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Abstract

We prove that the automorphism group of a putative binary self-dual doubly-
even [72,36,16] code is solvable. Moreover, its order is 5, 7, 10, 14, 56, or a
divisor of 72.

1 Introduction

An [n, k] linear code C over the binary field F2 is a k-dimensional subspace of Fn
2 .

The Hamming weight of a vector in Fn
2 is defined by the number of its nonzero

coordinates. We call C an [n, k, d] code if d is the minimum among the weights
of nonzero codewords in C. The inner product of vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) in Fn

2 is given by

〈u, v〉 = u1v1 + u2v2 + · · ·+ unvn.

As usual we denote by

C⊥ = {v ∈ Fn
2 | 〈u, v〉 = 0 for all u ∈ C}

the dual code of C. If C ⊆ C⊥ then C is called self-orthogonal; if C = C⊥ then C
is called self-dual. A binary code is doubly-even if the weight of every codeword is
divisible by four. Self-dual doubly-even codes exist only if n is a multiple of eight
(see for instance [16]). Rains [21] proved that the minimum distance d of a binary
self-dual [n, k, d] code satisfies the following bound:

d ≤ 4bn/24c+ 4, if n 6≡ 22 (mod 24),

d ≤ 4bn/24c+ 6, if n ≡ 22 (mod 24).

Codes achieving this bound are called extremal. If n is a multiple of 24, then a self-
dual code meeting the bound must be doubly-even [21]. Moreover, for any nonzero
weight w in such a code, the codewords of weight w form a 5-design [2].
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Thus extremal self-dual codes of length a multiple of 24 are of particular interest.
The extended Golay code g24 is the only [24,12,8] code (see for instance [18]) and
the extended quadratic residue code q48 is the only [48,24,12] self-dual doubly-even
code [12]. In 1973 Sloane [23] posed a question which remains unresolved: is there
a self-dual doubly-even [72, 36, 16] code? In a one-page paper he lists its complete
and unique weight distribution.

Recall that σ ∈ Sn is an automorphism of a binary linear code C if C = σ(C).
The set of all automorphisms of C form its automorphism group Aut(C). Of course,
knowledge of the existence of a non-trivial automorphism group is very useful in
constructing a code.

The automorphism group of the extended Golay code is the 5-transitive Mathieu
group M24 of order 210 · 33 · 5 · 7 · 11 · 23 (see [3]). The automorphism group of q48 is
only 2-transitive. It is isomorphic to the projective special linear group PSL(2, 47)
and has order 24 · 3 · 23 · 47 (see [5], [15]). Both M24 and PSL(2, 47) are nonabelian
simple groups, and so in particular are not solvable.

What can we say about the automorphism group of a putative self-dual doubly-
even [72,36,16] code C? Primes larger than 7 cannot divide its order (see [10], [13],
[19], [20]). Permutations of odd composite orders except 9 cannot be automorphisms
of such a code (see [11] and [25]). If σ ∈ Aut(C) has order 5 or 7, then σ fixes two
coordinates [11]; if σ has order 2 or 3, then it is a fixed-point-free permutation (see
[7] and [8]).

Recently Yorgov [25, Theorem 3] stated that there are at most 22 possibilities
for the order of the automorphism group of such a code, namely

(∗) 504, 360, 252, 180, 60, 56, 14, 10, 7, 5, or a divisor of 72.

A careful reading of his proof shows that even more is true: every subgroup of the
automorphism group has an order listed in (∗). We will prove that an automorphism
group of order 60, 180, 252, 360 or 504 must be simple. However, simple groups of
order 180 and 252 do not exist. Hence a simple automorphism group is isomorphic
to SL(2, 8) of order 504, or to the alternating groups, A6 and A5, of order 360 and
60, respectively. We employ techniques from representation theory to exclude these
three groups.

In summary, our main result is the following.

Theorem 1 The automorphism group of a binary self-dual doubly-even [72, 36, 16]
code is a solvable group of order 5, 7, 10, 14, 56, or a divisor of 72.
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2 The structure of the automorphism group

Let G denote the automorphism group of a self-dual doubly-even [72, 36, 16] code
C. Recall that the normalizer of H ≤ G is defined by

NG(H) = {σ ∈ G | σHσ−1 = H}.

Let τ ∈ G; we denote its order by |τ | and write NG(τ) for NG(〈τ〉). In [25] Yorgov
proved the following lemma about the normalizers of particular elements.

Lemma 2 Let τ ∈ G.

a) If |τ | = 5 then 3, 4 and 7 do not divide |NG(τ)|.

b) If |τ | = 7 then 3, 4 and 5 do not divide |NG(τ)|.

c) If |τ | = 3 then 5 and 7 do not divide |NG(τ)|.

We use this result and Sylow’s Theorem [22] to deduce additional properties of
G. Recall that if |G| = psm where p is a prime and p does not divide m, then the
Sylow p-subgroups of G have order ps. For a fixed p, let np denote the number of
these subgroups. Then np divides m, np ≡ 1 (mod p), and all Sylow p-subgroups of
G are conjugate in G.

Lemma 3 If H ≤ G and |H| = 9, then 5 and 7 do not divide |NG(H)|.

Proof. Let τ ∈ NG(H) be of order 5.
If H = 〈σ〉 is cyclic of order 9, then 〈σ3〉 is the unique subgroup of H of order 3.

Hence τ ∈ NG(σ3) and 5 divides |NG(σ3)| which contradicts Lemma 2c).
If H is elementary abelian of order 9, then H has four subgroups of order 3 which

we denote by Ai, 1 ≤ i ≤ 4. Now τ acts to permute these. Since the length of each
orbit divides 5, τ ∈ NG(Ai) for all i, a contradiction to Lemma 2c).

Hence |NG(H)| is not divisible by 5. The proof that 7 does not divide |NG(H)|
is similar. �

Corollary 4 Let p = 5 or p = 7.

a) If |G| = p · 3α · 2β, then np = 3α · 2β or 3α · 2β−1.

b) If |G| = p · 3α · 2β where α = 1 or α = 2, then n3 = p · 2x for some integer
x ≤ β. Moreover x must be even if p = 7 and odd if p = 5.

3



Proof. a) Let τ ∈ G have order p. Since the Sylow p-subgroups are conjugate,

|G|
np

= |NG(τ)| = p · 3α−x · 2β−y

with 0 ≤ x ≤ α and 0 ≤ y ≤ β. Lemma 2 implies that x = α and y = β or y = β−1
which proves the assertion.
b) Let H be a Sylow 3-subgroup of G. Since all Sylow 3-subgroups are conjugate,

|NG(H)| = |G|
n3

= p1−y · 2β−x · 3α

with 0 ≤ y ≤ 1 and 0 ≤ x ≤ β. Applying Lemma 2c) or Lemma 3 for α = 1 or
2 respectively, we obtain y = 1, hence n3 = p · 2x. Moreover n3 ≡ 1 (mod 3) by
Sylow’s Theorem. On the other hand, 7 · 2x ≡ (−1)x (mod 3) and 5 · 2x ≡ −(−1)x

(mod 3). Thus x must be even if p = 7, and x is odd if p = 5. �

Proposition 5 There is no binary self-dual doubly-even [72, 36, 16] code with auto-
morphism group of order 252 or 180.

Proof. Let |G| = 36p where p = 5 or 7. Corollary 4a) implies that n7 = 36 or 18.
Since n7 ≡ 1 (mod 7) we get n7 = 36. Similarly, if p = 5 then n5 = 36. Corollary
4b) implies n3 = 7 or 28 for p = 7, and n3 = 10 for p = 5.

Now let H be a nontrivial proper normal subgroup of G. Since |G| = 36p,

|H| ∈ {36, 18, 12, 9, 6, 4, 3, 2, 18p, 12p, 9p, 6p, 4p, 3p, 2p, p}.

First suppose that p divides |H|. Thus all Sylow p-subgroups of G are subgroups
of H and so

np | 18, 12, 9, 6, 4, 3, 2 or 1,

a contradiction.
If |H| = 36, 18 or 9 then H contains all Sylow 3-subgroups of G, and so

n3 | 4, 2 or 1,

again a contradiction.
Thus the remaining possibilities for |H| are 12, 6, 4, 3, 2. If |H| = 12 then H is

a maximal normal subgroup of G. Therefore G/H is simple, a contradiction, since
there are no simple groups of order 3p. Since there are no simple groups of orders
6p, 9p and 18p we obtain |H| 6= 6, 4 or 2. Thus we are left with |H| = 3. In this
case p divides the order of G = NG(H) contradicting Lemma 2c). Hence G has no
nontrivial proper normal subgroup. This completes the argument since there are no
simple groups of order 252 or 180. �
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Proposition 6 If |G| is 504, 360 or 60, then G is one of the simple groups SL(2, 8),A6

or A5.

Proof. We use Sylow’s Theorem and Corollary 4 to count the number of Sylow
subgroups in the three cases:

• |G| = 504 ⇒ n7 = 36, n3 = 7 or 28.

• |G| = 360 ⇒ n5 = 36, n3 = 10 or 40.

• |G| = 60 ⇒ n5 = 6, n3 = 10.

Let H be a maximal normal subgroup of G and let τp denote an element of prime
order p in G. We consider the possible orders of H and prove that H is trivial.

Case 1: 7 divides |H| or 5 divides |H|.
If 7 | |H| then |G| = 504 and

36 = n7 = |G : NG(τ7)| = |H : NH(τ7)|.

Thus 36 | |H| and so |H| = 7 · 36 = 252. But Proposition 5 implies that a group of
order 252 can not occur as an automorphism group of C, a contradiction.

If 5 | |H| then |G| = 360 or 60. In the first case

36 = n5 = |G : NG(τ5)| = |H : NH(τ5)|.

Again 36 | |H| and therefore |H| = 5 · 36 = 180 which contradicts Proposition 5 as
above. If |G| = 60 then

6 = n5 = |G : NG(τ5)| = |H : NH(τ5)|.

Thus |H| = 30 and H contains τ3. Moreover,

10 = n3 = |G : NG(τ3)| = |H : NH(τ3)|.

Hence H, a subgroup of order 30, contains 24 elements of order 5 and 20 elements
of order 3, a contradiction.

Case 2: 9 | |H|.
Now n3 = |G : NG(T9)| = |H : NH(T9)| where T9 is a Sylow subgroup of order 9
contained in H. If |G| = 504, then 7 | n3 and so 7 divides |H|. If |G| = 360 or 60,
then 5 | n3 and so 5 | |H|. Each possibility is eliminated by Case 1.

Case 3: 3 | |H|, but 9 - |H|.
Case 1 implies that |H| is not divisible by 5 and 7. Thus |H| = 3, 6, 12 or 24. Since
|G| = 504 and G/H is simple, the only possibility is that |G/H| = 168. Thus |H| = 3
and G/H = PSL(2, 7). In particular, a 7-element must act trivially on a 3-element,
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contradicting Lemma 2c). If |G| = 360 the same argument forces |G/H| = 60.
Thus |H| = 6 and G/H = A5. Since a 5-element centralizes a 3-element, this again
contradicts Lemma 2c). Finally, if |G| = 60 then |G/H| = 5 and |H| = 12. Again a
5-element centralizes a 3-element, otherwise H contains at least 10 elements of order
3, a contradiction since |H| = 12. Thus 5 | |NG(τ3)|, contradicting Lemma 2c).

Case 4: |H| = 2, 4 or 8.
Then G/H has order 252, 180, 30, 126, 90, 15, 63, 45. But no simple group of any such
order exists.

Thus we have proved that G is a simple group of order 504, 360 or 60. �

In summary, we conclude that the automorphism group of a binary self-dual
doubly-even code is solvable of order 5, 7, 10, 14, 56 or a divisor of 72, or is one of
three simple groups SL(2, 8),A6,A5.

3 The module structure of the code

Let C be a binary self-dual doubly-even [72, 36, 16] code with simple automorphism
group G. We now employ some ideas from modular representation theory, in par-
ticular block theory, to eliminate the possible groups. The necessary background
information can be found in [14] or [17].

Lemma 7 G acts transitively on the positions of C if G is SL(2, 8) or A6, but
induces two orbits of lengths 60 and 12 if G is A5.

Proof. Clearly, G acts on the 72 positions of C. To compute the number t(G) of
orbits, we use the Cauchy-Frobenius Lemma [22] which says that

t(G) =
1
|G|

∑
g∈G

Fix(g)

where Fix(g) is the number of the fixed points of g. By [7] and [8], permutations
of order a power of 2 or 3 do not have fixed points. Elements of order 5 or 7 have
exactly 2 fixed points by [11]. Since SL(2, 8) has n7 = 36 Sylow 7-subgroups (as
already seen in the proof of Proposition 6), it has exactly 6 · 36 elements of order 7.
Since SL(2, 8) has only 2-, 3- and 7-elements it follows that

t(SL(2, 8)) =
1

504
(72 + 2 · 6 · 36) = 1.

Similarly,

t(A6) =
1

360
(72 + 2 · 4 · 36) = 1
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and
t(A5) =

1
60

(72 + 2 · 4 · 6) = 2.

For the last case let m1 ≥ m2 be the lengths of the two orbits. Then both m1 and
m2 must divide 60 and m1+m2 = 72. The only solution is m1 = 60 and m2 = 12. �

3.1 The A5 case

We now consider the case where G = A5 in more detail.

Proposition 8 If G = A5 then C contains a self-orthogonal doubly-even [60, 24, 16]
subcode, say B, which is invariant under the action of G. Moreover, the action of
G on the coordinates of B is transitive.

Proof. Without loss of generality, we may assume that the two orbits are {1, 2, . . . , 60}
and {61, 62, . . . , 72}. Let B be the largest subcode of C whose support is contained
entirely in the first 60 coordinates. Obviously, B is doubly-even as a subcode of C.
Hence B is a doubly-even [60, kB,≥ 16] code. If GB denotes a generator matrix of
B, then a generator matrix of C has the form

GC =
[

GB O
E GD

]
where O is a kB × 12 zero matrix. Let D be the code generated by the matrix GD.
If w ∈ F12

2 and w ⊥ D then v = (0, 0, . . . , 0, w) ∈ F72
2 is orthogonal to all codewords

of C and therefore v ∈ C⊥ = C. But the weight of v is at most 12, hence v must
be the zero vector. It follows that D⊥ = {0}, hence D = F12

2 . Thus the matrix GD

has rank 12. Now suppose that GD has more than 12 rows. Since the rows of GC

are linearly independent, we get a nontrivial linear combination of rows of GC with
zeros in the last 12 coordinates and not contained in B. This contradicts the choice
of B. Thus GD has exactly 12 rows, and GB has kB = 36 − 12 = 24 rows. Since
the minimum distance of a binary [60, 24] code is bounded by 18 (see [9]), B is a
doubly-even code with parameters [60, 24, 16]. It contains all the coordinates from
the first orbit and is therefore invariant under the action of G. �

Hence we may consider B as a self-orthogonal doubly-even G-submodule (equiv-
alently, an ideal) in the group algebra KG where G = A5 and K = F2. Now G has
exactly three irreducible KG-modules, namely the trivial one, denoted by 1, and
two modules of dimension 4, say V and St, where St denotes the Steinberg module
which is known to be projective. That there are only 3 irreducible modules instead
of 4 (the number of 2′-conjugacy classes) is a consequence of F2.
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Lemma 9 The module B contains the Steinberg module with multiplicity two as a
composition factor.

Proof. By Lemma 7, the ambient space K72 can be written K72 = KG⊕KG
T , where

T denotes a Sylow 5-subgroup of G and KG
T the trivial KT -module induced to G.

The first 60 coordinates of every vector in K72 are in KG and the last 12 in KG
T .

Note that KG
T is a projective KG-module, since the trivial KT -module is projective,

by Maschke’s Theorem. Further, the trivial KG-module is a quotient of KG
T and

the projective cover of the trivial KG-module, say P(1), has dimension 12, as one
readily computes using the Cartan matrix. Thus KG

T
∼= P(1) and, in particular, KG

T

does not contain the Steinberg module St as a composition factor.
By [24, Proposition 2.3], we have

K72/C = K72/C⊥ ∼= C∗

as KG-modules, where C∗ = HomK(C,K) denotes the dual module of C. Since the
multiplicity of the Steinberg module St in K72 is four (as a composition factor) and
St ∼= St∗, its multiplicity in C is exactly two.

Since St is a projective KG-module, all Steinberg modules in a composition
series of C occur as submodules of C. Now let S be a submodule of C isomorphic
to the Steinberg module. Since S is irreducible and KG

T does not contain a copy of
the Steinberg module, all vectors in S must have zeros in the last 12 coordinates.
This shows that S (ignoring the last 12 trivial coordinates) is a subspace of B.

Therefore B contains the Steinberg module with multiplicity two as composition
factor. �

It is well known that KG consists of two 2-blocks, the principal one and a block of
defect zero. The latter is the direct sum of four Steinberg modules. Let e respectively
f = 1 − e be the corresponding block idempotents. From [17, Chapter 3] and the
ordinary character table of A5, one directly computes that

f = 1− e =
∑
x∈G,

x3=1 6= x

x +
∑
y∈G,

y5=1 6= y

y

is the block idempotent of the block of defect zero. Thus

e = 1 +
∑
x∈G,

x3=1 6= x

x +
∑
y∈G,

y5=1 6= y

y

is a block idempotent generating the principal block.
With this notation we obtain the following.
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Proposition 10 dim eKG = 44 and dim eB = 16.

Proof. The first assertion is clear since the block fKG = (1 − e)KG of defect zero
has dimension (dim St)2 = 16. Thus eKG has dimension 44.

We now determine dim eB. Clearly,

B = eB ⊕ (1− e)B = eB ⊕ fB

since e is an idempotent. Thus we must compute dim fB. Observe that fB is a
direct sum of modules isomorphic to the Steinberg module St and eB does not con-
tain a composition factor (equivalently a submodule) isomorphic to St. Lemma 9
now implies dim fB = 8. Hence dim eB = dim B − dim fB = 24− 8 = 16. �

These results underpin the following approach to decide whether or not A5 can
be the automorphism group of C.

(1) The binary self-orthogonal doubly-even code eB has dimension 16 and min-
imum distance at least 16 in the fixed space eKG of dimension 44, and is
invariant under G = A5. There are 9215 G-invariant subspaces of eKG of di-
mension 16. Of these, 1270 are self-orthogonal, doubly-even and of minimum
distance d ≥ 16.

(2) Assume that the all one-vector of length 60 is in B. Since C = C⊥, this implies
that the all one-vector of length 72 is in C. Thus C contains a vector of weight
12, a contradiction. Therefore we only have to consider the 790 modules from
(1) which do not contain the all one-vector.

(3) Now we consider the thirty-five 8-dimensional submodules fB. Clearly, fB
is a self-orthogonal, doubly-even code of minimum distance d ≥ 16 in the
16-dimensional ideal fKG. There are 15 such submodules.

(4) Recall that B = eB ⊕ fB. Moreover, since e = ê where ˆ : KG → KG is
defined by g → g−1 for g ∈ G, we have KG = eKG ⊥ (1− e)KG and

B = eB ⊥ (1− e)B = eB ⊥ fB.

Thus B is the orthogonal sum of a code listed in (2) and a code listed in (3).
We verify that all 11850 = 790 × 15 spaces have minimum distance strictly
smaller than 16.

Hence we conclude that A5 cannot be the automorphism group of a binary self-dual
doubly-even [72, 36, 16] code.
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3.2 The other cases

The arguments for the other simple groups, A6 and SL(2, 8), are easier. In both
cases, Lemma 7 implies that C = C⊥ is a G-invariant subspace of the group algebra
KG. Now A6 has 4 irreducible KG-modules of dimensions 1, 4, 4 and 16, and SL(2, 8)
also has 4 irreducible KG-modules of dimensions 1, 6, 8, and 12. The relative size
of these dimensions is reflected in the small number of 36-dimensional G-invariant
subspaces of KG. We can compute these directly: A6 has 115 subspaces and SL(2, 8)
has 107 subspaces. All have minimum distance strictly smaller than 16. This proves
Theorem 1.

The following lemma could also be employed to eliminate SL(2, 8).

Proposition 11 Let G = SL(2, 8). Then KG contains exactly one submodule, say
C0, of dimension 22. Moreover C0 is contained in any self-dual G-invariant subspace
of KG.

Proof. Let V1 = 1, V6, V8, V12 denote the irreducible KG-modules where dim Vi = i.
By [1], the Loewy structure of KG is given by

(∗) KG ∼=

1
V6

V12 1 1 1
V6 V6

V12 1 1 1
V6

1

⊕ V8 ⊕ V8 = P(1)⊕ V8 ⊕ V8

where P(1) denotes the projective cover of the trivial module. Now suppose that
C = C⊥ is a G-invariant submodule of KG. Again by [24, Proposition 2.3], we
have KG/C⊥ ∼= C∗ as KG-modules. Since all irreducible modules Vi are self-dual
as modules and dim C = 36, we conclude that C has Loewy structure

V6

V12 1 1 1 ⊕ V8.
V6

1

We do not know which copies of V8 and V6 in the middle of P(1) in (∗) occur.
However it is easy to see that C contains a unique submodule, say C0, of dimension
22, namely

C0 =
V12 1 1 1

V6

1
.

�
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We can easily find the subspace C0 inside KG. It contains basis vectors of weight
12, 16, 24 and 36. This proves that SL(2, 8) cannot be the automorphism group of a
binary self-dual doubly-even code of length 72.

4 The computational tools

The group algebras and invariant subspaces were constructed and investigated using
Magma [6]. For G = SL(2, 8) and A6, we constructed the action of G on its Sylow
7- and 5-subgroup respectively, to obtain a permutation representation of degree
72 and then the resulting group algebra over F2. For G = A5, we constructed the
72-dimensional representation over F2 by taking the direct sum of its action on its
Sylow 5-subgroup and its regular representation. We obtained the 44-dimensional
and 16-dimensional representations by constructing the action of G on the ideals
described in Proposition 10.

The submodule lattice machinery is now used to construct the G-invariant sub-
spaces. A basis for each subspace is written down, and used to define a code whose
minimum weight is determined using the algorithm of Brouwer and Zimmermann [4].
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