now letG have typeSU. If f is the minimum polynomial oveF

of somea € F*, then we denote by the minimum polynomial of:~9. To computef from f:
raise the coefficients to theth power, reverse coefficients, and normaliseb Ihduces a cycle of
odd length on the eigenvalues of then the characteristic polynomialtofontains an irreducible
factor f = f of degred overF whose zeroes are the elements of the cyclé itiduces a cycle
of even length, its elements are the zeroes of two irreducible facfoamd f # f of degred /2
overF. Therefore, in all cases, elementsinare easy to detect by computing and factorising
characteristic polynomials.

Remark 5.7. If d is small, thenP may be empty. We usually solve this problem by extending
the range for in the definition ofP to [2,d/2). Ford € {3,4} we search for elemenisthat
have one eigenvalue with multiplicity, and another with multiplicityl — 1. We take the derived
subgroup of(g, g") as H. Such elements are easy to find. For example, in case Slt, & G
satisfies\(t) = (1,d — 1), theng = t? with b = (¢! —1)/(¢ — 1) is a desired element, with
probability1 — 1/q.
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We summarise the resulting algorithfin ndEl ement : it takes as input the generating set
X of G and returng € P,(G) for somel € [d/6, d/3] (with some variation for smalf).

(i) Construct randont € G, factorise its characteristic polynomial, and compite) as in
Remark 5.6, so determinirlg

(i) If t € P(G), then powet up tog € P;(G) and returry, otherwise go back to (i).
Lemma 5.5 shows that it suffices to seléxtl) random elementsin order to construcy.

This, and the results cited in Section 4, shows the algorithm is Las Vegasaasntbmplexity
O(& + d3logd + d*logdlogq).

5.2, Constructing the subgroupH. We now show that it is easy to find a conjugateyat
P,(G) in sufficiently general position. Recall thitis the naturatz-module,E, = ker(g — 1),
and/, =im (g —1).

Lemma 5.8. Letg € P,(G) and letT be the set oh € G such thatdim(E, N Egh) = d — 21
(the smallest possible value) ald= (E, N E,h) @ I, & I,h. There exists an absolute constant
¢ > 0, independent afand the type of7, such thaiT'|/|G| > c.

PROOF We give a detailed proof only fa& of type SL; the proportionT'| /|G| is larger if G is
not of this type.

Sinceg is semisimple}V = E, ® I,. We choose an ordered basislofsuch that the first
d — [ vectors generat&,, and the last vectors generaté,. We estimate the cardinality af by
counting images of these basis vectors under a suitable linear transforatidh We start by
mapping the first basis vectors such that their images, together withspan the whole space.
This ensures that, N £, has minimal dimension.

Forl < j <, we map thej-th basis vector to a vector outside the span of the uniafi,of
with the set of previously chosen images; theregdre ¢%~'*7—1 possible choices. Then we map
the remainingl — 2/ basis vectors of/, to arbitrary vectors outside the span of the already chosen
images. Ifl + 1 < j < d — [, then there arg? — ¢’~! choices for thg-th basis vector. Finally,
we map the basis vectors ff so that their images span a complementig N £ h) ® I,. Thus
the image of thg-th basis vector fod —+ 1 < j < d must be outside the span of the previously
chosery — 1 images, and outside the span of the unio/gf N E4h) @ I, with the set of images
of the basis vectors indexed by- [ + 1 to j — 1. These two subspaces of dimensjonl > d/2
have an intersection of dimension at leagt— 2 — d. This yields at leasj? — 2¢7 ! 4 ¢%/—2-4
possible images (the last one dividedgy 1 to get an element with determinant

Comparing with G| = (H;.lzl(qd —¢’71))/(q — 1) we get a lower bound

! qd . qdfz+j71 d qd _ 2qj71 + q2jf2fd
|T‘/|G| > Hj:l W : Hj:d—l—H

For the first factor of the product, observe that

l d—l+j—1 _ ,j-1 1 d 1\ i+t . 4 1\
II. (1—H)>H- <1_dq‘1'<) > 11 1_'() :
i=1 q* =g i=1 q* =g q k=1 3 \q

For fixedg, this last expression converges to some positive constdntaso (because the
geometric serie§ i1 /¢’ converges). For the second factor, we find a positive lower bound with
a similar estimate; the critical term is the last, but it is easily checked that it is afllgas O

gl — i1

Evaluations of the formulae show thatfor ¢ = 2 or 4, is bounded below bg.08 and0.47
respectively. Our investigations suggest thatfer 2 the proportion7’| /|G| is about0.25.
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Lemma5.9. Letg € P(G), and leth € T as in Lemma.8.
a) E = E,N Eyh andI = I, ® I,h are invariant underg, g").
b) If G preserves some form, théhand I are mutually orthogonal, and non-degenerate spaces.

¢) If G is orthogonal, thenE and I are non-degenerate quadratic spaces, possibly of type
different to that of.

d) If G is not an orthogonal group in even dimension, then the conjugacy classearhisimple
element inG is determined by its eigenvalueshr{with multiplicities). In the remaining case
this is true if and only if the element has an eigenvalue 1, otherwise thetevargemisimple
classes whose elements have the same eigenvalues.

e) The restrictions)|; and ¢”|; are conjugate within the group preserving the form specified in
b) andc).

PROOF. a) Clearly,E, N E,h andl, @ I,k are fixed by each of andg”; for example, ifv € I,,
thenvg" = v +v(g" — 1) € I, ® I,h.

b) Supposé& preserves a formi(-,-). Letv = w(g — 1) € I, andw’ € E,. Thenf(v,w’) =
Blwg,w') — Blw,w') = B(w,w'g™!) — Bw,w") = 0, thusI, and E, are orthogonal. Hence
E, N Ey4h is orthogonal tal, © I,h. SinceV is the direct sum of these spacég® I,h is the
orthogonal complement df, N £,h. Thus the form restricted to each bf, N £,k andl, © I;h

is non-degenerate.

c) Let(@ be the quadratic form preserved Gywith associated bilinear forld = Q + Q7. By
part a), the natural-module decomposes int6 = E | I, and with respect to a suitable basis,
the matrix F' has block diagonal form; we may also assume thas an upper triangular block
matrix. Note thavkQkTvT = vQuT for everyv € V andk € (g, g"). Since the 1-eigenspaces
of g|; andg"|; intersect trivially,Q is a block diagonal matrix.

d) The semisimple conjugacy classegbare parametrised by orbits of the Weyl group on ele-
ments of a maximal torus, see [15, Propositions 3.7.2 & 3.7.3]; in charact&isteccentralisers
of semisimple elements are connected, but the proof of [15, Propositior] 8mains correct
even if the group is not of simply-connected type. An explicit descriptiomakimal tori in the
natural representation and the Weyl group action is given in [31, SecliauBclaim follows
easily from that description.

e) Since both restrictions have 1 as an eigenvalue, the result followsifrom O

Letg € F(G), andm = 2I. By Lemma 5.8 and Theorem 5.1, the constructiorOot )
random elements is sufficient to firdc G such thatid = (g, ¢") is isomorphic taSX(m, q).
We can verify the latter using the one-sided Monte Carlo recognition algonftiBb]; this has
complexityO (¢ + d®log dlog® q).

We now suppose thaf = Sp(d, ¢) andq is even. The next lemma shows that in this case
H preserves a quadratic form, henfe= SX(m, q) is orthogonal by Theorem 5.1. Recall that
g acts irreducibly on the orthogonal compleménof its 1-eigenspac&,, andl, N I,;h = {0}.
Sinceg is semisimple, it has odd order.

Lemma 5.10. There is a quadratic form ofy, & I,k preserved by and g".

PROOF Write U = I,. Let 5 be a non-degenerate bilinear form left invariantdyy(d, ¢); so
[ is unique up to multiplication by a non-zero scalar. The sgactgether with the restriction
v = Bluxu, IS a symplectic space, and every semisimple elemefipf) lies in a maximal
torus of an orthogonal group @n. Thus, there existsginvariant quadratic forni3; on U which
supportsy: namely,B; is ag-invariant quadratic form witB; (u+v) = By (u)+ B (v) +v(u, v)
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for all u,v € U. ConjugatingB; by h defines ag"-invariant quadratic fornB; on Uh. Now
define a quadratic fors onU @ Uh by B(vi +v2) = Bi(v1) 4+ Ba(ve) + B(vi,v2) forv, € U
andvy € Uh. We prove that this form is invariant under the actiony&fsinceg has odd order,
this shows thaB is g-invariant. Sincd/ is g-invariant, it suffices to prove tha(vg?) = B(v)
forallv € Uh. Forv € V definef(v) = vg — v. Sinceg centralised//U it follows that f takes
values inl/, and hence, by restriction, defines a linear map ftolto U. Letv € Uh. It follows
fromvg? = f(v)(g + 1) + v and theg-invariance ofB; that

B(vg®) = Bi(f(v)(g+1)) + Ba2(v) + B(f(v)(g + 1),v)
= B(f(v)g, f(v)) + Bz(v) + B(f(v)(g + 1), v),
so it suffices to prove that(f(v)g, f(v)) = B(f(v)(g + 1), v). But this follows from

Blv, f(v) = Bv,vg) = Bvg,vg?)
= Bvg,v(g* = 1) +v)
= Bvg, f(v)(g+1)+v)
= Blv+ f(v), f(v)(g+1)+v).

Similarly B is preserved by". O

If ¢ is even andH is orthogonal, then we apply Step (3) to ensure tHais of + type.
Algorithm Fi r st SXreturnsH = SX(m, q), a base change matrix reflecting the decomposition
V=1,®1,h® (E;N EZh), andm. Observe thatn € [d/3,2d/3] with variations for smalti.
Hence, our previous discussion proves the following.

Lemma 5.11. Algorithm Fi r st SX is correct and Las Vegas; if > 4, then it has complexity
O(€ + d®log dlog® q + log* q).

6. Centralisers of involutions

We considerG = SX(d, q) with d > 4, andd > 8 if G is orthogonal. An involutiort in G
is good inG if either G is linear or unitary, ofi has even corank andriToT = 0 for all v in
the naturalG-module, wheref” is the alternating form preserved I6y. (Recall thatQ*(d, q)
preserves the alternating form supported by the quadratic form.) Aslcbb& Seitz [2] describe
the centraliser of an involution in Chevalley groups over fields of even &xer good involutions
are those of type, as defined in [2].) The next theorem follows from [2, (4.2), (4.3), X8.2.6),
(7.7), (7.9), (8.5), (8.6), (8.10), (8.12)].
Theorem 6.1. Leti € G = SX(d, q) be a good involution of corank < d/2 and letF be the un-
1. 0 1,
derlying field ofG. There exists a base change matrik GL(d, [F) such that® = ( 8 1d62T 10 )
and the elements @f;- (i) have upper block triangular form with diagonal blocks, a, odee-
greer, d — 2r, andr, respectively. Consider the homomorphism

b Cge(i®) — GL(r, F) x GL(d — 2, F), (éég)'—)(a,b).

If G is linear, unitary, or symplectic, then the imagewfcontainsSX(r, q) x SX(d — 2r,q)
with both factors of the same type &s Otherwise, in the orthogonal case, the image contains
Sp(r,q) x SX(d — 2r, q), whereSX(d — 2r, q) has the same type @&

We calli* := ¢ thestandard fornof i. The centraliser of a good involutiare G in standard
form has the structure given in Theorem 6.1. The following easy oa8ervis used in Sections
11 and 12.
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Lemma 6.2. LetG = SX(d, q) and
SX(m, Im 0

d—m

If ig € SX(m,q) andix € SX(d — m,q) are good involutions, thediag(iy, ix) is a good
involution inG.

The centralise€ (i) of an involution: € G can be constructed using an algorithm of Bray
[7]. If g is an arbitrary element af, then[i, g] either has odd ord@k + 1, in which casg[i, g|*
commutes withi, or has even orde2k, in which case botli, g]* and[i, g~!]* commute withi.
If g is random among the elements@ffor which [i, g] has odd order, theg(i, g]* is random
in C (i), see [36, Theorem 11]. Such an elemglitg]” is aBray generatoof C(i). Bray &
Wilson [8] prove the following.

Theorem 6.3. LetG = SX(d, ¢) and leti € G be an involution. There is a constant> 0 such
that the proportion ofy € G with [i, g] of odd order is bounded below Iy log d.

The equivalent theorem for odd characteristic is proved in [36]. Quasitigations suggest that
the proportion for even characteristic is greater than some absolute pasitigtant independent
of the rank.

Leti € G be a good involution in standard form. A subgratipf C (i) is sufficientif its
imagey (C') under the projection in Theorem 6.1 is the same @S (7).

Theorem 6.4. Leti be a good involution iy = SX(d, ¢) in standard form. A bounded generat-
ing set for a sufficient subgroup 6%; (i) can be constructed using a Monte Carlo algorithm with
complexityO(log d(¢€ + d3log d + d? log dlog q)).

PROOF Theorem 6.3 shows that it suffices to consi@¢tog d) random elements to construct a
random element of' (7). The results cited in Section 4 imply that the test for each element —
to decide if it has even order and to compute a power — reqai(g€$log d + d? log d log q) field
operations.

Let K be the image of the projection ¢f C; (7)) into one of the direct factors of the range of
¥, that is, intoGL(r, F) or GL(d — 2r,IF). The probability that two random elements of a cyclic
groupC generateC' is [](1 — I%) > £, where the product is over all primesdividing |C/|.
Hence we obtain elements whose image in the cyclic quaflert K/ K’ generate§), so we can
construct a generator ¢J. By multiplying a random element @f; (i) by an appropriate power
of the preimage of this generator, we obtain random elemeni§’ olKantor & Lubotzky [25]
prove that a bounded number of random elements genktate O

6.1. An involution that is not good. We now consider a certain involution of coramkn
a group of typeSp andQ*. In contrast to our previous discussion, this involutiomds good.
Its centraliser is, up to conjugacy, described in [2]. However, in Se&iove need explicit
knowledge of the centraliser structure with respect to a particular hghetasis.
Let F} be the matrix of a non-degenerate alternating form of kAnks, and let
04 0 F. 0001
P (épl 02> with Fy — <g%g>.
F> 0 04 1001
Then F' is the matrix of a non-degenerate alternating form. Qetbe the matrix of a quadratic
form of + or — type supporting, that is,Q, + Q] = Fi, and define
Q2 0 Fp
o-(§44)

0 0 Q3
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where@s = diag(0,1,1,1) andQs = diag(0,0,0,1). Now @ is a matrix of a quadratic form
supportingF, of the same type a9,. Let G; = Sp(d,q) andGy = Q*(d, q) be the groups
preservingF' and @, respectively. In the remainder of this section we deterndipe(i) and
Ca, (1), where

1 0 1
(6.1) i = (élds 6‘)

0 0 14
is a non-good involution of corank 4 containedin andGs.

Lemma 6.5. Let A < SL(4, q) be the subgroup of elements

1 0 00
6:<z;z; zzS)esm,q) where (1) = (£291) (1)
v wy wo 1
Then 5
. * *
C’Gl(z):{g:(Ox*>\56A,x€8p(d—8,q)},

whereSp(d — 8, q) preserves the formi}, and the entries are subject to the sole constraint that
g lies inGy. (Such entries may be found for every choicé ahdx.) The same holds whef;
is replaced byGy; herex € QF(d — 8, q) is required to preserve the associated quadratic form

Q1.

PROOF The centraliser ofin GL(d, q) is the set of matrices of the same shape as the matrices
in the lemma, except tha is replaced byGL(d, 4), andz may be any element &kL(d — 8, q),
and there is no restriction on the entries marked@hus we need only consider the condition that
a matrix of this shape should lie @&; or Gs.
Taking GG; first, and considering the copy éfin the bottom right corner, it is easy to see
that a necessary condition fgrto lie in G, is for § to lie in A. Conversely, if6 € A and
x € Sp(d — 8, q) thendiag(d, z,0) € G, as is straightforward to check.
Now consideiCq, (i) and letd € A andx € QF(d — 8, ¢) as in the statement of the lemma.
Then
504 N e o ((Oastas aras 0
(0950)606'2(1) L :<Oa?+aia;+a§0>' O
0046 0 wo wp O

A routine calculation proves the following.

Lemma 6.6.
o . . neoneoom
g=1| 01as 0 | € Gy ifandonlyify hasthe form | 751 i3 aa V1o ,
0 0 I Y41 Y31+Y12 y21+Y13 y11+y14
andg € Gy if, in addition,y;4 = 0 andy?; = ye3 andyi, = ys2 andy?; + ya1 + y11 = 0.

Forj € {1,2} let A; be the subgroup af; consisting of matriceg as in Lemma 6.6. Note
that the set of elements
(80%') € Cq. (i) with &= <[1“?1a028> e A
000/ = IRNE A
andd’ = 0if j = 1, forms a group,S; < Cg, (i), isomorphic toSL(2,¢). Also S; acts by
conjugation on4;; or, equivalently, on the corresponding additive group of matriceseofahm
vy, also by conjugation.

Remark 6.7. As S;-module,A; is isomorphic to the direct sum of three copiesGif (q) with
trivial S;-action, twoGF (¢)-modules each of dimension 2 with natugdl(2, ¢)-action, and one
copy of sl(2, q), the group of2 x 2 matrices ovelGF(q) of trace zero. AsS;-module, A, is
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isomorphic to the direct sum of one copy @Gf(¢q), one copy of the natural module, and one
copy ofsl(2, q).

It follows from the above analysis thal;, (i) is a split extension aD» (Cg, (4)) by SL(2, q) x
SX(d — 8,q). Forj = 1 a stronger statement hold€, (i) is a split extension of a normat
subgroup byA x Sp(d — 8, q).

7. Extracting sections from involution centralisers

Let G = SX(d, ¢q) and leti € G be a good involution of corank in standard form. It follows
from Theorem 6.1 that a sufficient subgratipf C; (i) has sectionSX(r, ¢) andSX(d — 2r, q).
We now describe how to construsK (d — 2r, ¢) as a subgroup af'. For this task, two Monte
Carlo algorithms are introduced. The first constructs

A 1, * *
B = 0 SX(d—2r,q) * <,
0 0 1

and the second constructs

1, 0 0 ~
B = < 0 SX(d—2r,q) 0 ) < B.
0 0 1,

7.1. Constructing direct factors. Let D = SX(n, ¢) x SX(m, q) be described by a bounded
generating sek. We want to find generators f&X(n, ¢) andSX(m, q) as SLPs inX. This
problem is considered in [2811] for odd characteristic; the same strategy works for exen
The general approach is the following: repeatedly construct rari@gom; ), (g2, h2) € D with
g1, 92 € SX(n,q) andhy, he € SX(m, q) until these power up t¢g}, 1) and (g}, 1) with orders
divisible by certain Zsigmondy primes. For sufficiently large degieé generaln > 10, a
result of [35] is applied to estimate the probability thatandg, generatesX(n, ). Itis proved
in [28, Lemma 11.5] that this algorithm to constr§{(n, ¢) is Monte Carlo with complexity

(7.1) O(lo‘éd(flogzq+d3 log d + d? logdlogq))

whered = n + m.

Forn < 9, which includes theon-generic casesf [35], we follow the approach of Babai
& Beals [4]. The first step is to find a randofy, h) € D with non-scalarg. If |g| has a
prime divisor coprime ta; — 1, then(g’,1) = (g, h)"! is non-scalar with probability /2m,
see Theorem 4.1. BX(n, q) is quasisimple, then it can be constructed as the normal closure
of ((¢/,1)) in SX(d, ¢), which essentially amounts to constructing the normal closukg’pfin
SX(n,q). Sincen is bounded, the normal closure algorithm described in [41, Theorem] 2.3.9
has complexityO (¢ log? ¢), see [42]. The generating set returned by this algorithm has length
O(log q); Lemma 4.2 is used to find a bounded one. The graup4, ¢) is not quasisimple, but
a direct product of two copies 6fl.(2, q) if ¢ > 2, see [43, Corollary 12.39]. Thus we can use a
similar normal closure construction$X (n, q) = Q* (4, q).

We use these results to design a Monte Carlo algorkhinl Fact or . Let G = SX(d, q)
and leti € GG be a good involution of corankin standard form. LeY” be a bounded generating
set for a sufficient subgroup @f; (i), and letposbe either “middle” or “top”. The input to
Ki | | Fact or isY andpos If posis “middle” thenKi | | Fact or returns a bounded generating
set for

A= {<§ 1%27- 3) | a € SX(r, q)} < Cq(i);

otherwise it returns one for

R 1,
Bz{(()
0

oo *
Tk

) b e SX(d — 2, q)} < Cali).

T
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In our application of the theoretical results cited above, it suffices to méeterthe pseudo-
order of a diagonal block only, which can be computed in polynomial time J2&]. Thus
Ki | | Fact or has complexity stated in Equation (7.1).

7.2. Extracting the middle section. We now describe the algorithBxt r act M dd| eBl ock
which constructs

1, 0 0
B = 0sX(@-2rq) 0 | <C.
0 0 1,

Variations of the following lemma have been employed by Conway, Parkeidridéan and Wil-
son; see [2944.10].

Lemma 7.1. Let R = Q x M where M has exponent 2. Letf € @ have odd order and
assume it acts fixed-point freely ad. If r = gm € R whereq € Cq(f) andm € M, then

g = fr(ffr)i=ne.

PROOF. Write 0 = |f| and note thaff” = fm/m. A straightforward computation shows that
frffm)e=b/2 = gromf 'md ™ . _mIm. Sincef — 1 is invertible, the lemma follows from
O=(fo-1(f - =frr+ o+ L O

It suffices to use the pseudo-orderfof

Algorithm 1: Ext ract M ddl eBl ock(Y, f)

[* Y is a bounded generating set for a sufficient subg@ud C (), wherei € G = SX(d, q) is a good
involution of corankr in standard form; assume the middle block(dfs notQ* (4, 2) and

= (é g 6) € C with ¢ fixed-point free of odd order. Return a bounded generating set for

1, 0 0
B=|( 0 sx@@-2rq 0 | <C
0 0 1,

whereSX(d — 2r, ¢) has the same type && */
1 begin
2 B:=Kil | Fact or (Y, “top”);
3 lety: B — SX(d — 2r, q) be the projection onto the middle diagonal block;
4 by a random search iR find a bounded subsgensuch thaim ¢ = ({o(2?) | z € gen});
5 Return{(hg(hh?)"1=1/2)2 | 4 ¢ gen} whereh := f?;
6

Lemma 7.2. AlgorithmExt r act M ddl eBl ock is correct, Monte Carlo, and has complexity
stated in Equatiorf7.1).

PROOF. An O(1) random search i3 is sufficient to find the subseenin Line 4, see Lemma
4.2. The element in Line 5 has odd order. It follows from Lemma 7.1, and can also be verified
directly, that ifg in genhas diagonal blocks, v, 1, then
2 2
gy(Ihl=1/2)" _ (F96NT _ (450
(nauny 02 = (458)" = (g4:0)- -

WhereExt ract M ddl eBl ock is applied, the element is constructed simultaneously
with the involutioni.
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8. Constructing the second subgroup

Recall that usually the standard generatorg;of= SX(d, q) are constructed via a recursion to
two smaller subgroups of classical type. Modulo a base change with mhathigse subgroups
are
H= (G0, 0 ) <6 and K= (5 gy ) <6

whereSX(d — m, ¢) has the same type &5. If G is linear or unitary, then so i$X(m, ¢) and
m is even. OtherwisesX(m, q) has typeQ™ andm is divisible by 4. In both casesy usually
lies betweeni/3 and2d/3. In Section 5 we described the construction/bf We now describe
the construction of<. Again, X is a bounded generating set fGr and we assume thét is not
a base case.

Let H, b, andm be the output oFi r st SX and we assume that, via a base chakfjes G®
is the standard copy. We also assume that, by recursion, we have feustdridard generators of
SX(m, q) as elements it/ and, in addition, a good involutionc H of corankm /2. Algorithm
SecondSX acceptsH, b, andi as input and returns

Im 0
K= ( 0 SX(dfm,q)> < va

whereSX(d — m, ¢q) has the same type &&

The first step is to construct a base change matrix diag(x, 14_,,) such thatcic™! =
diag(( 10T }) ,14-m). Using Theorem 6.4, we find a bounded generatingysef a sufficient
subgroup of the centraliser ofc=! in G~ '. Now letu = diag((g ;) Agom) € HE ' with
f fixed-point free of odd order; can be found by a®(1) random search in the centraliser of
cic™lin cHe™!, see [34]. Letw = diag(1,, <1d?m 1({)) be a base change matrix. Noii is

constructed as the output Bkt r act M ddl eBl ock(wY w™!, wu?w™'). Note that

1. 0 1, 2 0
weic lw ™ = 0 14 0 and wulw t=(0 14, 0 ).
0 0 1r 0 0 f?

We verify that/ = SX(d —m, q) using the one-sided Monte Carlo algorithm of [35], and return
K=K",

Lemma 8.1. AlgorithmSecondSX s correct, Las Vegas, and has complexity
O((dlog? ¢/ log d)¢ + d* + d®log dlog® q).

PrRoOOF The complexity follows from that stated in Equation (7.1)Esit r act M ddl eBl ock,
Theorem 6.4, and [35]. O

9. Gluing the cycles

Let G = SX(d, ¢q) be a non-base case, §0> 6. Using the algorithms of the previous section,
modulo a base change, we have constructed
SX(m, 0 1m 0
H:( (m.a) >§G and K:(OSX(d_mq))gG,

la—m

wherem = 2r is even andi — m > 2. Via a recursion and another base change, the standard
generatorsSy andSy of SX(m, q) andSX(d — m, q) are obtained in{ and K, respectively.

We assume th&8X(m, q), SX(d — m, ¢), andG are standard copies. Writeas2n or 2n + 1,

and let{ey, f1,...,en, fn}, Or{e1, fi,...,en, fn,w}, be the corresponding hyperbolic basis

of the G-moduleV'.



CONSTRUCTIVE RECOGNITION OF CLASSICAL GROUPS 19

All standard generators @, except the cycle, are inSy U Sk. If vy andvg are the
cycles of SX(m,q) and SX(d — m,q) in H and K, respectively, thew = vxgvy, where
g = (er,er11)(fr, fry1) € G is the glue element. We now describendd ueEl enent,
the algorithm that constructs We find g in the centraliser of a specific involutiane G con-
structed from the elements &y andSk . We first provide more details for the different types of
G, and then describe the algorithm.

9.1. ThecaseSL andSU. The group$X(m, q) andSX(d—m, q) have the same type &5
and all standard generators@f except the cycle, are contained i5y. First, letd—m > 3. The
elements ofS; andSk are used to construct= (e, fr)(er+1, fr+1) andf = diag(xy, 14, x2),
wherez; andzs, have degrees: — 2 andd — m — 2 respectively, and both are fixed-point free of
odd order. We uséand f as input toFi ndG ueEl enent . If d — m = 3, which only occurs
for oddd < 9, thenzs = 1 is not fixed-point free, but a similar construction can be used to find
the glue element. The base case 6 andm = 2 can be processed in the same way.

9.2. The case$p and Q. The degreen is divisible by 4, andl — m = 2 if and only
if d = 6, which is a base case. Heneé~ m > 4. Via a base change, we sw&[X(m, q)
andSX(d — m, q): namely, we assume th&X (m, ¢) with m > 4 has the same type &5 and
SX(d — m, q) has typeQ™ with d — m divisible by 4. The elements &y andSk are used to
constructi = (e,—1, fr—1)(er, fr)(€rt+1, fr+1)(€ri2, fryo) and f = diag(z, 1, 22), wherez;
andx, have degrees: — 4 andd — m — 4 respectively, and both are fixed-point free of odd order.
We usei and f as input toFi ndd ueEl enent .

9.3. Thecasé€)~. The groufsX(m, q) has type2™ with m divisible by 4, andsX (d—m, q)
has typeQ2— with d — m > 4. With the exception of the cycle, all standard generators 6fare
contained inSk. If d — m > 6, then we constructand f as in the cas8p. If d — m = 4, then
we constructf as in the cas8p, and an involution

. . /
i = diag(Lm—a, (95), (98, (98) (L2 07 )
wherew is as specified in Definitio. 1.

9.4. Algorithm Fi ndd ueEl enent . We use the notation of the previous sections and
consideri and f as constructed in Sections 9.1-9.3. &be of typeSp or QF. We choose a
new ordered basis fdr, namely

{67”—17 €r, €r41, 6r+2} U B/ U {67“—1 + fr—l’ er + f?”) ert1 + fr+17 eri2 + fr+2}7

whereB3’ is the basid3 with e; and f; deleted fors € {r — 1,r,r + 1,7 + 2}. With respect to
this basis, the matrix of is
<14 00 >
0coO
0014

with ¢ of odd order acting fixed-point freely on its underlying space of dimengie- 8; the
matrix ofi is given in Equation (6.1), and its centraliser is described in Section 6.1.

By [2, (7.7), (8.5), (8.12)], two non-good involutions #X(d, ¢) of the same even corank
are conjugate irsX(d, ). Thus, there exists a base change mairix Cgy,4,q) (i) such that
(Cq())® = Ceu (i) is the centraliser described in detail in Section 6.1. Notedhaf(s, 14_s, ) €
Ca(i) for § a4 x 4 matrix if and only if60T = 14.

Lemma 9.1. The subset d3L(4, ¢) consisting of matrices of the form

1 0 0 0

0 ao+1 a1+1 ai1+az+1

0 as+1 az+1 az+as+1

0 az+as+1 a1+az+1 ayr+az+az+as+1
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is a subgroupS isomorphic toSL(2, ¢), andT = {diag(s, 14—s,s) | s € S} is a subgroup of
0*(d, q) < Sp(d, q) when referred to the above basis figr

PROOF It is routine to check that these matrices form a group isomorphtd.t@, ¢), the ele-
ment of S displayed in the statement of the lemma mapping to the méffi%? ), and that the
bilinear form definingSp(d, q) is preserved. One readily checks that the quadratic form defining
QF(d, q) is preserved by a

The group!” of the lemma contains the required glue element (e,, e,41)(fr, fry1). We
now describe how to construct a generating sefffoand thus findy.

Let G = Sp(d, q) and defineA = {§ € SL(4, ¢) | diag(d, 14-s,0) € Cx(i)}; note thatA is
conjugate to the subgroup in Section 6.1. We outline the construction of elements of

w={({3) 1558} <cety ana = {(§]3) 158} <

so that we can find” as a subgroup ofl,. First,Ki | | Fact or is used to obtain elements 4df.

To construct an element of; from s € A; we use Lemma 7.1 with = f: namely,s is replaced

by fs(ff5)I71=1/2 ¢ A,. We show that this construction yields elements that are sufficiently
random inAs, as described below.

Note thatd, = T x U whereT = SL(2,q) andU < C¢(i) is the unipotent kernel of the
natural map ofd, onto.S. Lemmas 6.5 and 6.6 show tHathas a normal serid$ = Uy > Uy >
.-+ > Uy = 0 such that five of the sectiois; /U, are isomorphic té€:F(¢) and are centralised
by T', and four are isomorphic to the natufl(2, ¢)-module. Lettu € Ay with¢t € T\ {1}
andu € U, \ Uj41 be obtained as described above: namely,= fs(ff*){1/1=1)/2 where
s = h¥ € A; is constructed irKi | | Fact or for some randomh € C (i) and some integek.
SupposéJ; /U;1 is isomorphic to the natur&lL (2, ¢)-module. By constructions = k* andtu
bothactas onU; /U, and, by [34], we can assume that this action is fixed-point free. irge
random, we could, with equal probability, have choaér:= hv for some random € U; \ Uj1;
then the element obtained froid | | Fact or would bes’ = (1/)F = so"* ™ oh" ™ . vho. If
’l)lJrh+"'+hk_1 =0in Uj/Uj_H, then

0= U(l—i—h-‘r...—‘,—hk—l)(h—l) + U]+1 — ’Uhk_l + Uj+1 _ ,Ut—l + Uj+l =0+ U]+1

By our assumptiort. acts fixed-point freely; thereforé,+ h + ... + h*~! is an automorphism
of U;/U;41, which proves that’ = su’ wherev’ € Uj is such thaw' + U, is random in
U;/U;41. Replacings by s’, one deduces that our initial € U; is random in the sense that
u+ Ujp1 € U;j/Uj41 is random. We call;; = u ahelperin Uj.

We now construct a generating setfoas follows. Let] be a bounded subset df mapping
onto a generating set fd@r; usingKi | | Fact or , the complexity for this task is given in Equation
(7.1). Writeh € T ash = tu, wheret is the image irl" of h, and definel/ as the normal-
closure of the group generated by the elementisat arise in this way. 1/ = {0}, then7 is
the generating set we seek. Otherwise, we can easily fsdh that/; > M +U;;q > Uj4q as
defined above. Now the object is to replafdy a different subset that maps onto a generating
set of 7", but where the corresponding grofip is smaller. Iterating this procedure will terminate
in a generating set fdf.

Suppose thafi/ is non-trivial. Write N = U;,. If M lies in the kernel of the natural
homomorphism ofd; onto A, then we may regard/ as lying in an additive group of x 4
matrices ovefGF(q). Otherwise we need only consider the imagé6imodulo this kernel, and
again reduce the problem to linear algebra. There are two cases toaroiigpose first that
centralises M + N)/N. In this case we replacE by a bounded set of commutators of elements
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of 7 that maps onto a generating setfarThis new generating set will give rise to a néwthat
lies in the oldV; in fact, every abelian quotient @f/ that is centralised by will be destroyed

in this way. Now suppose thal/ + N)/N is a copy of the naturddLL(2, ¢)-module. If we have
already found a helper; € U;, then every elemernt, of 7 may be pre-multiplied by a product
of T'-conjugates ofi; that is congruent ta moduloU; .1, and this defines the new generating set
T whose corresponding/ lies in the oldN. If we have not found a helper; € U; previously,
then we have found one now and we restart the whole construction withi @ nthis happens at
most 5 times. Onc@/ is trivial, so7 generateq’, the required glue involution is obtained using
the algorithm of [19].

The same algorithm applies ® = Q*(d, ¢); but in this case only three sectionsiéfare
isomorphic to the natura$-module. In summary, we have shown how to construct the glue
element. We call the resulting Las Vegas algorithimdd ueEl enent ; it takes as input the
involutioni, the group’s, and the element constructed in Sections 9.1-9.3, and returns the glue
elementy.

Remark 9.2. If G is linear or unitary, then the involutionc G is good and has corank 2. If
d — m # 3, then the same approach as above can be used to construct, modulbdage @
subgroupl’” = diag(SL(2, q), 144, SL(2, q)) of the centraliseC (i) such thatl’ contains the
glue element. Il —m = 3, thatis,d € {7,9}, then the element in Section 9.1 isliag(12, ¢, 12)
with ¢ = diag(1, ¢') where( is fixed-point free of odd order. In this case,

vy (IF1-1)/2 — aﬁt) :<auv>
Ju(f1?) (8(1)15 forall y=(g1w),
andz andw have only one non-zero column and row, respectively. We procebefase.

Lemma 9.3. AlgorithmFi ndG@ ueEl enent is Las Vegas and has complexity stated in Equa-
tion (7.1).

PROOF We only consider the more complicated ca$psindQ*. The complexity for construct-
ing all helpers inA, is determined b¥i | | Fact or, see Equation (7.1), and Lemma 7.1. The
remaining calculations are carried outdirk 4 matrices ovefGF(¢) and are thus independent of
d. We use the algorithm of [19] to find an elemenflirapping two given elements of a copy of
the naturabL(2, ¢)-module onto each other. O

9.5. The gluing algorithm. Algorithm @ ueCycl es has inputX, H, K, b, m, Sg, Sk
whereX generates: = SX(d, q),

la—m dfmv(I)

H:(SX(S%CI) 0 )SGb and K:(lénsx(o )SGb’

as described in Section 9. The sélg and Sk are the standard generatorsS¥(m, ¢) and
SX(d — m,q) in H and K, respectively. The output is the standard generatorszforThe
algorithm is Las Vegas with complexity as in Equation (7.1).

10. Base cases

For small degree, in generdl < 6, the standard generators ©K(d, ¢) cannot be constructed
recursively, so we use different methods.

e The Las Vegas algorithms of [19] and [30] are used to construct dtraagbelement of
SL(d, q) with d € {2,3} as an SLP in its defining generators; these algorithms have com-
plexity O(¢ + log g + x).
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e The Las Vegas algorithm of [9] is used to construct an arbitrary elemefp@t,q) or
SU(d, q) with d € {3,4} as an SLP in its defining generators. This algorithm has com-
plexity O (¢ + log* ¢ + x log q).

More generally, for bounded, we could use Brooksbank’s algorithm [9], while still achiev-
ing the complexity of Theorem 1.2. We present alternatives that seem ffiorers in practice.

10.1. Special linear and unitary groups. The individual base cases d@#&(d, 2) with d €
{4,6,8}, andSU(d, 2) with d € {5,6,7,9}. Groups of degree 6 with > 4 are solved recur-
sively using the standard algorithm. We now discuss briefly the outstandsegdages: namely,
SL(4, q) with ¢ > 4, andSL(5, ¢) andSU(5, ¢) with g > 2.

10.1.1. Degree 4.Let G = SL(4, q) with ¢ > 4. The first step is to construct an involution
i1 € G of corank 2 in standard form; an algorithm to do this is described in Sectionri2
Cq(ir) we find a second involutioi, = (7 * ) with non-scalark € GL(2,¢): to do this, we

use the algorithm of [19] to construct an element of the f @;“2 ) wherej, is an involution,

and square this element. L&t be the group generated by sufficient subgroup€'efi,) and
Ca(i2), so K is a parabolic subgroup &fL(4, ¢), fixing a 2-dimensional subspace. Using a
modification ofKi | | Fact or and a random search, we obtain

~ SL(2,q) * A (1 _ (12w ».
A= (M) <w B=(Fabe) <K and s=(5)en

where f’ is fixed-point free, and hence of odd order. Via a base changenaegan, = 0. (This
requires thaf and ' have the same order.) Now Lemma 7.1 is applied to construct

A= (SL(OQ“I) 102> <A and B= (102 SL(OM)> < B.

Using [19], all standard generators@f exceptv andz, are found inA. It suffices to construct
m = diag(1,(%¢),1) € G, sincex = s'ms, wheres’ = s" is found in B using [19], and
v = z2. To findm, we construct

i=diag((19).(§1)) EAx B

and a permutation matrixsuch that* = cic~! is in standard form andmc™! = diag(s, 12).
With the same construction as fdr we start withi* (instead of;) to constructliag(SL(2, ¢), 12).
This group containgmc™"! and, using [19], we findh.

10.1.2. Degree 5.Let G = SU(5,q) with ¢ > 4. In summary, we construct subgroups
H = diag(SU(4,q), 1) and K = diag(1s,SU(3, q)) of G* for some base change mattixThe
lists of standard generators 81tJ(4, ¢) in H and of SU(3, ¢) in K include all of the standard
generators of.

In more detail, we usé&i r st SX and [9] to construct, b, and the standard generators
of SU(4,q) in H. Let C be the centraliser ii:* of the standard generatorc H. We now
obtain K" as a subgroup af'. Modulo a base change, this amounts to constructing the subgroup
B = diag(1,SU(3,q), 1) of

~ 1 * *

B = <8 SU(03,q) ;) .
Via the same base change, the standard genefatof? is diag(w, 13,w= )71, Now we can
constructB < B usingExt r act M ddl eBl ock, since we can choose the required fixed-point
free elemenyf to bed.

The approach fo&G = SL(5, ¢) with ¢ > 2 is the same. Observe that the cycle(dfs the
product of the cycles constructed i and 4, and no gluing is required.
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10.2. Orthogonal groups. The groups2™(d, 2) with d < 14 are individual base cases, so
let bothd, ¢ > 4. Recall thatQ™ (4, q) is the direct product of two copies 6f.(2, q) arising
from a tensor decomposition of the underlying space, see [43, CordaB@]. This tensor de-
composition is readily made explicit: by random selection, we construct an eleh@" (4, q)
which acts as a scalar on one of the tensor factors and, using the algofitfam, 54], con-
struct the tensor factors. We now use [19] to recognise constructivelgopies ofSL(2, q).
The complexity for solving2* (4, ) is the same as fd8L(2, ¢). SinceQ™(6,q) is an exterior
square representation 8L (4, ¢), see [43, Corollary 12.21], it is constructively recognised by the
algorithm described in [32]; the complexity (¢ log ¢ + log? q).

For Q™ the individual base cases & (d, 2) with d € {8,10,12,14}, andQ~(d,4) with
d € {8,10}. Recall that2~(4,q) = SL(2, ¢*), see [43, Corollary 12.43], and an isomorphism
can be defined by mapping the standard generatarsandé of Q= (4,¢) to (9¢), (§1), and

<3791), respectively, withy € GF(¢?) primitive. The group2— (6, ¢) is an exterior square

representation 08U (4, ¢), see [43, Corollary 12.36]. The algorithm of [21] is used to find the
preimage irSU(4, q) of every standard generator Qf (6, ¢), andSU(4, ¢) is solved using [9].
The complexity is that foU(4, q).

10.3. Symplectic groups.The individual base cases &e(d,2) with d < 12. The case
Sp(2,q) = SL(2, q) is solved using [19], and [9] is used for groups of degree 4.

The standard generatofs, ¢, d, u, v, x} of Sp(6, ¢) with ¢ > 4 are found as follows. First,
via a base change, we construct subgralips diag(SL(2, ¢), 14) andK = diag(12, Q" (4,q))
of G usingFi r st SXandSecondSX. The standard generatorssii(2, ¢) in H already contain
s, t, andd, and it remains to find:; observe that andxz can be constructed froma and the
standard generators 6f"(4,q) in K. We obtainu in the centraliseC' of the involutioni =
diag((95),(%¢),(93)), which is constructed using the standard generatof$ ahd K'. Note
thati is not a good involution since its corank is odd. By [2, (7.6) & (7.10)], taeiralC-module
has sections of degre@s2, 1, 1, andC' acts asSL(2, ¢) on the factors of degree 2. Heneecan
be found inC' by applying [24] and [19]. The complexity @(log? ¢(¢ + log? ¢)).

10.4. The base case algorithmWe summarise these algorithms as a single Las Vegas al-
gorithmBaseCase. It takes as input a bounded generatingXsédor a base cas€ = SX(d, q)
of typetype It returns a base change mattixand standard generatafsC G® of G. If d is
even andypeis SL or SU, or d is divisible by 4 andypeis not2~, then it also returns a good
involution i € G® of corankd/2, otherwisefalse Following [9], BaseCase has complexity

O(¢ + log* g + xlog q).

11. Constructing standard generators

Let G = SX(d,q) = (X). We now describé&t andar dGener at or s which constructs the
standard generators 6fas SLPs inX.

Lemma 11.1. Algorithm St andar dGener at or s is correct, Las Vegas, and, 4f > 4, then it
has complexity

O(d((log? g/ log d)¢ + d® + d*log dlog® ¢ 4 log* ¢ + x log q)).

PrROOF The correctness follows from the definition of the functions used in thizridtgn. Al-
though most of these functions use Monte Carlo algoritifdtgndar dGener at or s is Las
Vegas. We now discuss some details.
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Algorithm 2: St andar dGener at or s( X, type

[* X is a generating set fa¥ = SX(d, ¢) of typetype Return base change mattiand standard generators
S C GP of G. If dis even and? is linear or unitary, ol is divisible by 4 and3 is of typeSp or Q7 then
also return a good involutiohe G® of corankd/2, otherwisefalse */

1 begin
2 if G is a base casthen return BaseCase( X, type) ;
construct first subgroup and make first recursive call

3 H,b,m :=First SX( X,type ;
4 let A be the group of typéype, generated by all upper left x m blocks inH,;
5 Sa,ba,ia =St andar dGener at or s( X4, type,) whereX 4 is a generating set of;
6 Sy ={diag(u, 1l4—m) | u € Sa} andiy :=diag(ia, la—m);
7 H := H® andb := bs wheres := diag(ba, 1g—m);
construct second subgroup and make second recursive call
8 K :=SecondSX(X, H,b,m,im);
9 K = K° wheree := diag(1,,, *) such thatG* and lower block ofi{® are standard copies;
10 b := be;
11 let B be the group generated by all lower righit— m) x (d — m) blocks inK;
12 SBs,bs,ip =St andar dGener at or s( X,type whereXp is a generating set dB;
13 Sk ={diag(1m,u) | u € Sg}, andK = K* andb := bt wheret := diag(1,,, bg);
construct involution and swap groups
14 if ip # falsethenix :=diag(1,,,i5) andi :=igix elsei :=false
15 if typeis Sp then swapH and K, and, accordingly, all other elements,:=d — m;
glue cycles
16 S: =3 ueCycl es(X,H, K,b,m,Su,Sk);
17 return S,1, b;
18 end

Definez = 2if G is linear or unitary, and = 4 otherwise. In Line 7Sy C H and

SX(m,q) 0 b
H:( (O q)ld_m)SG
wherem is divisible byz. If G is linear or unitary, then so 8X(m, ¢), otherwise its type i§)*.
Observe thaty € A is a good involution of corank:/2 sincem is divisible by z.
In Line 10,

H= (G0 0 ) <6 and K= (5 gy ) <6
whereSX(d — m, q) has the same type &@s, and all ofSX(m, ¢), SX(d — m, q), andG® are
standard copies. In Line 15, we ensure that(m, ¢) has the same type &3, unlessG has
type 2~ in which caseSX(m, ¢q) has typeQ™ and SX(d — m, q) has typeQ2~. In Line 16,
A ueCycl es completes the construction of the standard generators.

We now show tha$t andar dGener at or s returns a good involution i is divisible byz
andG is not of typeQ2~. This is true for the base cases and, by induction, we can assume that
ig € Aisagood involution of corank: /2. By constructionsn is divisible byz, and so isi —m.
Again, by inductionjp € B is a good involution of corankd — m)/2. Lemma 6.2 shows that
i = igik IS a good involution of corank/2.

The cost of the base cases for the algorithn®igl(log* ¢ + x log¢)). As shown in [28,
Lemma 2.4], the cost of the recursive calls does not affect the compléxiig overall algorithm.
The claim follows. O
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12. Constructing involutions

Let G = SX(d,q) = (X). For large ever, we cannot find an involution by a random search in
G. The combination o6t andar dGener at or s and Costi’s algorithm [20] allows us to write
everyg € G as an SLP inX. Since the algorithm of [20] has complexify(d? log q), this proves
Theorems 1.3 and 1.4. We provide an alternative approach which is nficrergfin practice.

In the following we describe the construction of two involutionsGin one of unspecified
(small) corank and one of large corank. Again, we use recursion teicégroups of smaller
degree.

12.1. Base casegrirst, we consider the base cases for the recursion. Again, we could use
[9], but we present alternatives that seem more efficient in practiosei®@e that for all individual
base cases (and smalin general) we could use a random search to find an involution. However,
if we want to construct one of large corank, then this may not be efficient.

e TypesSL andSU. The base cases atkec {2,3,4,5,7} with ¢ > 4 (and some individual
groups); we use [19], [30], and [9] fat € {2,3}. If d € {5,7}, thenFi r st SXis used to
construct a group of degrele— 1. Degree 6 is handled by recursion to groups of degree 4 and 2.
Degree 4 is handled as follows. First, we recurse to a group of degeeérzl an involution of
corank 1 in standard form. In its centraliser we construct elements

1% % %

jr= (85{:) with  f € GF(q)

0001
using the algorithm of [19]. Note that the order f divides4, and|[jy,j¢] is an involution,
usually with corank 2.

e TypesSp and Q™. In degree 6, we recurse @+ (4,q). For degree 4 we use [9] and the
methods described in Section 10.2.

e TypeQ~. There is no good involution if2~ (4, ¢), andQ2~ (6, ¢) has only good involutions of
corank 2. An involution of corank at leasi/4| — 1 in 27 (d, ¢) is found either by a random
search (for small fields), or by recursion$d (m, ¢) for somem > d/2 divisible by 4.

In summary, the resulting algorithimvol ut i onBaseCase is Las Vegas. For our theo-
retical analysis, we may assume that the complexity of the base case algorittienidog® ¢ +
x log q); see the comment at the beginning of Section 10.

12.2. Small corank. We construct involutions of small corank by recursion to subgroups of
smaller degree (usingi r st SX) until we can apply a base case method. We do not require a
good involution, so for smaljf we could randomly search. The resulting algorithm is Las Vegas
and, ifg > 4, then its complexity i€ (¢ + d®log dlog® g + log* ¢ + x log ¢), see Lemma 11.1.

12.3. Large corank. To construct involutions of large coran&; andar dGener at or s is
modified as follows: we repladgaseCase by | nvol ut i onBaseCase and omit the calls to
d ueCycl es. While the theoretical complexity remains unchanged, in practice the algorithm
is more efficient.

If dis even and7 is of typeSL andSU, or d is divisible by4 andG is of typeSp or Q,
then Lemma 11.1 shows that the algorithm returns a good involution of cay@aleor all other
groups, the involution returned has corank preciséls2|, or at leastd/4| — 1 for Q.

13. Animplementation

Our implementation of these algorithms is available indM1A [6]. We use Brooksbank’s im-
plementations forl = 3 and 4 of the algorithms in [10, 13], and O’Brien’s implementations of
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the algorithms in [19, 30]. The current implementation of [10]do£ 4 is not optimal, requiring
a search through the defining field.

We apply the M\GMA function CoMPOSITIONTREE [38] to all individual base cases. All
computations were carried out usingA®MA V2.18-8 on a computer with 28GB RAM and
3.07GHz processor. In Table 2, we list the CPU time in rounded seconels talconstruct the
standard generators, involutions, and large corank involutions riagggcThe time is averaged
over three runs.

group /d 12 20 40 100 group /d 12 20 40 100 group /d 12 20 40 100
SL(d,2%) 1 2 5 18 SL(d, 2%) 0 0 0 © SL(d,2%) 0 0 1 5
SL(d, 28) 2 4 11 61 SL(d, 28) 0 0 0 2 SL(d, 28) 0 1 4 29
SL(d,2') 2 4 13 64 SL(d,2'2) o 0 1 3 SL(d,2'?) 0 1 4 25
Sp(d, 2%) 2 4 11 35 Sp(d, 2%) 0 0 0 © Sp(d, 2%) 1 2 5 17
Sp(d, 28) 4 8 19 93 Sp(d, 28) 0O 1 1 4 Sp(d, 28) 2 4 8 4
Sp(d,2'?) 13 19 34 105 Sp(d,2'?*) 0 1 1 5 Sp(d,2'?) 2 3 9 38
0,24 2 4 10 34 Qf@d,2*) 0 0 0 0 0ft@,2Y) 1 2 5 17
Otd,2%) 3 6 17 85 Qt(d,2%) 2 1 3 4 Qtd,2%) 1 3 8 40
Qtd,2'?) 3 8 21 90 Qf(@d,2%) 1 1 1 6 Qtd,2?) 2 3 9 39
Q (d,2Y) 2 4 10 34 Q (2 0 0 0 O Q (2 1 1 4 13
0 (d,2%) 3 6 17 85 Q (d,28) 0 0 1 4 Q (2% 1 2 6 27
0 (d,2'?) 3 7 21 90 Q (22 0 1 1 6 0 (22 1 2 7 32
Su(d, 2?) 2 2 5 21 Su(d, 2?) 0 0 0 o Su(d, 2?) 1 1 1 6
SU(d, 24) 6 12 30 122 SuU(d, 2%) 0 o0 0 3 SU(d, 24) 1 1 4 37
Su(d,2%) 13 26 57 185 SU(d, 2 0 0 1 4 Su(d,2%) 1 2 4 25

TABLE 2. Times for standard generators, involutions, and invohgiof large corank
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