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Abstract

We prove that the elation groups of a certain infinite family of Roman gen-
eralized quadrangles are not isomorphic to those of associated flock generalized
quadrangles.

1 Introduction

A finite generalized quadrangle with parameters (s, t) is a point-line incidence struc-

ture S = (P, B, I) in which P and B are disjoint nonempty sets of objects called
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points and lines respectively and for which I is a symmetric point-line incidence re-

lation satisfying the following axioms.

• Each point is incident with t+1 lines, and two distinct points are incident with

at most one line.

• Each line is incident with s + 1 points, and two distinct lines are incident with

at most one point.

• If p is a point and L is a line not incident with p, then there is a unique point-line

pair (q, M) such that pIMIqIL.

It is immediate that there is a point-line duality, and the point-line dual of a gener-

alized quadrangle is a generalized quadrangle. Comprehensive definitions and results

about generalized quadrangles are given in the monograph [7] and some newer results

appear in the lecture notes [6].

Let S be a finite generalized quadrangle with parameters (s, t) and let p be a point

of S. An elation about the point p is a collineation of S that fixes each line through

p and fixes no point not collinear with p, or is the identity collineation. If there

is a group of s2t elations acting regularly on the points of S not collinear with p

then S is called an elation generalized quadrangle. Relationships between elation

generalized quadrangles, 4-gonal families and particular types of quadrangles called

flock generalized quadrangles are covered in [7, 8, 6].

Payne [5] introduced a new infinite family of generalized quadrangles which he called

Roman. The basis for his construction were flock generalized quadrangles having

parameters (q2, q), where q is a prime-power. The point-line dual has parameters

(q, q2) and abelian elation group. He then considered a translation dual of the point-

line dual, giving generalized quadrangles having parameters (q, q2). Finally, he took

the point-line dual of these, giving Roman generalized quadrangles with parameters

(q2, q).

Payne showed geometrically that the Roman generalized quadrangles are distinct

from the flock quadrangles for q = 3k where k ≥ 3. (For all other characteristics the

translation dual is known to be isomorphic to the original.) Indeed, he claimed [5]

that they were distinguished by their elation groups and:

That this is true really does follow from our computations for q > 9.

In his talk at the “Finite Geometries, Groups and Computation” conference [2], Payne

asked for a proof that the elation groups are not isomorphic. He also discusses this

question in his lecture notes [6, Chapter 7].
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Their nonisomorphism has an important impact on a major problem in geometry:

namely which groups admit a 4-gonal family? The answer to this question will con-

tribute to the characterization of the underlying groups of generalized quadrangles.

We refer the interested reader to [6] for further details.

Motivated by the challenge problem posed at the Conference, we now present a proof

that the elation groups are not isomorphic. Our proof is theoretical, but it was

inspired by the insight gained from detailed group computations for the smallest of

these groups conducted using the computer algebra systems GAP [3] and Magma [1].

Our approach is explained and comprehensive information about our calculations is

given in [4]. Briefly, we investigated the smallest interesting case, showed that the

groups could be distinguished, then generalized the result.

In Section 2 we define the elation groups and in Section 3 we prove that the elation

groups are not isomorphic. We also describe (see Theorem 3.8) the automorphism

group of the elation group of the flock generalized quadrangle.

2 The elation groups

Payne [5, 6] lists multiplication rules for elation groups of flock generalized quadran-

gles and Roman quadrangles with parameters (q2, q). We follow his description.

Let F = GF(q), q = pk, p an odd prime. Let f : F 2 × F 2 → F be a symmetric,

biadditive map. Further, suppose that if (0, 0) 6= α ∈ F 2, then {β ∈ F 2 : f(α, β) = 0}
is an additive subgroup of F 2 with order q. For a fixed nonzero α ∈ F 2, this implies

that |{f(α, β) : β ∈ F 2}| = q also. Such an f is called a nonsingular pairing.

Let G = {(α, β, c) : α ∈ F 2, β ∈ F 2, c ∈ F}. Clearly G has q5 elements. We now

impose a group structure on the set G using a nonsingular pairing.

Let f : F 2 ×F 2 → F be a given nonsingular pairing. Define a binary operation ⊗ on

G by

(α, β, c)⊗ (α′, β′, c′) = (α + α′, β + β′, c + c′ + f(β, α′)). (1)

Now (G,⊗) is a group that we denote by Gf .

The elation group of the flock generalized quadrangle with parameters (q2, q) is Gf

where f(α, β) = α · βT (the ordinary dot product, also denoted α ◦ β).

Now we specialize to q = 3k ≥ 27 and let n be a fixed nonsquare of F . We define

f(α, β) by

f(α, β) = α

(
−1 0

0 n

)
βT +

{
α

(
0 1

1 0

)
βT

} 1
3

+

{
α

(
0 0

0 n−1

)
βT

} 1
9

. (2)

Then Gf is the elation group of the Roman quadrangle with parameters (q2, q).

We seek to distinguish Gf from Gf .
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3 The elation groups are not isomorphic

Let F denote the field of 3k elements, k ≥ 3. The following can be readily proved

directly.

Lemma 3.1 Let g1 = (α1, β1, c1) and g2 = (α2, β2, c2) be elements of Gf for a biad-

ditive function f .

(a) The inverse of g1 is g−1
1 = (−α1,−β1, f(β1, α1)− c1).

(b) The commutator of g1 and g2 is

[g1, g2] = (0, 0, f(β1, α2)− f(β2, α1))

and, in particular, g1 and g2 commute if and only if f(β1, α2) = f(β2, α1).

We establish various properties of the standard group G = Gf , where f(α, β) is the

ordinary dot product, α ◦ β.

Lemma 3.2 Let x = (A, B, c), with A, B ∈ F 2 and c ∈ F , be an arbitrary element

of G.

(a) If A = (0, 0), then CG(x) = {(α′, β′, c′) : α′ ∈ B⊥}.

(b) If A 6= (0, 0), then define a map γ : F 2 → F 2 such that γ(α′) ◦ A = B ◦ α′. In

this case, CG(x) = {(α′, β′, c′) : β′ − γ(α′) ∈ A⊥}.

(c) If x is not central in G, then |CG(x)| = 34k.

Proof: Every element of CG(x) is of the form (α′, β′, c′) where B ◦ α′ = β′ ◦ A.

(a) If A = (0, 0), then this condition becomes B ◦ α′ = 0 which is equivalent to

α′ ∈ B⊥.

(b) If A 6= (0, 0), then given (α′, β′, c′), the definition of γ tells us that γ(α′) ◦ A =

B ◦ α′. Therefore the given element is in the centralizer of x if and only if we

have γ(α′) ◦ A = β′ ◦ A, or β′ − γ(α′) ∈ A⊥.

(c) In case (a), if B = (0, 0), then there is no restriction on α′ and so x is central.

Otherwise, α′ ∈ B⊥ implies that we have only 3k choices for α′. With 32k choices

for β′ and 3k choices for c′, we deduce that |CG(x)| = 34k. In case (b), for a

given α′ we have only 3k choices for β′, and so again |CG(x)| = 34k. ut

Next we characterize those elements which are in the center of a centralizer.

Lemma 3.3 Let x be an element of the form (A, B, c) with A, B ∈ F 2, c ∈ F . Then

the center of CG(x) consists of all elements of the form (rA, rB, c′′) for r ∈ F .
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Proof: First, to see that all elements of the given form are in the center of CG(x),

let z be any element of the form (rA, rB, c′′) for r, c′′ ∈ F . Then if (α′, β′, c′) is any

element of CG(x), z will commute with it if rB ◦ α′ = β′ ◦ rA. However, this is clear

since membership in CG(x) implies that B ◦ α′ = β′ ◦ A.

Now, to show that all central elements have such a form, let z = (α′′, β′′, c′′) be an

element of the center of CG(x). The proof will be done in two parts.

If A = (0, 0), then by Lemma 3.2 (a), we must have α′′ ∈ B⊥. We also want z to

commute with every element of CG(x), hence we must have β′ ◦ α′′ = β′′ ◦ α′ for all

α′ ∈ B⊥, β′ ∈ F 2. In particular, if we choose β′ with β′ ◦ α′′ = 0, then 0 = β′′ ◦ α′

for all α′ ∈ B⊥. This implies that β′′ ∈ 〈B〉, and so the right-hand side of the earlier

equation is zero. Consequently, β′ ◦ α′′ = 0 for all β′ ∈ F 2, forcing α′′ = 0. Thus

every element of the center has the desired form.

On the other hand, if A 6= (0, 0), then by Lemma 3.2 (b), we must have β′′− γ(α′′) ∈
A⊥. Since z commutes with every element in CG(x), we must also have β′◦α′′ = β′′◦α′
for all α′, β′ ∈ F 2 where β′ − γ(α′) ∈ A⊥. In particular, if we take α′ = 0, then we

must have β′ ◦ α′′ = 0 for all β′ with β′ − γ(α′) ∈ A⊥. However, with α′ = 0, the

defining property of γ tells us that γ(α′) ∈ A⊥. Thus we have β′ ◦ α′′ = 0 for all β′

with β′ ∈ A⊥ which implies that α′′ ∈ 〈A〉.

Next, if we choose α′ ∈ B⊥, then the defining property of γ implies that γ(α′)◦A = 0,

or γ(α′) ∈ A⊥. Therefore, since β′ − γ(α′) ∈ A⊥, we conclude that β′ ∈ A⊥. Now,

since α′′ ∈ 〈A〉, we deduce that β′ ◦ α′′ = 0 and so the condition for z to be central

becomes 0 = β′′ ◦ α′ for all α′ ∈ B⊥. This is only possible if β′′ ∈ 〈B〉.

Consequently, we can write α′′ = rA and β′′ = sB for some r, s ∈ F . Now, for z to

be central requires β′ ◦α′′ = β′′ ◦α′ for all pairs (α′, β′) such that β′ ◦A = B ◦α′ (this

being the required condition for membership in CG(x)). Substituting for α′′ and β′′

we deduce that r(β′ ◦A) = s(B ◦ α′). Since the second factors of each side are equal

and we can choose β′ so that this common value is not zero, we conclude that r = s,

as desired. ut

Theorem 3.4 For each noncentral x in G = Gf , the center of CG(x) has order 32k.

Proof: Lemma 3.3 shows that we have 3k choices for the element r and 3k choices

for c′′ in picking an element of the center of CG(x), and so we have 32k elements. ut

Next we consider the group G = Gf . In order to show that G is not isomorphic to G, it

will suffice to find a noncentral element in G whose centralizer does not have a center

with order 32k. For this purpose, we will consider the element x = ((1, 0), (0, 0), 0).

Lemma 3.5 The centralizer CG(x) is equal to the set of elements {(α′, (b′, b′3), c′) :

α′ ∈ F 2, b′, c′ ∈ F}, and hence this subgroup has order 34k.

Proof: Every element of CG(x) is of the form (α′, β′, c′) where f((0, 0), α′) = f(β′, (1, 0)).

We write β′ = (b′1, b
′
2) for the components of β′. Using the definition of f , the cen-
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tralizer condition becomes

0 = −b′1 · 1 + nb′2 · 0 + (b′2 + b′1 · 0)
1
3 + (n−1b′2 · 0)

1
9

= −b′1 + (b′2)
1
3

and so, b′2 = (b′1)
3. Thus, for the elements of CG(x), we have 32k choices for α′,

another 3k choices for b′1 (and then b′2 is determined), and 3k choices for c′ giving us

34k elements in the centralizer. ut

Lemma 3.6 The center of CG(x) is {((a′′, 0), (0, 0), c′′)}, where a′′ ∈ GF(3), and so

the center has order 3k+1.

Proof: Let z = (α′′, β′′, c′′) be an element in the center of CG(x) and write α′′ =

(a′′1, a
′′
2) and β′′ = (b′′, (b′′)3) (we know β′′ has this form by Lemma 3.5). Since z is

central, we must have

f((b′, (b′)3), (a′′1, a
′′
2)) = f((b′′, (b′′)3), (a′1, a

′
2))

for all a′1, a
′
2, b

′ ∈ F . Substituting into the definition of f , this becomes

−b′a′′1 + n(b′)3a′′2 + ((b′)3a′′1 + b′a′′2)
1
3 + (n−1(b′)3a′′2)

1
9

= −b′′a′1 + n(b′′)3a′2 + ((b′′)3a′1 + b′′a′2)
1
3 + (n−1(b′′)3a′2)

1
9

for all a′1, a
′
2, b

′ ∈ F . In particular, if we take b′ = a′1 = 0, we get

0 = n(b′′)3a′2 + (b′′a′2)
1
3 + (n−1(b′′)3a′2)

1
9

for all a′2. Now, raising to the 9th power is a field automorphism and so this equation

will hold if and only if the equation obtained by taking 9th powers

0 = n9(b′′)27(a′2)
9 + (b′′)3(a′2)

3 + n−1(b′′)3a′2

holds. But if b′′ 6= 0, then this is a degree 9 polynomial in a′2 over F , and so can have

at most 9 solutions. Since we assume |F | > 9, this contradicts the requirement that

the equation hold for all a′2 ∈ F implying that we must have b′′ = 0.

Given that b′′ = 0, our center condition becomes

−b′a′′1 + n(b′)3a′′2 + ((b′)3a′′1 + b′a′′2)
1
3 + (n−1(b′)3a′′2)

1
9 = 0

for all b′ ∈ F . As above, we can take the 3rd power of this equation, obtaining

−(a′′1)
3(b′)3 + n3(a′′2)

3(b′)9 + a′′1(b
′)3 + a′′2b

′ + (n−1a′′2)
1
3 b′

where we have collected the powers of b′ to the end of each term. As above, if a′′2 6= 0,

we obtain a degree 9 polynomial in b′ which is supposed to hold for all b′ ∈ F . This

contradiction implies that a′′2 = 0.
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Substituting 0 for a′′2, our center condition becomes

−(a′′1)
3(b′)3 + a′′1(b

′)3 = 0

for all b′ ∈ F . Choosing a nonzero value of b′, we must have (a′′1)
3 = a′′1 which implies

that a′′1 ∈ GF(3). Consequently, in describing an element of the center, we have 3

choices for a′′1 and 3k choices for c′′. Hence the order of the center of CG(x) is 3k+1. ut

Theorem 3.7 The groups Gf and Gf are not isomorphic.

Proof: Lemmas 3.5 and 3.6 imply that x is a noncentral element of Gf having a

centralizer whose center has order 3k+1. By Theorem 3.4 there are no such elements

in Gf , and so the groups cannot be isomorphic. ut

While this completes our primary goal of demonstrating that the two groups are non-

isomorphic, we observe that it is easy from our existing analysis to determine the

automorphism group of Gf .

Clearly the automorphism group of Gf maps into GL(4k, 3) × GL(k, 3), where the

two factors correspond to the action of the automorphism group on the Frattini

factor V = Gf/Φ(Gf ) and its center respectively. Let Γ denote the image of the

automorphism group in this direct product, and let Γi denote the the images of the

projections of Γ into these two factors.

Now Γ1 must preserve the set of images in V of the centers of the centralizers of

the noncentral elements of Gf . By Lemma 3.3 this set consists of the 1-dimensional

F -subspaces of V , where F acts naturally on V . It follows that Γ1 ≤ ΓL(4, q) by the

fundamental theorem of projective geometry (recall that q = 3k).

Consider now the subgroup Γ∗ of Γ consisting of those elements that map into GL(4, q)

rather than ΓL(4, q), and the associated subgroups Γ∗1 and Γ∗2. By considering [x, y]

and [αx, y] for some α ∈ F it is easy to see that Γ∗2 acts on the center of Gf by

scalars in F . Now the formula for a commutator in Gf shows that Γ∗1 acts on V

by elements of a generalized symplectic group; that is to say, the group GSp(4, q)

that preserves the symplectic form defined by commutation (where this is regarded

as an F -bilinear form from ∧2V to F ) up to scalar multiplication, the image in Γ∗2
of an element of Γ∗ being multiplication by the corresponding scalar. Conversely, if

h ∈ GSp(4, q) and γ is the corresponding scalar, then h and γ define an element of

GSp(4, q)× F× ≤ GL(4k, 3)×GL(k, 3) that lifts to an automorphism θ of Gf , since

θ will preserve commutation, and Gf is of exponent 3. Clearly the automorphism

group of F acts naturally on Gf , the same automorphism necessarily acting on the

Frattini factor of Gf and on its center.

Hence we obtain the following result, where ΓSp(4, q) denotes GSp(4, q) extended by

the automorphism group of F .

Theorem 3.8 There is an exact sequence 0 → A → Aut(Gf ) → ΓSp(4, q) → 1,

where A is an elementary abelian 3-group of rank 4k2 consisting of those automor-

phisms that centralize the Frattini factor of Gf .
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While we have not analyzed the automorphism group of Gf , we expect that this

approach provides an alternative proof that the two groups are nonisomorphic.
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