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Takahashi (1989) considers a family of closed 3-dimensional manifolds whose
fundamental groups are cyclically presented. The polynomials associated with

the cyclic presentations (see Johnson, 1974) coincide with the Alexander poly-
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Abstract

We present two pairs of infinite families of cyclically presented
groups, where all groups in each pair have the same Alexander poly-
nomials, and prove that the corresponding groups in each pair are iso-

morphic.

Introduction

nomials of the corresponding knots.

A natural question arising from this study is the following: are all cyclically

presented groups with the same Alexander polynomial isomorphic?

present two pairs of infinite families of cyclically presented groups and show

While we expect a negative answer to this question in most cases, here we

that the corresponding groups in each pair are isomorphic.



The infinite families of groups are for all n > 1:

Gi(n) = (@ | 25, Tipat i Tigomiti T = 1 ),

Ga(n) = (wil yi;11yi+2yiy;r11yi+2y;+11yi =1)n ()
and

Hi(n) = (i |27 2ipori, miperi it 2 = 1 ),

Hy(n) = (4 | Yis1ViroYi1 ¥i¥im 1 Yiro¥i % = 1 ). (II)

Each group has n generators and n relations, which are obtained from the
given one by applying powers of the cycle (1,2,...,n) to the subscripts and
reducing these modulo n to lie in the set {1,2,...,n}. See Johnson (1990,
p. 95) for further discussion of such presentations.

The first pair (I) has the Alexander polynomial f(t) = 2t*> — 3t + 2 of the
knot with 5 crossings denoted by 55 in Rolfsen (1976). The second pair (II)
has the Alexander polynomial f(t) = 2t*> — 5t + 2 of the knot with 6 crossings
denoted by 6.

Our central result is:
Theorem 1.1 For all n > 1,G1(n) =2 Go(n) and Hi(n) = Hy(n).

The clue to the proof given in §3 is provided by the machine computations
described in §2, which also suggest some of the remarks and open problems
discussed in §4.

A detailed study of the connections between such presentations and closed
3-dimensional manifolds appeared in Kim and Vesnin (1997).

2 Investigating the presentations

As a first step towards understanding these groups, we investigated the pre-
sentations G(3) for £ =1,2.

While the general problem of deciding whether or not two finitely-presented
groups are isomorphic is insoluble, O’Brien (1994) describes a practical algo-
rithm which can decide whether or not two given finite p-groups are isomor-
phic. We used his implementation of this algorithm to establish that the class
20 5-quotients, each of order 5%°, of G;(3) and G5(3) are isomorphic.



Holt and Rees (1992) describe an approach that attempts to decide whether
or not two finitely-presented groups are isomorphic. In particular, they at-
tempt to prove isomorphism by using the Knuth-Bendix procedure to generate
a word-reduction algorithm for words in the generators. If the attempt is suc-
cessful, then it enables the program to verify that a particular map from one
group to another is in fact an isomorphism. They generate candidate isomor-
phisms by an exhaustive search procedure. Their implementation, TESTISOM,
of this technique is distributed as part of the Quotpic package (see Holt and
Rees, 1993).

TEsTIsOM produced the following isomorphism from G4(3) to G2(3):

-1
1 = Y,
1
T2 = Yy

-1
T3 = Y2lYs

It produced the following isomorphism from H;(3) to H»(3):

—1
T1 = N1Yo

—1
Ty = Y2UYs

1
T3 = Yy

TEsTIsOM also produced isomorphisms for the pairs G(4) and Hy(4) for
k = 1,2, but failed to decide whether or not the pairs are isomorphic for
n=>.

These isomorphisms determined the form of the general proof outlined
in §3.

3 [Establishing the isomorphisms

We begin with the second pair since they are somewhat easier to handle, and

perform the following operations on the given presentation for Hi(n):
e isolate the sixth letter of the relation;
e adjoin new generators by Tietze transformations;

e adjust the dummy variable in the relations.



Applying this strategy, we obtain:
Hi(n) = (zi|zip = (@ir30)* (Cig2ih)? In
= (i, 0 | 21 = a?ﬂa{fm a; = fEi—l»’E{l In
= (a0 | v = afa;fl, G = Ti 1Ty - (1)
Operating on Hs(n) in a similar way, we obtain:
Hy(n) = (i | Yin1 = Wi 1¥is2¥ih)” In
(i, bi | yirr = (B:bh)% bi = Yiyith In
= (g, bi |y = (bim1bi Y2, by = iy I (2)
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The map « : x; — b; between the presentation (1) and (2) sends a; to
bi—1b; ' and a? to y;. The relations in (1) are thus preserved and « induces a
homomorphism. The same is true for the map §: y; — a?, b; — z; and, since
this is clearly the inverse of «, it follows that « in an isomorphism.

The procedure for the first pair is similar, except that we need to “reverse
the orientation” in Go(n). That is, we replace ¢ by —i in the relation and
then y; by y_;.

Ga(n) = (yi |y i oyt WWio¥i 1 =1 )a
= (Y | Yim2 = Yicr¥i Yi1¥i9¥Yio1¥; ' Im
= (i | % = Yir1¥iroYir1¥i Yir1Yia In
=~ (i, T | Y = TATTLY, T = Yy, n
2 (z|zi= x;—l}2$i+lmi_—|—12xi+1xi_lxi+l )n

Gl(n)

1%

4 Some remarks

Remark 4.1 The presentation (1) shows that the relations
1Ty ... Tp =1, a1ag...a, =1

hold in the groups Hy(n). It also yields a third presentation for these groups:
namely,

Hy(n) = (a; | ai = a;_a; *a;}10; " )



Remark 4.2 A relation matrix for Hy(n) is the n x n circulant matrix asso-

ciated with the polynomial
212 — 5t +2 = 2(t — 1/2)(t — 2),

and it follows from Johnson (1974) that the order of the derived quotient of
Hk(n) is
2"(1 — (1/2)™)(2" — 1) = (2" — 1)

Since the corresponding polynomial 2t> — 3t + 2 for G(n) does not factorize,
we have no such nice formula for the order of the derived quotient of G (n);

all we can say is that the derived quotient is finite.
Question 4.3 Which of the G (n), Hi(n) are finite groups?

Remark 4.4 There is some evidence (based on an investigation of p-quotients)
to suggest that the Gi(n) and Hi(n) are 2-generator groups. However, we

cannot prove this claim in general.
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