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Abstract

We present an algorithm to compute H?(G,U) for a finite group G
and finite abelian group U (trivial G-module). The algorithm returns
a generating set for the second cohomology group in terms of repre-
sentative 2-cocycles, which are given explicitly. This information may
be used to find presentations for corresponding central extensions of U
by G. An application of the algorithm to the construction of relative
(4t, 2, 4t, 2t)-difference sets is given.

1 Introduction

Let G be a finite group and U a finite abelian group, written multiplicatively.
Consider U as a trivial G-module. In [8], a method is given for determining

explicitly a full set of representative 2-cocycles for the elements of the second
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cohomology group H?(G,U), based on a version of the Universal Coefficient
Theorem. Here we adapt the method as a practical algorithm to compute rep-
resentatives for all elements in a generating set of H?(G,U), thereby yielding
incidentally the primary invariants of this finite abelian group.

We have implemented the algorithm in MAGMA [1]. For this purpose, we
restrict the permitted descriptions of G' to those which provide a solution to
the word problem.

In Section 2 we present the basic algorithm. It can be extended to return
a presentation for the central extension of U by G corresponding to each 2-
cocycle computed. We discuss this in Section 3. All isomorphism types of
central extensions of U by G are so realised (of course, some may be realised
more than once). In Section 4 we comment on aspects of our implementation.
In the ultimate Section 5, we demonstrate an application to the construction
of relative (4t,2, 4t, 2t)-difference sets in central extensions. Various such dif-
ference sets, for small ¢, are listed.

In this paper, computation of 2-cohomology for trivial coefficients has a
particular meaning and specific aim: we wish to know completely the action
of 2-cocycles. Ellis and Kholodna [7] also consider this problem. Until now,
cohomology programs available publicly did not allow computation of the sort
of information that we require. The procedures written by Holt [11], and
distributed as part of MAGMA, assume that G is a finite permutation group
and U is an elementary abelian group; GAP 4 [10] also has some facilities for
computing with cohomology (cf. [5, §6]).

The reader is referred to [8] and [3, 14] for the theory and proofs of results
underlying Sections 2 and 5, respectively.

From now on, “cocycle” means “2-cocycle”. As usual, for a set 7 of primes,

0,(G) denotes the largest normal 7-subgroup of G.

2 The basic algorithm

Denote by Z%(G,U) the abelian group of all cocycles from G to U, under
pointwise multiplication. The values v(g, h) of ¥ € Z*(G,U) may be repre-
sented as a “cocyclic matrix” with entries in U. A complete cocyclic matrix

contains much more data than is needed to write down a presentation for the



corresponding central extension. Accordingly, to do this we need only compute
the relevant matrix entries (see the paragraph after Proposition 2.1 below). By
contrast, Section 5 features an application which requires knowledge of all co-
cyclic matrix entries.

If :G — U is a set map with ¢(1g) = 1y (¢ is normalised), then there
is a coboundary d¢ € Z?(G,U) defined by 9é(g, h) = ¢(g9)d(h)d(gh)~'. The
group of all coboundaries from G to U is denoted B?*(G,U), and we have
H?(G,U) = Z?(G,U)/B?*(G,U). Tt is proved in [8, §3] that H*(G,U) = I xT,
where I is the (faithful) image of Ext(G/G',U) < H?*(G/G',U) under infla-
tion, and T is the (faithful) image of Hom(Hy(G),U) under a certain trans-
gression homomorphism. We explain how representatives for the elements in
a generating set for each of these two factors may be found; cf. the discussion
after [8, Corollary 3.3].

It is worth noting that the process of finding [ is canonical, in the sense
that resultant matrices will be the same up to equivalence (pre- and post-
multiplication by a permutation matrix) regardless of ordering choices made
during the process. But if |I| and |T'| are not coprime, there will be more than
one complement of I in H?(G,U). It is not possible by choice of transgression
to select canonically one of these complements, nor to select canonically a
particular representative cocycle for each class in a complement. These points
may lead to difficulty in checking by hand computational results for 7.

We consider I first. Denote by 7; the set of all primes dividing both
|G:G'| and |U]. Fix p € 7. Let O,(G/G") = (¢1G") x --- x (¢g,G"), where
(9:G") = Cpei, € > 1. Let Op(U) = (u1) X -+ X (U, ), where (u;) = Cppi,
fi > 1. (To make notation less cumbersome, we will not indicate the depen-
dence of the parameters n,m,e;, f;, nor the elements g;,u;, on the choice of
p.) Then O,(Ext(G/G',U)) is

n m

TTTTExt((g:G"), (uy)).

i=1j=1
Also note that

EXt (Cpei y Cpr ) = H2 (Cpei 5 Cpfj ) g Cpmin{ei,fj} .

A representative cocyclic matrix M;; for a generator of Ext({¢;:G"), (u;)) is

the p% x p% matrix with rows and columns indexed G', ¢;G’, ¢2G', . .. ,gf’eFlG’



and rth row

where the first occurrence of u; is in column p® —r+2. Representative cocyclic
matrices for the elements in a generating set of O,(/) are found as follows: for

each 7, 1 <7 <mn, and each j, 1 < j < m, take the matrix Kronecker product
Nij=Jdper @+ @ Jpeics @ M j @ Jpeinr @ -+ @ Jpen @ J; @ Ji| (1)

where J; denotes the s x s all 1s matrix, and ¢ = |Oy(G/G")|. (For each
N; j, we record the order of the class of the associated cocycle in H*(G,U),
viz. pmin{enfit ) Note that N;; is symmetric. If the elements of O, (G/G') are
hiG', hoG', ..., G' and those of G’ are ki, ks, ..., kg, then N;; has rows

and columns indexed by

{15 91, g%: s ag€61_1}®' : ®{1a 9n; 9721: s ,ggen—1}®{h1’ ) ht}@{kla R k|G’|}
where the “Kronecker product” ® of ordered sets of elements of G is defined

in the obvious way.

Proposition 2.1 As p runs over mr, the collection of all cocyclic matrices
N ; as defined by (1) is a complete and irredundant set of representatives for

the elements in a generating set of I.

Fix p, and suppose [¢] is in O,([); say ¢ has cocyclic matrix N;; for
some i and j. Given a pair g, h of elements of G we may find (g, h) without
computing all of (1). Put H/G' = O, (G/G'"), and suppose gH = ¢{* --- g4 H
and hH = gt -+ - g% H. Then (g, h) is entry (g, g>*) of M;;.

Now we turn to 7. Assume we have computed a Schur cover D of G, so
that D has a recognised central subgroup M = H,(G) with M < D' and
D/M = G. Also assume that

(i) we can solve the word problem in D;
(ii) we have an isomorphism 0: G — D/M;

(iii) we have a transversal function o: D/M — D that assigns to each coset
of M in D exactly one of its elements, where that element is 1p if the

coset is M.



The first step in computing 7 is to find u € Z?(G, M) arising from the
central extension
1-M =5 DEED/M 1.

Using the transversal function o, we define p as follows:

1(g, h) = 00(g)ad(h)(c0(gh))~".

Note that pu(g,h), as a product of elements and the inverse of an element in
the image of o, must be identified in the subgroup M of D.

Suppose that at this stage we have the entries of a cocyclic matrix for p,
where the matrix rows and columns are indexed by the elements of G in the
order supplied. We must next construct a generating set for the group of all
homomorphisms between the two finite abelian groups M and U. We now
describe a procedure to do this. Naturally, it makes use of functor biadditivity
and is similar to the procedure for computing 7.

Denote by 77 the set of all primes dividing both |M| and |U|. Fix p € 7.
Let O,(M) = (dy) x -+- x (d,), where (d;) = Cpe;, ¢; > 1; and let
0,(U) = (u1) X --- X (U ), where (u;) = Cpr, f; > 1. (This notation
is independent of the notation used in the earlier discussion about I, but we
are again suppressing its dependence on the choice of p.) Define for all 1,

1<i<mn,andall j, 1 <j<m,the homomorphism ¢;;: (d;) = (u;) by

fi—e;
plim
ut e < fi
$ij(di) =9 to
u; e 2 fj.
Write 5” for the natural extension of ¢;; to an element of Hom(M,U).

(When computing ¢, ., we also store its order, viz. p™™esfil))  Then

0,(Hom(M,U)) is

2,] 7

I111¢4:5)-

i=1 j=1

In connection with the next proposition, we note the last paragraph of [8, §3].

Proposition 2.2 As p runs over mwr, the collection of all cocycles 5” o,
where 1 and 5” are defined as above (and i,j range as indicated, according
to p), is a complete and irredundant set of representatives for the elements in

a generating set of T.



Remark 2.3 At the heart of our method for determining the splitting sub-
group T of H%*(G,U) is a transgression Hom(H,(G),U) — H?*(G,U). In prin-
ciple, the entire problem of computing cocycles may be viewed as computing
the image of another transgression, implicit in work of Horadam and de Launey.
Let Ry(G) be the abelian group on generators (g, k), g,h € G, with relations
(g9,h)(gh, k) = (g, hk)(h,k) for all g,h,k € G. Put R}(G) = Re(G)/((1,1)).
In [13, Lemma 11.1], it is shown that Hom(R3(G),U) = Z?(G,U). Let F/R
be the standard presentation of G; that is, F is free on {z, | g € G, g # 1},
and R is the kernel of the epimorphism F' — G defined by z, — g. We have
an isomorphism 0 of R3(G) onto R/[R, F| induced by the epimorphism of
Ry(G) onto R/[R, F| defined by (g,h) — xg:ch:c;,ll[R, F], where z; is set to
be 1. (Since R/[R, F] = ZI%~1 x Hy(G), a consequence of this observation is
that |Z2(G,U)| = |U| = |Hom(H5(G),U)|.) Then pu € Z%(G, R5(G)) defined

by u(g,h) = (g,h) arises in the usual fashion from the central extension
15 Ry (G) S F/R,F]1 %G —1,

for the transversal function that sends g € G' to z4[R, F| € F/[R, F|, where o
is natural projection composed with an isomorphism of F/R onto G. Further,
the map \: Hom(R3(G),U) — Z?(G,U) defined by

M@)(g,h) = ¢((g,h)) = dopulg,h)

is clearly an isomorphism, and composing this with natural projection onto
H?(G,U) gives a transgression as in [16, Lemma 2.4.2]. To calculate H?(G, U)
for nontrivial G' with this transgression, we work in the finitely generated
infinite group F/[R, F|, whereas with our choice of transgression we work in
a Schur cover which is a finite subquotient of F/[R, F].

In this section we have shown how to obtain a set of representatives for
primary invariant generators of H?(G,U) as cocyclic matrices. It is easy to
get representatives for all elements of H%(G, U) by forming entrywise products

of the generators.



3 Determining central extensions

For ¢ € Z*(G,U), the associated canonical central extension E, of U by
G has as elements all (g,u), g € G,u € U, with multiplication defined by
(g9,u)(h,v) = (gh,uv(g,h)). If E is any central extension of U by G then
we may choose a transversal function for the cosets of U in E such that E
is equivalent (and hence isomorphic) to E,, where v is the cocycle arising
from the transversal function. The set {[Ey] | ¥ € Z*(G,U)} of equivalence
classes is in one-one correspondence with H?(G,U) and becomes an abelian
group under Baer addition; this group is isomorphic to H?(G,U). Therefore
|H?(G,U)| is an upper bound for the number of different isomorphism types
of central extensions of U by G. This bound can be sharpened by calculating
orbits in H?(G,U) under a familiar action of Aut(G) x Aut(U) on H*(G,U);
see [5, Lemma 4.4] or [9, Theorem 2.2].

If enough entries of a cocyclic matrix for ¢ are known, then E, is known,
for we can write down a presentation of this extension in an elementary way
which we now briefly explain.

Suppose G has presentation

(21, .y T |1 =" =1, =1)
where r; = ri(z1,...,2,) is a word in the z;s: say r; = zg] - xf,’j:, where

ki > 1 and each €.j is 1 or —1. Let U be in primary invariant form: say
U= (up,...,us | ul" =1, [upu] =1 Vi,j, 1<i<j<s),
where 7.7 is a prime power for all . Then E, has presentation

(€1, ey lmyUt, . s | T1(€1, .. em) =w1,... (€1, .., €m) = Wy,
ul' =1, fuul =1 Vij, 1<i<j<s, (2

[ei:uj]:]- Viaja 1§2§m, ]-S]SS)a

where the w; are elements of U found as follows. Clearly, e; stands for (z;,1)
in Ey, and so e; ' stands for (z;',%(z;,z;')~"). Thus w; is the projection
in U of

(25, Y(@ig, i) D) o (a5, (i, ) R/, (3)

i



After performing the multiplication in E, that brackets leftmost pairs of ele-
ments of Ey in (3), we see that

&
>

i

€. e(j—1 €.7 _ i

=2 j=1

for k; > 2. The alternative multiplication strategy yields the same element of
U, since v is a cocycle.

For each i, we compute the values of ¢ appearing in (4) by the algorithm
of Section 2, and hence obtain the presentation (2) of E,.

A more specific and detailed exposition of these ideas is in [5, §4.1].

4 An implementation

Our implementation of these algorithms is distributed as part of MAGMA.

Let G be a finitely presented group. We can compute a Schur cover D
of G using the Magma function Darstellungsgruppe, and also identify the
Schur multiplier M of G in D.

As indicated earlier, we assume that the description of G allows us to
solve the word problem. In practice, we currently assume that G is a finite
soluble group, so that it has a power-conjugate presentation. For a treatment
of such presentations, see [19, Chapter 9]. Under these assumptions, it is easy
to fulfill the requirements (i)-(iii) listed in Section 2 needed to compute 7'. We
plan to extend our implementation to accept other computationally effective
descriptions of G.

A generating set for the group of all homomorphisms from one finite abelian
group to another can also be readily computed in MAGMA, following Section 2.

Our implementation produces representatives for the elements in a gen-
erating set for H?(G,U) as cocyclic matrices and identifies the isomorphism
type of H?(G,U). Employing the ideas in Section 3, it returns presentations
for the corresponding central extensions of U by G. As we previously ob-
served, calculation of these presentations may be achieved without completely

calculating the cocyclic matrices.



5 Application to relative difference sets

Our machinery for computing cocycles may be applied to the generation of
(normal) relative difference sets. We adopt the standard definition of rela-
tive (v, m, k, \)-difference set in a group E of order vm, relative to a normal
subgroup N of order m: it is a k-set D of elements of E such that in the
multiset

{de™' | d,e € D, d # e},

each element of E' not in N occurs A times and no element of N occurs (N
is the “forbidden subgroup”). For material on relative difference sets, see [6]
or [18].

Let U be the cyclic group (—1) of order 2. We say that ¢ € Z%(G,U)
is orthogonal if a cocyclic matrix for ¢ is Hadamard. If ¢ is orthogonal and
|G| > 2, then |G| is divisible by 4. From now on, unless stated otherwise, we
will assume that |G| = 4t for some ¢t > 1. See [14] for pertinent theory of

cocyclic Hadamard matrices.
Theorem 5.1 ([3, Theorem 2.5, Corollary 2.6])

(i) If D is a relative (4t,2, 4t, 2t)-difference set in a group E relative to a
normal subgroup N = U, then D 1is a transversal for the cosets of N in
E and ¢ € Z*(E/N,U) arising from this transversal is orthogonal.

(i) ¥ € Z%(G,U) is orthogonal if and only if {(g,1) | g € G} is a relative
(4t, 2, 4t, 2t) -difference set in Ey relative to U.

Thus, the search for relative (4t,2,4t, 2t)-difference sets in (necessarily)
central extensions of U by G, relative to U, is precisely the search for or-
thogonal elements of Z?(G,U). The question of whether orthogonal cocycles
exist for all ¢ is unresolved (see [14, Problem 5.4]): this is a special case of the
Hadamard conjecture that there is a 4t x 4¢ Hadamard matrix for all posi-
tive ¢. A non-constructive argument in [2], based on knowledge of Williamson
Hadamard matrices, implies that relative (4¢, 2, 4t, 2t)-difference sets exist for
1 <t < 25. More general discussion about families of relative (4t,2,4t, 2t)-

difference sets is in [3, §4].



Corollary 5.2 Let ¢ € Z?(G,U), and let ¢ be a normalised set map from G
to U. Then {(g,9(g9)) | g € G} is a relative (4t,2,4t, 2t)-difference set in E,
relative to U if and only if ¢ - O¢ 1is orthogonal.

Proof. The assignment (g,u) € Ey.g94 — (9,u¢(g9)) € Ey defines an isomor-

phism respecting U. The corollary now follows from Theorem 5.1. O

Corollary 5.2 exhibits all normalised relative (4t,2,4t,2t)-difference sets
with forbidden subgroup U in a given extension of U by G. Next we outline
a direct method of constructing such difference sets (if indeed any exist).

First we compute Z?(G,U). Our algorithm yields a generating set for
H?(G,U), which leaves us to compute B?(G,U). A coboundary d¢ has matrix
that is equivalent to the (“group-developed”) matrix obtained from overwriting
each entry in the multiplication table of G with its image under ¢. But
if O3(G/G') # 1 then a given coboundary 0¢ may arise from more than one
normalised map ¢: G — U. For suppose O2(G/G') and O9(Hy(G)) have ranks
r and s respectively: then |Z%(G,U)| = 2/¢-'** and |B?(G,U)| = 2/¢I-1-"
(see Remark 2.3 for the first statement, from which the second follows at
once by the Universal Coefficient Theorem). Suppose that d¢; = d¢po and
that 1 - ¢, is orthogonal for some v € Z%(G,U). We surely do not want
to distinguish between the two relative difference sets in FEy.54 guaranteed
by Corollary 5.2, for ¢ = ¢; and ¢ = ¢. And indeed they are equivalent,
under the standard notion of equivalence of relative difference sets given in
[18, p. 198]. For instance, they are equivalent if they correspond under an
automorphism of Ey.54, leaving U invariant. Such an automorphism is defined
by (g,u) — (g,up1(g)p2(g)). On a related note, suppose [¢] and [x] are in
the same orbit under the Aut(G)-action on H?(G,U) mentioned in Section 3.
Then it is easily seen that £, and E, are isomorphic by an isomorphism that
fixes U elementwise and gives a bijection from the collection of all relative
(4t, 2, 4t, 2t)-difference sets with forbidden subgroup U in one extension to
the collection of all such relative difference sets in the other.

See [12] for a lengthier exploration of relative difference set equivalence in
cohomological terms. Since we do not seek a full classification of relative dif-
ference sets in central extensions, we will not consider further this equivalence

criterion.



Suppose that each element of Z?(G,U) has been computed as a cocyclic
matrix, or an equivalent one obtained from a cocyclic matrix by pre- or post-
multiplication by a £1-permutation matrix. We then test whether each matrix
is Hadamard by taking the scalar product of its first row with every other row:
the matrix is Hadamard if and only if these products are all zero (see [14,
Lemma 1.4]).

Assume we have a cocyclic Hadamard matrix over G. By the MAGMA
procedures, we know the cocycle in question as v - d¢, where @ is in the
calculated set of representatives for the elements of H*(G,U), and ¢ is also
known (in worst-case, all normalised maps from G to U are evaluated). An
ordering g, ..., gs of the elements of G indexes the rows and columns of a
matrix for ¢ and a group-developed matrix for ¢. Write (¢;,1) € Ey as f;
and the first row of a group developed matrix for ¢ as u; ... ugy. Then by
Corollary 5.2, a relative (4,2, 4t, 2t)-difference set in Ey, relative to U is

{flula .- -af4tu4t}-

Our objective in the sequel is to determine, for 1 < ¢ < 3 and each isomor-
phism type E of group of order 8¢ with a central subgroup U == Z,, existence
or otherwise of relative (4t, 2, 4¢, 2t)-difference sets in E with forbidden sub-
group U. We provide an example of such relative difference sets if they exist.

If there is an orthogonal coboundary over GG then ¢ is a square. Thus,
for 2 <t < 3, there are no relative difference sets in G' x U relative to U.
This is not to say there are no difference sets in G x U relative to some
other central (and of course non-splitting) subgroup of order 2. Suppose
|G| = 4s*. A Menon-Hadamard difference set in G is a relative difference
set in G with parameters (4s%1,2s®> — s,5% — s), or its complement, with
parameters (4s%,1,2s? + 5,582 + s). If 0¢ is an orthogonal coboundary, then
the characteristic set of ¢ is a Menon-Hadamard difference set in G (see |3,
Theorem 2.7]). In this way one may easily write down a Menon-Hadamard
difference set in G given a relative difference set in G x U, and vice versa. We
illustrate this below.

For each of ¢t = 1 and 2, we use the MAGMA implementation of the p-
group isomorphism testing algorithm of [17] to identify the distinct isomor-

phism types of extensions that occur. For ¢ = 3, we observe that if H?(G,U)



has elements containing orthogonal cocycles, then it has just one, and the
isomorphism type of the corresponding extension of U by G is uniquely de-
termined by G. The notation O#n will refer to the nth group of order O in
the SmallGroups library distributed with both GAP and MAGMA.

Details are similar in every case, and so we describe compilation of the list
only for ¢t = 2. Here, there are 128 normalised set maps G — U, yet |B?(G,U)|
is 32 when G is nonabelian or Zjy X Z4, 16 when G is elementary abelian, and
64 when G is cyclic. By [9, Lemma 5.2], G cannot in fact be cyclic. Since
Qs has trivial multiplier, H?(Qg,U) & Ext(Qgs/Q%,U) = ZgZ). After testing
the elements of the nontrivial cocycle classes, we find none are orthogonal.
Only four of the eight cohomology classes in H?(Dg,U) contain orthogonal
cocycles. Two of these classes correspond to extensions isomorphic to 16#3.
The remaining classes have associated extensions isomorphic to 16#9 or 164#4.
(Examples of orthogonal cocycles over Dg are also given in [9].) Only half of
the cohomology classes in H?(Zy x Z4,U) & Zg?’) contain orthogonal elements.

One of these corresponds to Zf)

, two to Zs X Zg, and the remaining one to
16#4. There are orthogonal cocycles in each nontrivial cohomology class in
H*(ZY U) 2 7P . (We expect that a determination of the Aut(G)-orbits in
H?*(G,U) would allow us to process a much smaller number of classes.) Seven

) % Zy4. Otherwise,

classes give rise to abelian extensions, all isomorphic to Z§2
an extension has no elements of order greater than 4 and Frattini subgroup of
order 2, so is isomorphic to one of 16411, 16#12, or 16#13. After checking
the first 13 cocycles returned by the MAGMA procedures, we find that all of
these isomorphism types occur.

In summary: of the 14 nonisomorphic groups of order 16, precisely 9 have
relative (8,2, 8,4)-difference sets relative to some central subgroup of order 2.

Now we list power-conjugate presentations for all groups of orders 8, 16 and
24 in which relative difference sets with forbidden subgroup of order 2 exist.
We write the forbidden subgroup as U = (u ). The usual convention, followed
throughout, is that trivial conjugate relations are not included in a presenta-
tion. We identify each group in the SmallGroups library. Immediately after
each presentation we give an example of a relative difference set with forbidden
subgroup U contained in the group with that presentation. Groups E num-
bered in the ranges 2 —3, 4 — 5, 6 — 8 and 9 — 12 have F/U isomorphic to



ZgZ), Zio X 7Ly, Dg and Zg?’), respectively. Groups E numbered 1, 13, 14 and
15 have E /U isomorphic to Z,, A4, D12 and ng X Zs, respectively. Yet this
quotient may not be uniquely determined: E may have a central subgroup
U' # U that occurs as forbidden subgroup in a relative (4t, 2, 4¢, 2t)-difference
set in E, with E/U" 2 F/U. This happens for both E = Zs X Z, and E =
16#4; in the latter case, F /U’ = Zy x Z4 for some such U'. For all other
listed E, E/U is uniquely determined (of course, at order 24, E has just one

central subgroup of order 2).

1. 8#227ZyxZy (er,eq,ulel =€y e5=1 u?>=1)

{1, e1u, ey, eres}.

2. 8H#4 = (g (e, en,u|el=u, e3=u, u> =1, e5' = eyu)

{1a €1, €2, 6162}.

3. 8457 (er,eule?=1,e2=1 u2=1)

{1’ ei1u, ég, 6162}'

4. 16#2=ZY (e enesule=u, d=e; d =1 u>=1)

{1a €iu, €2, €3, €169, €1€3U, €2€3U, €1€2€3U}.

5. 1645 X 7y x Zg (ey,eg,e3,u| €2 =u, e2=e3, €3 =u, u*=1)
{1, €1, €U, €3U, €163, €1€3, €2€3, 616263}-
6. 16#3 (e1,e9,e3,u| €2 =u, e =ezu, e =1, u? =1,
er __
est = eges)
{1, €1u, €2, €3, €1€2U, €1€3U, €2€3U, 616263}-
7. 1644 (e1,e9,e3,u| €2 =u, e =e3, 2 =1, u? =1,
es! = e )

{1, e1, eq, €3, e1€9, €163, €2e3U, €1€2€3U } .



10.

11.

12.

13.

14.

15.

1649

16410 2 292 x 7,

16#11 = 7o X Dg

16#12 = Z2 X Qg

16413

2443

24444

24411

2 _ 2 _ 2 _ 2 _
(e1,69,€3,u | €] =u, €5 =e3u, e3 =u, u° =1,
er __ [

es! = eges, €5 = ezu)
{1a eiu, €2, €3, €169, €1€3, €2€3, 616263}'

2 _ 2 _ 2 _ 2 _
(e1,e9,e3,u | e =u, e5=u, e3=u, u>=1)

{1a €1, €2, €3, €162, €1€3, €2€3, 616263}'

2 _ 2 _ 2 _ 2 _

(e1,e9,e3,ulei =1, es=u, e5=u, u* =1,
es! = equ, e5' = egu)

{1, e1u, eau, e3, eiez, eres, eses, ejeses ).
2 _ 2 _ 2 _ 2 _

(e1,eg,e3,u | e =u, e5 =u, e =u, u* =1,
es' = equ, €5 = ezu, €5’ = ezu)

{1’ €1, €2, €3, €1€2, €1€3, €92€3, 616263}‘

2 _ 2 _ 2 _ 2 _
(e1,e,e3,u | e =u, e5=u, e3 =u, u* =1,
es? = ezu)

{1, €1, €2, €3, €1€2, €1€3, €2€3, 616263}-

3 _ 2 _ 2 _ 2 _
(e1,eg9,e3,u |ef =1, e5 =u, e3 =u, u* =1,
er __ er __ €2 __
es' = ege3, €5 = eq, €52 = e3u)
{1, €1, €U, €3U, €1€2, €1€3, €2€3U, €1€2€3,

2 2 2 2
e}, ejey, ejes, ejeses }.

2 _ 2 _ 3 _ 2 _
(e1,69,€3,u |ef=wu, e5=u, e =1, v’ =1,
er __ er _ 2
€y = €U, €3 —€3>
{1, €1uU, €U, ezu, €€y, €1€3, €2€3, €1€2€3,

2 2 2 2
esu, eje3, exe;, ejeges }.

3 _ 2 _ 2 _ 2 _
(e1,€e9,e3,u |e; =1, e5=u, e5=u, u*=1,
€2 __
es? = egu)
2
{1, e1u, exu, esu, ejey, eres, exes, ejeqes, eju,

2 2 2
ejey, eles, eseses }.



Only two of the nonabelian extensions in the preceding list, namely 16#11
and 16#12, contain a splitting subgroup of order 2. Further, the difference
sets in 1 and 3 arise from orthogonal coboundaries, from which we derive the
Menon-Hadamard difference sets {1, ey, ejes } in (eg,e0 | €2 = €9, €2 =1)
and {1, ey, e1e2} in {ej,ea | €2 = €2 =1). A more interesting example is
the elementary abelian group G of order 16 on generators ey, es, €3, €4, Which

has Menon-Hadamard difference set
{1, €4, €2€3, €364, €1€3€4, 61626364}
derived from the relative (16,2, 16, 8)-difference set

{1; €1U, €2U, €3U, €4, €1€2U, €1€3U, €1€4U, €2€3, €2€4U, €3€4, €1€2€3U,

€1€2€4U, €1€3€4, €2€3€4U, 61626364}

in G x U relative to U, computed as above.

Using MAGMA V2.4 on a Sun UltraSPARC Enterprise 4000 server, it takes
approximately 10 minutes of CPU time to compute the results presented here.

Our somewhat naive approach is limited to groups of small order, since
the search space for orthogonal cocycles grows exponentially with group order.
In an attempt to address this limitation, our implementation permits random
sampling of the search space. We are not aware of any general approach to
reduce significantly the exponential complexity of the task. Results obtained
by Ito apply in particular cases to exclude some cohomology classes from a
search for orthogonal cocycles: for example, [15, Proposition 7] implies that
there are no orthogonal cocycles over Z, x Zs nor over 12#1. On the other
hand, computational evidence suggests that dihedral and elementary abelian
groups are good sources of orthogonal cocycles. The basic case for the latter
type of group is covered by the proof of Dillon’s conjecture in [4], which implies
existence of an orthogonal coboundary over every elementary abelian 2-group

of even rank.
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