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Abstract

We describe a new technique for finding efficient presentations for finite

groups. We use it to answer three previously unresolved questions about

the efficiency of group and semigroup presentations.

1 Introduction

In this paper we report on a new practical technique for studying finite
presentations for finite groups. This technique has allowed us to answer three
previously unresolved questions about the efficiency of some finite groups. The
questions relate to some groups with order 38 (see [9]), the group PSU(3,3)
(see [3]) and some groups with order 214 (see [8]).

The new technique is based on the observation that presentations for a
group built on different generating sets with the same size can have quite
different properties. We expect that the most significant property in the
context of the questions we have been considering is the length of the pre-
sentation; that is, the sum of the lengths of the relators or relations. The
length of the shortest presentation on a generating set varies considerably over
all generating sets with the same size of a fixed group. A simple example
illustrates the extent of this length variation. Consider the alternating group
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A5 . For the generating set {a = (2, 5, 4), b = (1, 2, 3, 4, 5)} a shortest
presentation is {a, b | a3, b5, (ab)2} which has length 12. On the other hand
for the generating set {a = (3, 4, 5), b = (1, 2, 3)} a shortest presentation
is {a, b | a3, (aba−1b)2, abab2abab−1} which has length 20. (The proof that it
is shortest requires some work.) Note that the smallest number of relations
relative to a generating set need not be the same for all minimal generating
sets. The group of the trefoil knot is an example [5]. It is not known whether
this can happen for finite groups.

The successful method for finding groups with deficiency zero in [9] involved
looking at certain presentations with deficiency zero and observing the groups
which are defined by them. This showed, for example, that 10 of the 14 groups
with order 38 and trivial multiplicator have deficiency zero. We also found
presentations (#11, #12, #13 and #14 [9, Section 3.4]) with deficiency zero
which were ‘close’ to defining the other 4 groups in that the groups defined
have a largest soluble quotient which has order 38 . Since then two of these
presentations have been shown to define infinite groups: #14 is settled in
[7] and Derek Holt (private communication) has settled #13 using the same
method.

The new technique involves taking many generating sets for a given group.
On each generating set we build a presentation and then discard relations.
Informally we regard two generating sets for a group as equivalent if the shortest
presentations on them have the same length. For a generating set X of a group
G , all the generating sets obtained from X by applying an automorphism of
G to it are equivalent to X . So is the generating set obtained by inverting a
generator. See Section 2 for details.

The first question we consider is whether the remaining 4 groups with
order 38 and trivial multiplicator have deficiency zero. We introduce the
name 38#x for the group which is the largest 3-quotient of the group defined
by the presentation #x in Section 3.4 of [9]. The new technique produces
a number of efficient presentations for 38#11. These presentations are not
restricted to the type guaranteed by Theorem 2 of [9]. This observation
leads to other purely relator-based searches which found shorter presentations
with deficiency zero for some of the groups settled in [9]. The searches did
not produce an efficient presentation for any of the groups 38#12, 38#13
or 38#14. However, we produced more presentations which define groups
whose largest soluble quotient is the group in question. Further details are in
Section 3. We also applied a related technique to the groups with order 58

and trivial multiplicator.
Another question we consider arises from a paper of Campbell, Mitchell and

Ruškuc [3]. They are interested in finding efficient semigroup presentations for
finite groups. A finite semigroup presentation for a semigroup S is efficient
if the number of relations minus the number of generators is the rank of
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the second homology group of S . They showed that every efficient group
presentation for a finite group can be turned into an efficient semigroup
presentation by adding at most one more generator and, if so, one more relation
and then suitably modifying the existing relations. Further they showed that
if the group presentation has a special form then the extra generator and
relation are not needed. They give, as an example where an extra generator
is used, a 3-generator, 3-relation semigroup presentation for PSU(3,3). Our
technique enables us to find a special group presentation for PSU(3,3), so
there is an efficient semigroup presentation for PSU(3,3) with 2 generators
and 2 relations. See Section 4 for details.

Finally, we consider a question which arises out of the paper of Havas and
Newman [8] in which it was shown that there are finite groups which cannot
be generated by 3 elements and have a presentation with 4 generators and 5
relations. The method used in that paper was essentially a random search
over presentations with 4 generators and 5 relations of a certain type. It
produced groups of this kind with orders 216, 217, 218 and 219 . It is a well-
known consequence of the Golod-Shafarevich Theorem that a finite p-group
which has a minimal generating set with four elements needs at least five
relations to define it. As was remarked in [8] the smallest order for a group of
this kind is at least 214 . Here we exhibit a 4-generator, 5-relator group with
order 214 . See Section 5 for details.

All computations reported in this paper were carried out using Magma [1]
on a variety of platforms.

2 Presenting a group on different generating

sets

Recall that in our study of groups with deficiency zero in [9] we constructed
candidate groups. However, we made little use of the groups, instead con-
centrating on all short presentations of a certain kind. Here we focus on the
groups.

We use the following technique to investigate whether a given group G has
a presentation on k generators and r relators.

1. We determine a set of k -element subsets of G which generate G ; the
set is representative in the sense that every k -element generating set is
equivalent to at least one member of it.

2. For each such generating set X of G , we obtain a finite presentation
{X | R} for G on X .

3. Finally, we consider all r -element subsets S of R and investigate
whether {X | S} presents G .
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We now describe how to construct the representative k -element generating
sets for G in more detail. The initial stage of the procedure is as follows.

a. Construct Aut(G), the automorphism group of G .

b. Construct a list L1 of representatives of orbits under Aut(G) of those
elements of G not in the Frattini subgroup Φ(G).

c. Let x1 , the first element of a putative generating set, range over the
elements of L1 .

Assume [x1, x2, . . . , xi] has been constructed. The inductive stage is as
follows.

a. Let Sx1,...,xi
be the stabiliser of [x1, . . . , xi] in Aut(G).

b. Construct a list Li+1 of representatives of orbits under Sx1,...,xi
of those

elements of G not in the subgroup 〈Φ(G), x1, . . . , xi〉 .

c. Let xi+1 range over the elements of Li+1 .

As described, the procedure chooses representatives of orbits under Aut(G)
of elements of G . We can reduce the number of representatives by using
length-preserving automorphisms of the corresponding free group. In practice,
we merge the existing orbits under the mapping g 7−→ g−1 . This usually gives
a substantial reduction.

The procedure produces a representative list of generating sets for G .
Then, given as input G = 〈X〉 , the relation-finding algorithm of [4] is used to
construct a finite presentation {X | R} for G .

The final stage of our technique is to attempt to find an r -element subset S
of R which presents G . We do this by running through all r -element subsets
of R .

A verification that {X | S} presents G relies on a successful coset
enumeration [11]. A successful enumeration over the trivial subgroup gives
a direct proof. In more difficult cases, we enumerate cosets over a cyclic
subgroup. If a cyclic subgroup is shown to have finite index, then the
Reidemeister-Schreier algorithm can be used to find a presentation for it, and
its order can be calculated by computing abelian quotient invariants.

It is possible to enumerate billions of cosets [10], but such enumerations are
computationally expensive. Hence, we use cheap filters to remove presentations
which cannot define the desired group. In particular, if G is a p-group, we
check whether the group 〈X | S〉 has a larger p- or metabelian quotient than
G and, if so, discard the presentation. Such filters are discussed in Section 3.3
of [9]. If G is perfect we check that the group defined by a presentation has
trivial abelian quotient invariants.
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As a further heuristic filter for hard cases, we first carry out restricted
coset enumerations over some larger subgroups. If these succeed we attempt
enumerations over cyclic subgroups, now allowing many more cosets to be
defined.

Our technique has random components: the orbit representatives are
selected randomly and the implementation of the relation-finding algorithm
has some random aspects. Therefore different runs may produce different
output presentations.

3 Groups with order p
8

For brevity in the following sections we use the case inverse convention in which
A and B denote a−1 and b−1 , etc.

Theorem 3.1. The group defined by the presentation

{a, b, c | BcABACAB, acBABBC,CCBBACBa}

is 38#11.

Its order can be verified by coset enumeration. That it is 38#11 can be
proved by the standard presentation algorithm [14].

We obtained presentations for 38#11 by using the procedure described in
Section 2 to produce about 75000 different generating sets. Among the subsets
of relators for one of these generating sets we found the presentation of the
theorem. This presentation does not conform to Theorem 2 of [9]:

Proposition 3.2. If a group of order p8 has a 3-generator 3-relator presen-

tation, then it has a presentation {a, b, c | u, v, w} where the length of each

relator is at least p + 2 and the exponent sum matrix is diagonal with entries

p, p, p.

It is easy to convert our presentation to a conforming presentation with
length 27: multiply a cyclic permutation of the first relator by a cyclic
permutation of the inverse of the second relator, and do the same with the
third relator.

In [9] we investigated conforming presentations with total relator length
up to 21. The discovery of this presentation led us to investigate longer
and nonconforming presentations involving relators with lengths up to 9. In
a search through about 8 million presentations we found 30 nonconforming
presentations with various lengths, none shorter than 23, for 38#11. Even
though we applied both the new technique and these extra relator based
searches, we did not find a 3-relator presentation for 38#12, 38#13 or 38#14.
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We discovered nonconforming presentations shorter than our published
presentations for other groups with order 38 . Thus:

{a, b, c | bbcbC, ccacA, abaabb} presents 38#2;

{a, b, c | bbcbC, ccAca, abaabb} presents 38#3;

{a, b, c | abaabb, bCbbCC, cacBcbA} presents 38#6;

{a, b, c | abaabb, bcbbcc, accbAcB} presents 38#7.

We also found a shorter conforming presentation for 38#9, namely

{a, b, c | aaBab, bbCacbA, ccBcAba}.

This was revealed by doing more comprehensive coset enumerations than when
we first considered the presentation.

In [9] we proposed a candidate efficient presentation for a group with order
58 , however it presents an infinite group [7]. The approach used successfully
for 38#11 is not readily applicable to groups with order 58 since each group
has too many representative generating sets. Instead we investigated a random
selection of generating sets for each of the 32 groups with order 58 and trivial
multiplicator. We found many presentations with deficiency one for these
groups, but none with deficiency zero.

4 PSU(3,3) as an efficient semigroup

Campbell, Mitchell and Ruškuc [3] ask whether, given a group presentation for
G , one can always find a semigroup presentation for G on the same generating
set and with the same deficiency. They have the following result.

Proposition 4.1. Let G be the group defined by the finite group presentation

P = {A | R} where |R| ≥ |A| and let A be a semigroup generating set for G.

In addition, assume that R contains a relation of the form E = 1, where E

is a word which contains no inverses of generators, but which contains every

generator at least once, and also contains the square of at least one generator.

Then G has a semigroup presentation {A | Q} with |Q| = |R|.

Using another proposition, they obtain an efficient semigroup presentation
for PSU(3,3) with 3 generators and 3 relations. They start from the efficient
group presentation for PSU(3,3) due to Kenne [12], which does not contain a
relation which allows application of Proposition 4.1. We show that PSU(3,3)
has a 2-generator, 2-relation semigroup presentation by producing a suitable
group presentation for PSU(3,3).

An application of our technique produces efficient presentations for PSU(3,3).
Some are shorter than that of Kenne, for example:

{a, b | B2ABa3BA, b2AB2Ab2aBa}.
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However none of these are suitable for applying Proposition 4.1.
Instead, we obtained the following result by a variation of our methods.

Theorem 4.2. The group PSU(3,3) has the efficient presentation

{a, b | a3b7, ABabbaabbbABB}.

This can be proved by coset enumeration. We constructed the presentation
by using our technique to find a 3-relator presentation which satisfies the
following proposition due to Campbell, Havas and Robertson [2].

Proposition 4.3. Let G be a finite simple group. Suppose that G, or some

stem extension of G, can be presented as

{a, b | ap = bq = w(a, b) = 1}.

Then G, the covering group of G, and all stem extensions of G, are efficient.

Since G is perfect, p and q are coprime. Campbell et al. [2] show how to
convert such a presentation to an efficient presentation involving two relators:
apbq and w̄(a, b) depending on w(a, b).

The relation-finding algorithm as implemented in Magma is well-suited
for this task, since it usually includes relators giving the order of the group
generators. Application of our procedure to PSU(3,3) gives 1442 representative
generating sets. Among the resulting 3-relator subsets we found a presentation
including the relators a3 and b7 plus a third relator w(a, b) which leads to
w̄(a, b) = ABabbaabbbABB . We found several suitable group presentations on
generating pairs with orders {3, 4} and {3, 8} , as well as others with orders
{3, 7} . However, we found no suitable presentation on a generating pair with
orders {2, 7} . (An earlier attempt at finding one on generators with orders
{2, 7} is described in [6].)

5 An efficient group with order 214

Recall from [8] that the smallest p-group with a 4-generator, 5-relator presen-
tation has order at least 214 . However, no 4-generator 5-relator group with
order 214 was known. An argument similar to that of Theorem 1 of [9] shows
that such a group has Frattini rank 4; its largest class 2 quotient has order 29

and nuclear rank 5; further its largest class 3 quotient has order precisely 214

and is terminal. Such groups are candidates.
We used the p-group generation algorithm (see [13]) to construct a complete

and irredundant list of candidates. A total of 3217 of the 6709 groups with
order 29 and class 2 have nuclear rank equal to 5. Of these 14 have terminal
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immediate descendants with order 214 : one has 104; each of the remaining 13
has 512. Hence there are 6760 candidates.

We constructed a presentation on a minimal generating set for each
candidate. For each presentation and for each resulting 5-relator subset, we
checked whether the group presented by this subset had largest 2-quotient
with order 214 . If so, we sought to prove finiteness by coset enumeration. This
approach succeeded in exactly one instance.

Theorem 5.1. The presentation

{a, b, c, d | caCAdd,CDCaaBDB,CDcBaBDA,BCDaaBDc, cbABaBcb}

defines a group with order 214 .

A moderately hard coset enumeration shows that the subgroup 〈a〉 has
index 2048 in the group and the order, 8, of a can be found by computing
the abelian quotient invariants of 〈a〉 . A difficult coset enumeration over the
trivial subgroup gives the result directly.

We expect that by looking at many generating sets as described in Section 2
efficient presentations for other groups with order 214 could be found, but we
have not attempted to do so.

Acknowledgements

This work was supported in part by the Marsden Fund of New Zealand
via grant #9144/3600776. The second author was partially supported by the
Australian Research Council.

REFERENCES

[1] Bosma, Wieb; Cannon, John; Playoust, Catherine. The Magma algebra
system I: the user language. In Computational algebra and number theory,
London, 1993; J. Symbolic Comput. 1997, 24 (3-4), 235–265.

[2] Campbell, Colin M.; Havas, George; Robertson, Edmund F. Nice efficient
presentations for small simple groups and their covers. Preprint.

[3] Campbell, C. M.; Mitchell, J. D.; Ruškuc, N. On defining groups efficiently
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