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Abstract

We classify the radical subgroups and chains of the Conway simple group Co;
and then verify the Alperin weight conjecture and the Dade final conjecture for
this group.

1 Introduction

Applying the local subgroup strategy of [2] and [3], we have previously classified the
radical subgroups and radical chains for the sporadic simple groups Fiss, Fisz, Coo,
O'N and Ru, and verified the Alperin and Dade final conjectures for these finite simple
groups, (see [2], [3], [4] and [5]). In this paper, we use the strategy to verify the Alperin
and Dade conjectures for the Conway simple group Co;. The challenge is to determine
the character tables of the normalizers of some of the radical chains, since they could
not be calculated directly from the given representation using either of GAP [14] or
MAGMA [7].

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [12] generalized the Knorr-Robinson version of the Alperin weight conjecture
and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [13] announced that his final conjecture
needs only to be verified for finite non-abelian simple groups; in addition, if a finite
group has a trivial outer automorphism group, then the projective conjecture is equiv-
alent to the final conjecture. We verify the Alperin weight conjecture and the Dade
final conjecture for Co;.

The paper is organized as follows. In Section 2, we fix notation and state the two
conjectures in detail. In Section 3, we recall our modified local strategy and explain
how we applied it to determine the radical subgroups of Co;. In Section 4, we classify
the radical subgroups of Co; up to conjugacy and verify the Alperin weight conjecture.
In Section 5, we do some cancellations in the alternating sum of Dade’s conjecture
when p = 2, 3 or 5, and then determine radical chains (up to conjugacy) and their
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local structures. In Section 6, we verify Dade’s ordinary conjecture for Co; and in the
last section, we verify Dade’s projective conjecture for 2.Co;. We give a detailed proof
only when the prime p is 3, the proofs for other primes are essentially similar.

2 The Alperin and Dade conjectures

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R, where
O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) = Ng(R). Denote
by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set
of p-blocks, B € Blk(G) and ¢ € Irr(N(R)/R). The pair (R, ¢) is called a B-weight if
d(¢) = 0 and B(p)® = B (in the sense of Brauer), where d(p) = log,(|G|,)—log,(¢(1),)
and B(¢p) is the block of N(R) containing ¢. A weight is always identified with its G-
conjugates. Let W(B) be the number of B-weights, and ¢(B) the number of irreducible

Brauer characters of B. Alperin conjectured that W(B) = ¢(B) for each B € Blk(G).
Given a p-subgroup chain

C:Phb<P<---<P, (2.1)
of G, define |C|=n,Cy: < P, <--- < B, C(C) =Cg(P,), and
N(C) = Ng(C) =N(Py)NN(P)N---NN(P,). (2.2)

The chain C is said to be radical if it satisfies the following two conditions:

(a) Py =0,(G) and (b) P, = O,(N(Cy)) for 1 <k < n.

Denote by R = R(G) the set of all radical p-chains of G.

Let Z be a cyclic group and G = Z.G a central extension of Z by G, and C €
R(G). Denote by Ng(C) the preimage n~'(N(C)) of N(C) in G, where 5 is the
natural group homomorphism from G onto G with kernel Z. Let p be a faithful linear
character of Z and B a block of G covering the block B(p) of Z containing p. Denote
by Irr(Ng(C), B, d, p) the irreducible characters 1 of Ng(C) such that ¢ lies over p,
d(¢) = d and B(y)® = B and set k(Ng(C), B, d, p) = |Irr(Ng(C), B, d, p)|.

Dade’s Projective Conjecture [13]. If O,(G) = 1 and B is a p-block of G
covering B(p) with defect group D(B) # O,(Z), then

Y. (=D)“k(Ns(C), B, d, p) =0, (2.3)
CeR/G
where R/G is a set of representatives for the G-orbits of R.
If Z =1 and p is the trivial character of Z, then G = G and we set B = B, and

k(Né(C)’B’da :0) = k(NG(C)’Bad)

Hence the Projective Conjecture is reduced to the Ordinary Conjecture.

Dade’s Ordinary Conjecture [12]. If O,(G) = 1 and B is a p-block of G with
defect d(B) > 0, then
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3 A local subgroup strategy

The maximal subgroups of Co; were classified by Wilson [20], [21]. Using this classifi-
cation and its proof, we know that when p = 2 or 3, there are 6 maximal subgroups M
such that each radical p-subgroup R of Co; is radical in one of the subgroups M and
further that Ngo, (R) = Ny (R).

In [2] and [3], a (modified) local strategy was developed to classify the radical
subgroups R. We review this method here.

Step (1). We first consider the case where M is a p-local subgroup. Let Q = O, (M),
so that ¢ < R. Choose a subgroup X of M. Using MAGMA, we explicitly compute
the coset action of M on the cosets of X in M; we obtain a group W representing this
action, a group homomorphism f from M to W, and the kernel K of f. For a suitable
X, we have K = () and the degree of the action of W on the cosets is much smaller
than that of M. We can now directly classify the radical p-subgroup classes of W,
and the preimages in M of the radical subgroup classes of W are the radical subgroup
classes of M.

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a subgroup K of M such
that Nx(R) = Ny (R) for each radical subgroup R of M. If K is p-local, then we apply
Step (1) to K. If K is not p-local, we can replace M by K and repeat Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
we list subgroups R satisfying Nj/(R) = Ngo, (R), so these are the radical subgroups
of Co;. Possible fusions among the resulting list of radical subgroups can be decided
readily by testing whether the subgroups in the list are pairwise G-conjugate.

In our investigations of the conjectures for Co; and 2.Co;, we used the minimal
degree representation of Co; as a permutation group on 98280 points, and a represen-
tation of 2.Co; as a permutation group on 196560 points. The maximal subgroups of
Co; were constructed using the details supplied in [10] and the black-box algorithms
of Wilson [22]. We also made extensive use of the algorithm described in [11] to con-
struct random elements, and the procedures described in [2] and [3] for deciding the
conjectures.

The computations reported in this paper were carried out using MAGMA V2.7-2 on
a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights

Let ®(G,p) be a set of representatives for conjugacy classes of radical subgroups of
G. For H K < G, we write H <¢ K if z7'Hz < K; and write H € ®(G,p) if
r7'Hz € ®(G,p) for some z € G. We follow the notation of [10]. In particular, if p
is odd, then pit*” is an extra-special group of order p'*?’ with exponent p; if § is +
or —, then 2,7%7 is an extra-special group of order 2'*?” with type &, where § is + or
—, according as the extra-special group is a central product of an even or odd number
of quaternion factors. If X and Y are groups, we use X.Y and X : Y to denote an
extension and a split extension of X by Y, respectively. Given a positive integer n, we
use Ep» or simply p" to denote the elementary abelian group of order p", Z,, or simply



n to denote the cyclic group of order n, and Dy, to denote the dihedral group of order
2n.
Let G be the simple Conway group Co;. Then

G| =2%"-3-5.7%.11-13- 23,

and we may suppose p € {2,3,5,7}, since both conjectures hold for a block with a
cyclic defect group by Theorem 9.1 of [12].

We denote by Irr’(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number log,(|H|,). Given R € ®(G,p), let C(R) =
Cg(R) and N = Ng(R). If By = By(G) is the principal p-block of G, then (c.f. (4.1)
of [2])

W(B,) = %: I (N/C(R)R)], (4.1)

where R runs over the set ®(G, p) such that the p-part d(C(R)R/R) = 0. The character
table of N/C(R)R can be calculated by MAGMA, and so we find |Irr®(N/C(R)R)|. If
d(C(R)R/R) # 0, then we leave the entries of the last column blank in Tables 1-2,
since they do not contribute weights for the principal block.

Lemma 4.1 Let G = Coy. The non-trivial radical p-subgroups R of G (up to conju-
gacy) and their local structures are given in Tables 1 and 2 according as p is odd or
even, where H* denotes a subgroup of G such that H* ~ H and H* #¢ H, and Sy, is

a Sylow p-subgroup of G.

PRrROOF: We prove the lemma when p = 3, the proofs for other primes are either
trivial or similar.

Suppose p = 3. Let ¢ € {1,...,6}, and let M; denote a maximal subgroup of
G = Co; where M; = N(3A) ~ 3.Suz:2, My = N(3?) ~ 3%2.U4(3).Dg, M3 = N(3%)
35:2Myy, My = N(3C) ~ 31+4:2U,(2):2, M5 = N(3%) ~ 3374:2(S, x Sy) and Mj
N(3D) ~ Ay x S3. As shown in [21], each 3-local subgroup of G is conjugate to a
subgroup of M; for some 3.

The subgroup M;, M, and Mg are normalizers of some 3A, 3C and 3D elements, so
we can easily construct them in G. The subgroups 3 = O3(M,), 3> = Z(03(M5)) and
3% = O3(M3) can be constructed as subgroups of M;. Indeed, using MAGMA we can
first explicitly compute the coset action of M; on the cosets of a subgroup X of M;; we
obtain a group W representing this action, a group homomorphism 7 from M; to W,
and the kernel K of n. For a suitable X, we have K = O3(M;) and the degree of the
action of W on the cosets is 1782. The commutator group H of W is the group Suz.
By Wilson [18, Section 2.2], H contains exactly 3 classes of maximal 3-local subgroups
of 3A-type, K1 = 3.U4(3).2, K, = 3% My, and K3 = 32+%:2(A, x 2%).2, where a 3-local
subgroup is of 3A-type if it has a minimal normal subgroup generated by 3A-elements.
Repeated random selections of elements allow us to obtain maximal 3-local subgroups
K; of 3A-type. If H; is the preimage of K; in My, then 32 = O3(H,), 3% = O3(H>) and
33 = O3(H3), so we can construct all of the subgroups M;.

Let R be a non-trivial radical 3-subgroup of G. Then N(R) is 3-local, so that we
may suppose N(R) < M; for some i and hence R € ®(M;,3) with N(R) = Ny, (R).
We apply the local strategy of [2] or the modified local strategy [3] to each M,;.

i1
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R C(R) N | |I®(N/C(R)R)|

7 7 x A; (7:3 x A7).2

7* 7 x Ly(7) (7:3 x Ly(7)).2
72 72 7% (3 x 244) 21

5 5 x (A5 x Aj).2 (Do % (A5 x As).2).2

5 5% Jy (5:2 x Jy): 2

52 52 x As (52 x As).4.53

(52)* 52 52: 245
53 53 53: (4 x Ag).2 8
512 5 5172 GLy(5) 4
Sys 5 Sys: 42 16

3 3.Suz 3.Suz: 2

3* 3 x Ay Ss x Ag

32 32.U4(3) 32.U4(3).Ds

31+2 3 x Ag 312.(8 x Ag).2
3 3 31T 2U4(2): 2 2
36 36 36:2M, 1
36.3 32 36.3.2(A, x 2) 2
33+ 33 3314.2(Sy x Sy) 4
31433 3 3174.3%.2.(S, x 2) 4
36.32 33 36.32.2.GLy(3) 4
33+4.3 3 33+4.3.2.(2 x Sy) 4
Svys 3 Sys.23 8

Table 1: Non-trivial radical p-subgroups of Co; with p odd

(].) Let H1 = 32.U4(3)122, H2 = 363 (M11 X 2), H3 = 33+412(S4 X Dg) and H4 =
3172.(8 x Ag).2 be maximal subgroups of M; = 3.Suz:2, and let R be a radical 3-
subgroup of M;. By [18, Sections 2.2 and 2.3], we may suppose R € ®(H;,3) with
Nu (R) = Ny, (R) for some i.

Let 3% = O3(H,), 3° = O3(H,) and 3*™ = O3(H3). Then we may take

®(H,,3) = {3%,35,3%" 5},

where S’ is a Sylow 3-subgroup of M;. Moreover, N(R) # Ny, (R) # Ny, (R) for each
R € ®(Hy,3)\{3%} and

36, Aq: 22 if R = 3%,
Ng, (R) =4 3t%.45,.2  if R = 3%
S22 x2) ifR=9"

In addition, Cyy, (3%) = 3%, Car, (3*1*) = 3% and Cy, (S') = 3%

5



R C(R) N(R) [ [Im"(N/C(R)R)| |

22 22 x G5(4) (Ag X G3(4)):2

(2%)* 22 x G9(2) Sy x Go(2)

Dy 2 x G9(2) Dg x G5(2)
21—1—8 9 21+8 O+( ) 1
211 211 211 M24 0
92+12 92 22+12; (44 x ) 1
22+12 9 2 22+12 9 Aq 1
21+8 26 2 2148 26 Aq 1
211 94 2 211 24 Ag 1
94+12 94 24+12.(83 X 356) 1
911 96 92 211 96 (Ls(2) x S3) 1
24412 9 24 24412 9 3.5 1
92+12 93 92 92412 93 (L4(2) x Ss) 1
21+8 26 93 2 21+8 26 93 [5(2) 1
211 93 94 2 211 93 94 I,4(2) 1
911 oL+6 9 211 2L+6 [,4(2) 1
91+8 gl+8 2 | 21482148 (S % Sy x S5) 1
22+12 o4 22 22112 24 (S5 x S3 x S3) 1
92+12 95 9 92+12 95 (S, x Sj) 1
21+8 26 1 2 2148 26 94 (S5 x Sj) 1
2148 o148 9 2 2148 2148 9 (S5 x Sy) 1
211 94 94 22 1L, 24 24.(S5 x S3) 1
211 22 26 92 211 92 96 (G5 x Ss) 1
92+12 93 92 92 92112 93 92 (S x Sj) 1
21+8 96 93 92 2 2148 26 93 92 G, 1
22+12 93 92 9 2 22+12 93 92 92 G, 1
21122325 2 211.2.23.25 .S, 1
21+8 9694 9 2 2148 96,912 G, 1
211 92 93 94 22 211 92 23 94 G, 1
Sys 2 Sya 1

Table 2: Non-trivial radical 2-subgroups of Co,
If 31t2 = O3(H,), then we may take

(I)(Hi’ 3) =

{38y ifi=2,
{33+4, 8"} if i =3,
{31+2, 5"} ifi =4,



where S” is a Sylow 3-subgroup of Hy. Moreover, for R € ®(H;,3), Ny, (R) = Ny, (R)
except when R = S”, in which case Ny, (S") # Ng,(S") = S".(8 x 2?).2, and in
addition, N(31*%) = Ny, (317%) = Hy, Npyy(S') =~ S'.(SDags x 2), where SDoa is the
semidihedral group of order 2*.
It follows that
@(Mla 3) = {3: 327 3}|-+27 367 33+47 SI}:
N(B) = .]V]M1 (3) = M1 and N(3}|_+2) = NM1 (3}1_4—2) = H4.
(2) We may take
B(M,,3) = {3%,3°%,3°+, 5"},
and moreover, N(R) # N, (R) for each R € ®(M,,3)\{3%}. In addition,
36.A61D8 lfR = 36,
]\[}\42 (R) = 33+4.21_+4.D12 if R= 33+4,
S'.(SDy x2) if R=S"
(3) We may take
®(Ms,3) = {3°,3°.3,317%.3%,3%.3%, Sy;},
and moreover, N(R) = Ny, (R) for each R € ®(M;,3), so that we may suppose
(4) If 31 = O5(M,), then we may take
®(My, 3) = {3114, 3114.3%, 35443, Sy},
and moreover, N(R) = Ny, (R) for each R € ®(M,,3), so that we may suppose
(My,3) C B(G,3).
(5) If 33** = O3(Ms;), then we may take
(D(M5a 3) = {33+41 33+4'3a 36'325 S?J?)},
and moreover, N(R) = Ny, (R) for each R € ®(M;,3), so that we may suppose
(6) If 3* = O3(Ms), then we may take
®(Ms,3) = {3%,3%,3%, 3", 5"},
and moreover, N(R) # Ny, (R) for R € ®(Ms,3)\{3*}. In addition, (c.f. [10], p. 37)

S3X(3XA6)I2 lfR:32,
Sy x 3224,  ifR=3,

Ny (R) =
o(£) Sy x 3%: 9, if R =34,
S".2? if R=25".
Thus the radical 3-subgroups are as claimed. The centralizers and normalizers of
R can be obtained by MAGMA. O



Lemma 4.2 Let G = Co; and By = By(G), and let Bk (G, p) be the set of p-blocks
with a non-trivial defect group and Irr*(G) the characters of Irr(G) with positive p-
defect. If a defect group D(B) of B is cyclic, then Irr(B) is given by [15, p. 304-311].

(a) If p = 7, then BIk"(G,p) = {B; | 0 < i < 5} such that D(B;) ~ 7 fori > 1,
so that Irr(By) = Irrt (G)\ (U2_,Irr(B;)). Moreover, £(B;) =6 for 1 < i <5 and

(b) If p = 5, then Blk™(G,p) = {B; | 0 < i < 6} such that D(B;) ~ 5% and
D(B;) ~ 5 when i > 2. In the notation of [10, p. 184],

Irr(B1) = {X7, X9: X12, X245 X355 X38, X44, X485 X52> X54, X645 X66> X815 X835 X1, X99 }

and Irr(By) = Irr ™ (G)\(US_,Irr(B;)). Moreover, £(B;) = 4 when i > 2, £(B;) =
12 and ¢(By) = 29.

(c) Ifp =3, then Bk (G, 2) = {By, By, B2, B3} such that D(B;) ~ 312, D(B,) ~ 3
and D(Bs) =g 3*. In the notation of [10, p. 184],

Irr(By1) = {X20, X275 X28, X345 X35, X405 X64, X675 X715 X73, X835 X865 X945 X98 }»
Irr(Ba) = {X29, X385 X51, X555 X625 X80, X855 X89, Xo1}, and
Irr(By) = Irrt(G)\ (U2_, Irr(By)).
Moreover, £(B,) =7, £(By) =5, {(Bs) =2 and £(B,) = 29.

(d) If p =2, then BIk'(G,2) = {By, B1} such that D(B,) ~ Dg. In the notation of
(10, p. 184],
Irr(B1) = {Xs0, X66, X71, X93, X99 }

and Irr(By) = Irr* (G)\Irr(By). Moreover, £(B;) = 2 and £(By) = 26.

PRrROOF: We prove the lemma when p = 3, the proofs for other primes are similar.
So we suppose p = 3.

If B € BIk(G,p) is non-principal with D = D(B), then Irr°(C(D)D/D) has a
non-trivial character § and N(0)/C(D)D is a p'-group, where N () is the stabilizer of
@ in N(D). By [15, p. 304-311], we may suppose D is non-cyclic. Since Suz has no
irreducible character of 3-defect 0, it follows by Lemma 4.1 that D = 32 or 31+2. Since
[TIrt’(C(D)D/D)| = 1, it follows that G has exactly one block with defect D.

Using the method of central characters, Irr(B) is as above. If D(B) is cyclic,
then £(B) is given by [15, p. 304-311]. If B = By, then D(B) = 31" and the
non-trivial elements of D(B) consists of 34 and 3D elements, Cg(3A) = 3.Suz and
Ce(3D) = 3 x Ag. It follows by [16, Theorem 5.4.13] that k(B) = ¢(B) + £(b1) + £(b2),
where b; € Blk(3.Suz) and b, € Blk(3 x Ag) such that each b¥ = B. In addition,
by = By(3) x b, with b}, € Blk(Ag) and D(b,) ~ 3, so that £(b}) is the number of
bl-weights, which is 2 since N4, (D (b)) = (3 x Ag).2.

Let b} be the block of Suz contained in b;. Then £(b)) = £(V)), D(b}) ~ 3%
Csuz(D(b))) = 3% x Ag and Ngyu, (D (b})) = (3%: 4 x Ag).2. Since each non-trivial element
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of D(b}) is of type 3C in Suz and Cs,,(3C) = 32 x Ag, it follows that £(b}) = k(b})—1 =
5, so that £(by) =5 and {(By) =14—-5—-2=T.

If B = By, then D(B) =¢ 3% and the non-trivial elements of D(B) consists of 34
and 3B elements, and Cg(3B) = 3%.U4(3).2. Thus k(B) = £(B) + £(b1) + £(bs), where
b, € Blk(3.Suz) and b, € Blk(32.U,(3).2) with each b¢ = B. But Csy,(34) = 3.U(3).2,
so a similar proof to above shows that each £(b;) = 2, so that /(B) =9—2—2 =5.

If /3(@G) is the number of 3-regular G-conjugacy classes, then /3(G) = 44 and ¢(By)
can be calculated by the following equation due to Brauer:

LA = Y UB)+ G

BeBIkt(G,p)

This completes the proof. O

Theorem 4.3 Let G = Coy and let B be a p-block of G with a non-cyclic defect group.
Then the number of B-weights is the number of irreducible Brauer characters of B.

Proor: If B = By, then the proof of Theorem 4.3 follows by Lemmas 4.1, 4.2 and
(4.1). Suppose p = 3 and B # By

If B = B and (R, ¢) is a B-weight with R = 32, then we may suppose 3> C D(B;) =
3172, which is impossible, since 3? contains a 3B-element. Thus R € {3,3*, 31"}, If
R = 3, then G has no weight of the form (3, ¢). If R = 3*, then G has exactly two B;-
weights of the form (3%, ¢). Thus R = 31*? and G has 7 B-weights, since N (31+2)/31+2
has exactly 7 irreducible characters of 3-defect 2.

If B = By, then the B-weights have the form (32, ). Thus G has 5 B-weights,
since N(3%)/C(3%) ~ Dg has 5 irreducible characters. O

5 Radical chains of Co;

Let G = Coy, C € R(G) and N(C) = Ng(C). In this section we do some cancellations
in the alternating sum of Dade’s conjectures. We first list some radical p-chains C(3)
and their normalizers for certain integers ¢, then reduce the proof of Dade’s conjecture
to the subfamily R°(G) of R(G), where R°(G) is the union G-orbits of all C(i). Table
3 is the only one gives a complete list of orbit representatives of radical 7-chains. In
Table 6, 42.2,4.22.2 S’ are the radical 2-subgroups of G»(2) with S" a Sylow subgroup.
The other subgroups of the p-chains in Tables 3-6 are given either by Lemma 4.1 or by
its proof.

Lemma 5.1 Let R%(G) be the G-invariant subfamily of R(G) such that

(i):1<i<6} withC(i
(i):1<i<16} with C(i
{C(i):1<i<26} with C(i
(i) :1<i <20} withC(i

given in Table 3 if p=17,
giwen in Table 4 if p =5,
giwen in Table 5 if p =3,
given in Table 6 if p = 2.
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Then

CeR(G)/G CeRY(G)/G
for all integers d > 0.

C N(C)
C(1) 1 Coy
C(2) 1<7 (7:3 x A7).2
C@3)| 1<T7<T? 7%: (3 x 6)
C(4) 1<7 | (7:3x% L2(7)) 2
CB)|1<T <7 7%: (3 x 6)
C(6) 1<7? 7% (3 x 24,)

Table 3: Radical 7-chains of Co;

c NE) |
c(1) 1 Coy
C(2) 1 <5 | (D x (45 x A5).2).2
C(3) 1<5<5? (D1g X 5:2 x Aj).2
C4)| 1<5<h <5 53: (4 x 2?)
c(5) 1<5<5? 53: (4 x 2).22
C(6) 1<5° (5:2 X J): 2
C(7) 1 <5 <5? (Do x 5:2 x Aj).2
C@8) |1<b <h?<h? 53: (4 x 22)
C(9) 1 <5 <5 53: (4 x 2).6

C(10) 1< 52 (52 x As).4.S;
C(11) 1<5*<5? 53: (4 x 2).6
C(12) 1< (5% 52: 245
C(13) | 1< (%) < 5%5 52:5.4
C(14) 1 <5 53: (4 x Aj).2
C(15) | 1 <512 < Sy; Sys: 42
C(16) 1< 5142 512: GLy(5)

Table 4: Some radical 5-chains of Co;

PRrROOF: We prove the lemma when p = 3, the proof for other primes are either
trivial or similar.
Suppose p = 3 and " is a radical chain such that

C':1<P <...<P,. (5.2)
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C N(C)

C(1) 1 Coy

C(2) 1<3 |3.Suz?2

C(3) 1<3<3? | 32.0U,(3):22

C(4) 1<3<3%<35 | 364422

C(5) 1<3<3% |3%(2x M)

C(6) 1<3<3 <33 | 334:46,.2

C(7) 1 <3< 3 | 3374:2(S, x Dyg)

C(8) 1<3<35<8 | S.(SDyu x 2)

C(9) 1<3<32<3%<8 |8 (212 x2)
C(10) 1<3% | 32:U43).Dg
C(11) 1<32<3% | 3%.44.D;
C(12) 1<3 <3 <8 | S5.(SDy x2)
C(13) 1<32<3%t | 3342+ D)y
C(14) 1< 36 36: 205
C(15) 1 <34 <3iM3% | 317.33.2(5, x 2)
C(16) 1< 3 | 3154:20,(2): 2
C(17) 1< 33 <3343 | 3374.3.2(S, x 2)
C(18) 1< 33 | 334:2(5, x Sy)
C(19) 1< 3% <3632 | 36.32.2(5, x 2)
C(20) | 1 <33 <333 < Sys | Sys.23
C(21) 1<3* <3 | S3x(3x Ag):2
C(22) 1<3 | Ssx A
C(23) 1<3" <3 | S3x3%24,
C(24) 1<3*<32<3 | S3x3%Dyg
C(25) 1<3 <3 | S3x3%:8,
C(26) | 1<3*<33<3x3%3 | S3x323.2

Table 5: Some radical 3-chains of Co;

Let C € R(G) be given by (2.1) with P; € ®(G, 3).

Case (1). We first consider the radical subgroups of G contained in Mjs. Let
R € ®(M;,3)\{3%}. Define G-invariant subfamilies M™*(R) and M°(R) of R(G), such
that

M*(R)/G = {C'e€R/G: P, =R},
M’(R)/)G = {C'e€eR/G: P =3%P,=R}. (5.3)

For C' € M™(R) given by (5.2), the chain

g(C"):1<3¥ <P =R<Py<...<P, (5.4)
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is a chain in M°(R) and as shown in the proof (3) of Lemma 4.1, N(C") = N(g(C")).
For B € BIk(G) and for integer d > 0,

k(N(C'), B,d) = k(N(g(C")), B, d). (5.5)
In addition, g is a bijection between MT(R) and M°(R). So we may suppose
c¢ U (MHBRUMR)).

Re®(Ms3,3)\{35}

C N(O)
C(1) 1 Co,
C(2) 1 <2t 211: My,
C(3) 1< 21F8 < 2t 2t 211,24 Ay
C(4) 1< 278 2178.04 (2)
C(5) 1<22<22x2%8 | (Ay x 2278 (A5 x 3)):2
C(6) 1< 2 (Ay x Go(4)):2
Cc(7) 1 <22 <22x 246 | (Ag x 24%6: (3 x A45)):2
C(8) 1 <22 <22 x 246 < 92 x 246 72 Ay x 2476 (A4 x 3)
C(9) 1 < 2212 < 9212 9 22+12 (2 x Ag)

C(10) 1< 2212 22+12; (S5 x Ag)
C(11) 1 < 22H12 < 91 96 21126 (L3(2) x S3)
C(12) 1 < 2212 < 911 26 < 911 93 91 211.23.28 . 13(2)
C(13) 1 < 24712 < 94122 24112 2 35,
C(14) 1 < 24+12 24+12 (S5 x 355)
C(15) 1 < 24H12 < 21F8 91+8 | 9148 9148 (S5 x S5 x S3)
C(16) 1 < 24112 < 2148 9148 < 91H8 9148 2 248.2148.2.(S5 x S3)
c(17) 1< 24+12 < 2241294 | 92412 94 (G5 x S x S3)
C(18) 1 < 24F12 < 92H12 91 < 911 94 9t 211.24.2% (S5 x S3)
C(19) | 1 < 24112 < 22412 94  22H12 95 < 2118 26 242 2478.26.21.2.5;
C(20) 1 < 24412 < 92412 94  92+12 95 22+12 95 (Gy x S3)
C(21) 1< (22)* < Dg Ds x G5(2)
C(22) 1< (22) Sy x Go(2)
C(23) 1< (22)r<22x4%2 Sy x 42.2.55
C(24) 1< (22)* <22x422 < Dg x 42.2 Dg x 42.2.53
C(25) 1< (22)* <22 x4.222 Sy x 4.22.2.5;
C(26) 1< (22)* <22 x4.222 < Dg x 4.22.2 Dg x 4.22.2.5;
C27) | 1<(22)*<2?2x4.222<22x 8" <Dgx 9 Dg x S’
C(28) 1< (22)* <22 x4.222<22x S Sy x S

Table 6: Some radical 2-chains of Co;
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Thus P; ¢ {38.3,3174.3%,35.3%, Sy3}, and if P, = 3%, then C = C(14). We may
suppose
P € {3,3%,3% 3112 311+ 33+ 331 3} C 9(G, 3).

Case (2). Let @ = 5" € ®(M;, 3). By the proof (1) of Lemma 4.1, we may suppose
Q € ®(Ny,(3°1),3), and moreover, Ny, (Q) = Ny, (33+4)(Q). Define G-invariant
subfamilies £7(Q) and £°(Q) of R(G), such that

LAQ))G = {C"eR/G: P =3,P=Q}
L£Q))G = {C'eR/G: P =3P =3 P =Q}. (5.6)

A similar proof to Case (1) shows that there exists a bijection g between £(Q) and
L°(Q) such that N(C") = N(g(C")) for each C" € L1 (Q). Thus we may suppose

C ¢ (LHQ)ULYQ)). (5.7)

It follows that if P, = 3, then we may assume P, € ®(My,3)\{S’} and if, moreover,
Py = 33t then C =¢ C(7).

Let M*(31%?) and M°(31?) be defined by (5.3) with R replaced by 31" and 3°
by 3. A similar proof shows that we may suppose

C ¢ (MT(3,7) U MO (3}7)),

so we may suppose Py #¢ 3172 and if P; = 3, then P, #4 31

Let C":1<3<3 <S8 and g(C') : 1 <3<3 < 3™ <8 Then N(C') =
N(g(C")) and we may delete C" and g(C"). It follows that if P, = 3, then C €¢ {C(7) :
2 <4 < 9} and we may suppose

P e {3%,3%,37 334 33113} C 9(G, 3).

Case (3). Let C': 1 < 3% < S and ¢g(C') : 1 < 32 < 33 < §'. By the proof (2)
of Lemma 4.1, N(C'") = N(g(C")) and we may delete C' and g(C’). Thus if P, = 32,
then C €¢ {C(10),C(11),C(12),C(13)}.

Case (4). Let C' : 1 < 31" < Sy; and ¢(C') : 1 < 31 < 31433 < Sy;. By
the proof (4) of Lemma 4.1, N(C') = N(g(C")) and we may delete C' and ¢g(C’). Let
MT(334.3) and M°(33%4.3) be defined as in (5.3) with R replaced by 33%.3, 3% by
3174 Then (5.5) holds. Thus we may suppose P #¢ 3°*%.3 and if P, = 3}, then
C € {C(15),C(16)}.

Case (5). Let C' : 1 < 33 < Syz and ¢(C") : 1 < 33 < 30.3%2 < Sy;. By the
proof (5) of Lemma 4.1, N(C') = N(g(C")) and we may delete C' and g(C"). Thus if
Py =33 then C € {C(17),C(18),C(19),C(20)}.

Case (6). Let C': 1 < 3* < §" and ¢g(C') : 1 < 3* < 3* < §”. By the proof (6)
of Lemma 4.1, N(C") = N(g(C")) and we may delete C' and ¢g(C"). Thus if P, = 3%,
then C € {C(7) : 21 <7 < 26}. O

The proof of the following Remark is similar to that of Lemma 5.1, since N(C") =
N(g(C")) implies Ng(C") = Ng(9(C")).
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Remark 5.2 Let p = 2,3,5 and let G be a covering group 2.Co, of G = Coy, pa
faithful linear character of Z(G) and B a block of G covering the block B(p) containing
p- Let R*(G) = R%G) except when p = 2, in which case R*(G) is the G-invariant
subfamily of R(G) such that R*(G)/G = {C (i) : 1 < i < 28}, where C(i) are defined
in Table 6. If D(B) # O,(Z(G)), then

> (-DIk(Ns(C), B d,p) = Y. (-1)“k(Ng(C), B,d, p)
CeR(G)/G CeR*(G)/G

for all integers d > 0.

6 The proof of Dade’s ordinary conjecture for Co;

Let N(C) be the normalizer of a radical p-chain. If N(C) is a maximal subgroup of
Coy, then the character table of N(C') can be found in the library of character tables
distributed with GAP. If this is not the case, we construct a “useful” description of
N(C) and attempt to compute directly its character table using MAGMA.

If N(C) is soluble, we construct a power-conjugate presentation for N(C) and use
this presentation to obtain the character table.

If N(C) is insoluble, we construct faithful representations for N(C) and use these
as input to the character table construction function. We employ two strategies to
obtain faithful representations of N(C).

1. Construct the action of N(C') on the cosets of soluble subgroups of N(C).

2. Construct the actions of N(C') on the cosets of its stabilizers acting on the un-
derlying set of Co;.

In several cases, however, none of the representations constructed was of sufficiently
small degree to allow us to construct the required character table.

In these cases, we directly calculate the character table of N(C) as follows: first
calculate the character tables of some subgroups and quotient groups of N(C); next
induce or lift these characters to N(C), so the liftings and the irreducible characters
from the induction form a partial character table 7' of N(C); then decompose the
remaining inductions or the tensor products of the inductions using the table 7', and
extend the table 7. If we choose suitable subgroups and quotient groups, then the
character table can be obtained from the extension of 7.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 6.1 are available electronically [6].

Theorem 6.1 Let B be a p-block of G = Coy with a positive defect. Then B satisfies
the ordinary conjecture of Dade.

ProOOF: We prove the theorem when p = 3, the proofs for other primes are similar.
We may suppose B has a non-cyclic defect group.

Suppose p = 3, so that by Lemma 4.2 (¢), B € {By, B1, B2}. We set k(i,d) =
k(N(C()), By, d) for integers i, d.
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First, we consider the radical 3-chains C(j) with d(N(C(j))) < 5, and so 21 <
j < 26. Then N(C(7)) has only the principal block except when ¢ = 21, in which case
N(C(21)) has exactly two blocks by and by with b5 = B; for j = 0,2, and

9 ifd=2,

k(N(C(21)), By, d) = {0 otherwise.

(6.1)

The values k(i, d) are given in Table 7.

Defect d | 5| 4| 3 | otherwise
k(21,d) =k(24,d) | 0[45]|0 0
k(22,d) = k(25,d) | 18 (24| 0 0
k(23,d) =k(26,d) | 0273 0

Table 7: Values of k(i,d) with d(N(C(3))) <5

It follows that
2

> (=1)OK(N(C(i), Bo, d) = 0.
i—21
Next we consider the chains C(7) such that d(N(C(i))) = 8, so that 2 <4 < 13. If
i =2, then N(C(2)) has exactly 3 blocks by, by and b, such that b]Col = B; for each j.
In addition, k(N(C(2)), By, d) = k(N(C(21)), Bs,d) is given by (6.1) and

9 ifd=23,
k(N(C(2)), By,d) = { 5 ifd=2, (6.2)
0 otherwise,

If i = 3, then N(C(3)) has exactly 2 blocks by and by such that b5° = B; for j = 0,2,
and k(N(C(3)), By, d) = k(N(C(21)), By, d) is given by (6.1). The values k(i,d) are
given in Table 8.

It follows that 3

>_(=1)“K(N(C()), By, d) = 0.
i=2
Finally, we consider the chain C(i) with d(N(C(i))) = 9, so that i € {1,14 <
i < 20}. Then N(C(7)) has only the principal block except when 7 = 1, in which case
N(C(1)) = G has exactly three blocks such that k(N (C(1)), Bs,d) = k(N(C(21)), By, d)
is given by (6.1) and k(N(C(1)), By,d) = k(N(C(2)), B1,d) is given by (6.2). This im-
plies the theorem for B # B,.
The values k(i,d) are given in Table 9.
It follows that

> kNCE)Bud)= Y K(N(C()), Ba,d)

i€{1,15,17,19} i€{14,16,18,20}

and Theorem 6.1 follows. O
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Defect d H 8 ‘ 7 ‘ 6 ‘ 5 ‘ otherwise

k(2,d) | 2733| 8|15 0
k(3,d) | 18|21 |34 |18 0
k(4,d) | 18 | 12 | 34 0
k(5,d) | 27 | 24| 8 0
k(6,d) | 18 | 21 | 46 | 18 0
k(7,d) = k(13,d) || 27 [ 33 [ 38 | 15 0
k(8,d) =k(12,d) [ 27 [24 [ 38| O 0
k(9,d) |18 |12 |46 | 0 0
k(10, d) | 27| 33| 26 | 15 0
k(11,d) | 27|24 |26 | 0© 0

Table 8: Values of k(i,d) with d(N(C(i))) = 8

Defectd || 9| 8| 7 5 | 3 | otherwise

k(1,d) || 27 | 24 419 |1 0
k(14, d) || 27 | 24 41010 0
k(15,d) || 27|24 |27 |11 /0|0 0
k(16,d) |[ 27 |24 |21 11|61 0
k(17,d) || 274221326 |0 0
k(18,d) || 27 | 42 211910 0
k(19, d) || 27 | 42 211010 0
k(20,d) || 27|42 (2732|100 0

Table 9: Values of k(i,d) with d(N(C(¢))) =9

7 The proof of Dade’s projective conjecture for 2.Co,

Let C be a radical p-chain of Co; and Ny o, (C) = 2.Ngo, (C). The character tables of
Nas.co, (C) can either be found in the library of character tables distributed with GAP or
computed directly using MAGMA as in Section 6, except when C' = C(4), in which case
No.co, (C(4)) = 2.(2178.04 (2)) is a maximal subgroup of 2.Co;. The approach outlined
in Section 6 to construct character tables does not complete in available resources.

If H = 2.(2't%.04(2)), then Z = Z(H) ~ 22 Suppose Z(2.Co;) = (z) and
Z(2:78.04(2)) = (y), so that Z = Z(H) = (y,z). Thus H/Z ~ 28.04(2), H/{y) ~
2°.04 (2) and H/(yz) # H/(z) ~ 28.0¢ (2). For W < Z, we may regard Irr(H/W)
as a subset of Irr(H). If x € Irr(H), then ker(x) N Z # 1, so that x € Irr(H/W) for
some non-trivial subgroup W of Z. It follows that

Irr(H) = Irr(H/(z)) U (Irr(H/(y))\Irr(H/Z)) U (Irr(H /(zy))\Irr(H/Z)) (disjoint).

The character table of H/(z) ~ 2+8.0¢(2) can be found in the library of character
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tables distributed with GAP, and the character tables of H/(y), H/(zy) and H/Z can
be computed using MAGMA as in Section 6. Thus Irr(H) can be obtained.

Let ¢ be the faithful linear character of 2 = Z(2.Co;) and K a subgroup of 2.Co,
containing Z(2.Coy). Denote by Irr(K | ) the characters in Irr(K) covering €.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 7.1 are in [6].

Theorem 7.1 Let B be a p-block of G = 2.Coy with D(B) > O,(G). Then B satisfies
the projective conjecture of Dade.

PROOF: We prove the theorem when p = 3, the proofs for other primes are similar.

Suppose p = 3. If B is a block of G and H is a subgroup of G containing Z(G),
then let Irr(H, B, &) = Irr(H | ) N Irr(B), and let Deg(H, B, ) be the set of degrees
of characters in Irr(H, B, §).

We may suppose B has a non-cyclic defect group. Thus G has exactly one block B
with a non-cyclic defect group and Irr(G | &) N Irr(B) # 0.

Let Q = {4,5,8,9,11,12,13,14, 15,16, 17, 19, 20,23,26}. Then by MAGMA, for
each i € 2, Deg(Na.co, (C(i)), B, &) = Deg(By(Nco, (C(7)))), and

k(NQ_COl (C(l)), B, d, f) = k(NCol (C(Z)), Bo(COl), d) (71),
so that k(Na.co, (C(1)), B, d, &) is given by Tables 7, 8 and 9. For each j we set
k(]v d) = k(NQ.Col (C(j))v Ba d7 6)

First, we consider the radical 3-chains C(j) with d(Ns.co, (C(j))) < 5, and so 21 <
j < 26. Thus

Defect d 5| 4 | otherwise
k(21, d) = k(24, d) 0136 0
k(22, d) = k(25, d) || 18 | 18 0

Table 10: Values of k(j, d) with j & Q and d(Na.co,(C(5))) <5

Since 23,26 € €, it follows by (7.1) and Table 7 that k(Ny.co,(C(23)), B,d, &) =
k(Na.co, (C(26)), B, d, &), so that

26

> (-1) “Vlk(No.co, (C(0)), B, d, €) = 0.
i=21
Next we consider the chains C'(j) such that d(Ns.co, (C(j))) = 8, so that 2 < j < 13.
The values k(j,d) with j & € are given in Table 11.
For j € {4,5,8,9,10,11,12,13} the values k(N co, (C(j)), B, d, §) are given in Table

8. It follows that 3

3 (—1) CDk(No.co, (C(3)), B, d, €) = 0.

=2
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Defectd || 8| 7| 6|5 | otherwise
k(2,d) ||27|24| 8|6 0
k(3,d) || 18|12 |34 |9 0
k(6,d) || 18 | 12 | 46 | 0 0
k(7,d) || 27|24 |38|6 0

k(10,d) || 27|24 | 26 | 6 0

Table 11: Values of k(j,d) with j ¢ Q and d(Na.co, (C(5))) = 8

Defect d 9| 8|7]| 6|53 | otherwise

k(1,d) || 2724 |3| 4|31 0
k(18,d) || 27 |42 |3 |21 |3 |0 0

Table 12: Values of k(j,d) with j ¢ Q and d(Na.co, (C(5))) =9

Finally, we consider the chains C'(j) with d(Na.co, (C(j))) = 9, so that j € {1,14 <
j < 20} and j € Q when j # 1,18. Thus the values k(No.co, (C(j)), B, d, &) are
given in Table 9 except when j # 1,18, and the values k(No.co, (C(1)), B, d, &) and
k(No.co, (C(18)), B, d, &) are given in Table 12.

It follows that

Z k(N2.Col(C(i))7B:da 6) = Z k(NQ.Cm (C(i)),B,d, f)

i€{1,15,17,19} i€{14,16,18,20}

and Theorem 7.1 follows. O
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