
Constructive recognition of classical groups in odd

characteristic

C.R. Leedham-Green and E.A. O’Brien

Abstract

Let G = 〈X〉 ≤ GL(d, F) be a classical group in its natural representation de-
fined over a finite field F of odd characteristic. We present Las Vegas algorithms
to construct standard generators for G which permit us to write an element of G

as a straight-line program in X. The algorithms run in polynomial-time, subject
to the existence of a discrete logarithm oracle for F .

1 Introduction

The goal of the ‘matrix group recognition project’ is the development of efficient al-
gorithms for the investigation of subgroups of GL(d, F) where F is a finite field. A
particular aim is to construct the composition factors of G ≤ GL(d, F). If a problem
can be solved for the composition factors, then it can be frequently be solved for G:
examples include constructing the Sylow p-subgroups of G for given prime p. We refer
to the recent survey [33] for background related to this work.

One may intuitively think of a straight-line program (SLP) for g ∈ G = 〈X〉 as
an efficiently stored group word on X that evaluates to g. Informally, a constructive
recognition algorithm constructs an explicit isomorphism between G and a ‘standard’
(or natural) copy of G, and exploits this isomorphism to write an arbitrary element of
G as an SLP in its defining generators. For a more formal definition, see [36, p. 192].

In our context, 〈X〉 = G ≤ GL(d, F) is a classical group of odd characteristic in
its natural representation, so one might regard the construction of the identity map as
an easy exercise! However, a solution to this problem requires us to write an arbitrary
element of G as an SLP in the given generating set X. In this paper, we define
standard generators for G from which SLPs to arbitrary elements of G may readily

This work was supported in part by the Marsden Fund of New Zealand via grant UOA 412. We
thank Peter Brooksbank and Cheryl Praeger for detailed commentary and discussion on various drafts
of this paper. We thank John Bray, Bill Kantor, Frank Lübeck, Alice Niemeyer, and Robert Wilson
for helpful discussions. 2000 Mathematics Subject Classification. Primary 20C20, 20C40.

1

be constructed, and then devise algorithms to construct these canonical generators as
SLPs in X.

We comment briefly on the significance of our work. As a doubly parameterised
family, the classical groups in their natural representation are the most ubiquitous
and challenging of all linear groups. The constructive recognition problem is funda-
mental: its solution is key to a number of other hard problems, including conjugacy
testing of subgroups and elements, and construction of maximal subgroups. The algo-
rithm we present here to solve the problem is both provably theoretically efficient and
also eminently practical: its structure was influenced by this latter concern. Subject
to the existence of a discrete logarithm oracle, its complexity is O(d(ξ + d3 log d +
d2 log d log log d log q)) measured in field operations, where q is the field size and ξ is
the cost of constructing a random element.

Central to our work are centralisers of involutions, long of theoretical importance.
As part of our analysis, we obtain general theoretical results of independent interest
about the proportions of certain kinds of elements in the classical groups.

Another striking aspect of our work is the short length of the SLPs in X we construct
to encode the canonical generators of G. Subject to certain assumptions about the
behaviour of the algorithm used to generate random elements, one family of algorithms
constructs SLPs of length O(log3 d), which is polynomial in log log |G|; by contrast,
Babai & Szemerédi [3] prove that an arbitrary element of G has an SLP in X of length
O(log2 |G|).

1.1 The groups

We divide the groups of principal interest into three overlapping classes.
The first class consists of the following groups. In all cases d > 1, q is odd, and V

denotes the underlying vector space.

• GL(d, q), the group of all invertible d × d matrices over GF(q).

• Sp(d, q), the group of all elements of GL(d, q) that preserve a given non-degenerate
alternating bilinear form on V . The existence of such a form implies that d is
even.

• U(d, q), the group of all elements of GL(d, q2) that preserve a given non-degenerate
hermitian form on V .

• O+(d, q), the group of all elements of GL(d, q) that preserve a given non-degenerate
symmetric bilinear form on V of + type. This implies that d is even.

• O−(d, q) is defined in the same way, except that the form is of − type; again d is
even.

• O0(d, q), the group of all elements of GL(d, q) that preserve a given non-degenerate
symmetric bilinear form on V , where d is odd.

2

The definition of all of these groups, except for the first, depends on the choice
of form. However, the groups defined by two different forms of the same type are
conjugate in the corresponding general linear group. We use the notation GX(d, q) to
represent any one of the above groups.

The second class of groups is obtained from the first by replacing each group by
the subgroup consisting of the elements of determinant 1. All elements of Sp(d, q) have
determinant 1. The subgroups of the other groups thus defined are denoted respectively
by SL(d, q), SU(d, q), SO+(d, q), SO−(d, q) and SO0(d, q) = SO(d, q). Thus Sp(d, q)
belongs to both classes. We use the notation SX(d, q) to represent any group in the
second class.

All of the groups in the second class are perfect with the exception of SX(2, 3) and
the orthogonal groups; the latter contain a unique subgroup of index 2, denoted re-
spectively by Ω+(d, q), Ω−(d, q) and Ω0(d, q); with two exceptions, Ω(3, 3) and Ω+(4, 3),
these groups are perfect for d > 2. The third class consists of these three families to-
gether with the non-orthogonal groups in the second class. We sometimes use the
notation ΩX(d, q) to represent any group in the third class.

Let C denote the union of the second and third classes of subgroups of GL(d, q),
so it consists of classical groups in their natural representations. We say that SX(d, q)
and Ωǫ(d, q) have type SL, Sp, SU, SOǫ, or Ωǫ, where ǫ ∈ {−, 0, +}, and parameters
(type, d, q).

We may regard each of these groups as a group of automorphisms of a vector space
V of dimension d over GF(q) (or over GF(q2) in the case of unitary groups); and we
replace (d, q) by V when we wish to specify the vector space. If V has an associated non-
degenerate form, then we may write O(V) rather than, for example, O−(V), allowing
the type of the form to determine the type of the group.

1.2 The primary result

Let G be a classical group in its natural representation contained in C. We present
and analyse two Las Vegas algorithms that take as input a generating subset X of G
and the form preserved by G, and return as output standard generators of G as SLPs
in X. (These standard generators are defined in Section 3.) Usually, these generators
are defined with respect to a basis different to that for which X was defined, and a
change-of-basis matrix is also returned to relate these bases.

Let ξ denote an upper bound to the number of field operations needed to construct
an independent (nearly) uniformly distributed random element of a group, and let
χ(q) denote an upper bound to the number of field operations equivalent to a call to a
discrete logarithm oracle for GF(q).

Our principal result is the following.

Theorem 1.1 There is a Las Vegas algorithm that takes as input a subset X of
bounded cardinality of GL(d, q), where X generates a group G in C, and returns stan-
dard generators for G as SLPs of length O(log3 d) in X. The algorithm has com-
plexity O(d(ξ + d3 log d + d2 log d log log d log q + χ(q))) measured in field operations

3

if G is neither of type SO− or Ω−. Otherwise the complexity is O(d(ξ + d3 log d +
d2 log d log log d log q + χ(q)) + χ(q2)) measured in field operations.

We prove this theorem by exhibiting an algorithm with the given specifications;
more precisely, we exhibit two algorithms for each of the given types of group. For
each type, the first algorithm is designed to run fast, and the second to produce shorter
straight line programs. The first algorithm spends less time in the parent group; the
second spends more time in the parent group, but generates fewer recursive calls. The
bound of O(log3 d) for the length of the SLPs is achieved only by the second algorithm;
both have the stated time complexity. The second algorithm does not apply directly to
orthogonal groups that are not of + type; but, when dealing with the other orthogonal
groups in large dimensions, most of the work is carried out in an orthogonal subgroup
of + type, and this subgroup can be processed using the second algorithm.

If we assume that a random element of the group can be constructed in O(d3)
field operations, then, for fixed q, and subject to the existence of a discrete logarithm
oracle, both algorithms require O(d4 log d) field operations to construct the standard
generators.

Our estimate of the complexity contains the term dξ. This encodes the fact that
O(d) random elements of the group are constructed outside the recursive calls. Ran-
dom elements are also constructed in the recursive calls: the total number of random
elements constructed is O(d log d). If ξ is at least d3, then Lemma 2.4 implies that
the cost of constructing random elements in the recursive calls does not affect the
complexity estimate.

Once we have constructed these standard generators for G, a standard ‘generalised
echelonisation’ algorithm can be used to write a given element of G as an SLP in
these generators. We do not consider this task here, but refer the interested reader
to the algorithm of [9, Section 5], which performs this task in O(d3 log q + log2 q) field
operations.

1.3 Related work

Already constructive recognition algorithms exist for various families of groups.
Brooksbank’s algorithms [9] to construct (different and larger) canonical generat-

ing sets for the natural representation of each of Sp(d, q), SU(d, q), and Ωǫ(d, q) have
complexity

O(d3 log q(d + log d log3 q) + (d + log log q)ξ + d5 log2 q + (log q)χ(q2)),

and again assumes the existence of a discrete logarithm oracle. The algorithm of Celler
& Leedham-Green [16] for SL(d, q) has complexity O(d4q).

Kantor & Seress [26] have developed black-box constructive recognition algorithms
(see [36, p. 17]) for the classical groups. These algorithms do not run in time polynomial
in the size of the input: their complexity involves q. However, Brooksbank & Kantor
[11] demonstrate that the complexity of these algorithms can be made polynomial in

4

log q given an oracle for explicit membership testing in SL(2, q) and (in some cases) in
SL(2, q2). Subject to a fixed number of calls to a discrete logarithm oracle for GF(q),
Conder & Leedham-Green [17] and Conder, Leedham-Green & O’Brien [18] present
a Las Vegas algorithm which constructively recognises SL(2, q) as a linear group in
defining characteristic in time polynomial in the size of the input. Brooksbank [10] and
Brooksbank & Kantor [11, 12] have exploited this work to produce better constructive
recognition algorithms for black-box classical groups.

Other constructive recognition algorithms include those of Bäärnhielm [4] for the
Suzuki groups and of Beals et al. [6] for black-box representations of alternating groups.

1.4 Other directions

We plan to develop similar constructive recognition algorithms for classical groups of
characteristic 2 in their natural representation. We will also generalise these algorithms
to deal with an arbitrary representation of a classical group in the defining character-
istic. Now the problem of writing group elements as SLPs in the standard generators
is not so easy; work on this problem is in progress.

1.5 The content of the paper

In Section 2 we review some background material on forms, and summarise the struc-
ture of involution centralisers for elements of classical groups in odd characteristic.
In Section 3 we define standard generators for the classical groups. In Sections 4–7
the algorithms are described: the non-orthogonal groups are first presented uniformly.
The algorithms use involutions whose −1-eigenspaces have dimensions in a prescribed
range. The cost of finding and constructing such involutions is analysed in Sections 8
and 9. We frequently compute high powers of elements of linear groups; an algorithm
to do this efficiently is described in Section 10. In Section 11 we discuss how to con-
struct the perfect quotients of the factors of a direct product of two classical groups.
The centraliser of an involution is constructed using an algorithm of Bray [8]; this is
considered in Section 12. The base cases of the algorithms (when d ≤ 6) are discussed
in Sections 13 and 14. The complexity of the algorithms and the length of the resulting
SLPs for the standard generators are discussed in Section 15 and 16. Finally we report
on our implementation of the algorithm, publicly available in Magma [7].

2 Notation and background

Throughout the paper q denotes an odd prime power.
We assume familiarity with most basic results in the theory of classical groups; all

can be found in [37]. Recall that the spinor norm (see [37, p. 163]) is a homomorphism
from SOǫ(d, q) to {±1} with kernel Ωǫ(d, q). We use Witt’s Theorem in the following
form.

5

Theorem 2.1 Let V be a finite dimensional vector space that supports a non-degenerate
bilinear or hermitian form. Let U and W be subspaces of V , and let g be a linear isom-
etry from U to W . Then there is a linear isometry f from V to V such that uf = ug
for all u ∈ U .

For a proof see [37, Theorem 7.4]; we have specialised the quoted theorem to the case
where the form is non-degenerate. If the bilinear form restricted to U is non-degenerate,
then f can be chosen to have determinant 1. If, in addition, the form is symmetric, and
U has codimension at least 2 in V , we can choose f to have determinant 1 and spinor
norm 1. This is because V = W ⊕ W⊥, and a linear isometry h can be constructed
from V to V that maps W to W as the identity, and that maps W⊥ to W⊥ with the
same determinant and (when relevant) the same spinor norm as h, and then fh−1 will
be the required isometry of V .

If V has a bilinear form, then we denote the image of the ordered pair of vectors
(u, v) in V × V under the form by u.v.

Let g ∈ G ≤ GL(d, q), let Ḡ denote G/G∩Z where Z denotes the centre of GL(d, q),
and let ḡ denote the image of g in Ḡ. The projective centraliser of g ∈ G is the preimage
in G of CḠ(ḡ). Further, g ∈ G is a projective involution if g2 is scalar, but g is not.

Involution centralisers are fundamental to our algorithms. We briefly review the
structure of involution centralisers in (projective) classical groups defined over fields of
odd characteristic. A detailed account can be found in [22, 4.5.1].

If h is an involution in a classical group G, then we denote its +1 and −1-eigenspaces
by E+ and E− respectively. Observe that the dimension of the −1-eigenspace of an
involution in SX(d, q) is always even, since the involution must have determinant 1.

If G preserves a non-degenerate form, then E+ and E− are mutually orthogonal,
and the form restricted to each of these spaces is non-degenerate. If G ∈ C, then
CG(u) = (GX(E+) × GX(E−)) ∩ G. The centraliser of the image of u in the central
quotient G of G is the image of CG(u) in G if E+ and E− are of different dimensions
or (in the orthogonal case) of different types. Otherwise E+ and E− are isometric and
the centraliser is the image of (GX(E+) ≀ C2) ∩ G in G.

A subgroup of GL(U), where U is a subspace of V that supports a non-degenerate
form, is regarded as a subgroup of GL(V) centralising U⊥. With this convention,
the base of the wreath product GX(E+) ≀ C2 is GX(E+) × GX(E−). Similarly, if E+

and E− are the eigenspaces of an involution in GL(V), then a subgroup of GL(E+) is
regarded as a subgroup of GL(V) that centralises GL(E−); and mutatis mutandis the
same applies to a subgroup of GL(E−).

We denote the subgroup of SOǫ(m, q)×SOǫ(n, q) consisting of those pairs of elements
whose spinor norms are equal by SOǫ(m, q) ×C2 SOǫ(n, q).

We summarise some observations about symmetric bilinear forms of + and − type.

Lemma 2.2 Let E+ and E− denote the +1 and −1-eigenspaces of an involution h ∈
Ωǫ(d, q), where E− has dimension e.

(i) The form supported by E− is of − type if and only if both q ≡ 3 mod 4 and
e ≡ 2 mod 4.

6

(ii) The restrictions of the symmetric bilinear form preserved by Ωǫ(d, q) to the two
eigenspaces of h are of the same type if ǫ = +, and are of opposite types if ǫ = −.

The proof of these assertions is elementary: −I2 ∈ O+(2, q) has spinor norm +1 if
q ≡ 1 mod 4, and has spinor norm −1 if q ≡ 3 mod 4; whereas −I2 ∈ O−(2, q) has
spinor norm −1 if q ≡ 1 mod 4, and has spinor norm +1 if q ≡ 3 mod 4.

To distinguish readily between symmetric bilinear forms of + and − type, we use
the following observation.

Lemma 2.3 If A is the 2n-dimensional matrix of a symmetric bilinear form, then the
form is of + type if (−1)n det(A) is a square, otherwise the form is of − type.

2.1 Las Vegas algorithms and complexity

We use the ‘big O’ notation in the following way. If f and g are real valued functions,
defined on all sufficiently large integers, then we write f(n) = O(g(n)) to mean |f(n)| <
C|g(n)| for some positive constant C and all sufficiently large n. The modulus here
will be relevant only when g(n) tends to 0 with n.

A Las Vegas algorithm is a randomised algorithm which never returns an incorrect
answer, but may report failure with probability less than some specified value.

Our algorithms usually search for elements of G having a specified type. As part
of the analysis of these algorithms, we determine a lower bound, say 1/k, for the
proportion of such elements in G. It is now an easy exercise to prescribe the probability
of failure of the corresponding algorithm. Namely, to find such an element by random
search with a probability of failure less than a given ǫ ∈ (0, 1) it suffices to choose (with
replacement) a sample of uniformly distributed random elements in G of size at least
⌈− loge(ǫ)⌉k. Hence we do not include such estimates as part of each theorem.

We record an elementary observation that is frequently used to estimate the cost
of our ‘divide-and-conquer’ algorithms.

Lemma 2.4 Let f be a real valued function defined on the set of integers greater than
1. Suppose that

∃k > 1 ∃c > 0 ∀d ≥ 4 ∃e ∈ (d/3, 2d/3] f(d) ≤ f(e) + f(d − e) + cdk.

Then f(d) = O(dk).

Proof: Let m = max(c/(1− (1/3)k − (2/3)k), f(2)/2k, f(3)/3k). We prove, by induc-
tion on d, that f(d) ≤ mdk for all d > 1. This is obvious for d = 2, 3. Suppose that
d ≥ 4, that e is as in the statement of the lemma, and that f(n) ≤ mnk for all n < d.
Then

f(d) ≤ f(e) + f(d − e) + cdk

≤ mek + m(d − e)k + cdk

7

= mdk

(

(e

d

)k

+

(

d − e

d

)k
)

+ cdk

≤ mdk

(

(

1

3

)k

+

(

2

3

)k
)

+ cdk

≤ mdk.

The result follows. 2

This lemma demonstrates that the cost of the recursive calls in a ‘divide-and-
conquer’ algorithm of the type we employ does not affect the degree of complexity of the
overall algorithm. The condition k > 1 is required to ensure that 1−(1/3)k−(2/3)k > 0.

2.2 The pseudo-order of a matrix

While the precise order of an arbitrary g ∈ GL(d, q) cannot be determined in polyno-
mial time, because of problems with integer factorisation, we can readily compute a
“good” multiplicative upper bound for |g|, which we shall call its pseudo-order.

Let the factorisation of the minimal polynomial polynomial f(x) of g into pow-
ers of distinct irreducible monic polynomials be given by f(x) =

∏t
i=1 fi(x)ni, where

deg(fi) = ei. Then |g| divides B = lcm(qe1−1, . . . , qet−1)×pβ , where β = ⌈logp max ni⌉
and GF(q) has characteristic p.

From B, we can readily learn in polynomial time the exact power of any specified
prime that divides |g|. In particular, we can determine if g has even order.

Recall from [31] that a primitive prime divisor of qe − 1 is a prime divisor of qe − 1
that does not divide qi − 1 for any positive integer i < e.

Definition 2.5 Using the above notation, let u1 < u2 < . . . < us be the factors of the
distinct degrees of the irreducible factors of f(x). The pseudo-order of g is defined to
be n := pβ ·

∏s
k=1 rk ·

∏

j∈J pj where:

(i) {pj : j ∈ J} is the set of primes, with multiplicities, that divide |g| and that are
at most d + 1;

(ii) rk 6= 1 if and only if |g| is a multiple of a primitive prime divisor of quk−1 greater
than d + 1. In this case rk is the product of all the primitive prime divisors of
quk − 1, with multiplicities, that are greater than d + 1. (Here, the multiplicity of
a prime is the multiplicity with which it divides quk − 1.)

Clearly |g| divides the pseudo-order of g. If rk 6= 1 then rk is a pseudo-prime divisor
of |g|.

Lemma 2.6 The following algorithm returns the product m of the primitive prime
divisors of qe − 1, multiplied by powers of certain primes at most e.
m := qe −1; for i = 1 to e−1 do if i divides e then m := m/ gcd(m, qi−1); return m.

8

Proof: Let ℓ be a prime dividing the returned value of m. Since ℓ divides m, it follows
that ℓ is a primitive prime divisor of qi − 1 for some i dividing e. If the multiplicity
of ℓ, as a prime divisor of qe − 1, is greater than its multiplicity as a prime divisor of
qi − 1, then ℓ divides (qe − 1)/(qi − 1) = 1 + qi + · · · + qe−i, and hence divides e. The
result follows. 2

The greatest common divisors used in the algorithm can be calculated readily using
the following observations: gcd(qi − 1, qj − 1) = qk − 1, where k = gcd(i, j), and
gcd(n/a, b) = gcd(n, b)/ gcd(a, b).

Thus we can factorise B as
∏s

k=1 rk

∏

j∈J pj, where, for all j, pj is a prime at most
d + 1, and rk is the product of those primitive prime divisors (with multiplicities) of
quk − 1 that are greater than d + 1.

For easy reference, we summarise the costs of certain basic operations.

Lemma 2.7

(i) The cost of multiplication and division operations for polynomials of degree d
defined over GF(q) is O(d log d log log d) field operations. Such a polynomial can
be factored into its irreducible factors in O(d2 log d log log d log q) field operations.

(ii) Using Las Vegas algorithms, both the characteristic and minimal polynomial of
g ∈ GL(d, q) can be computed in O(d3 log d) field operations.

(iii) Using a Las Vegas algorithm, the multiplicative upper bound B to the order of g ∈
GL(d, q) can be computed in O(d3 log d + d2 log d log log d log q) field operations.

(iv) Using a Las Vegas algorithm, the pseudo-order of g ∈ GL(d, q) can be computed
in O(d3 log d + d2 log d log log d log q) field operations.

Proof: For the cost of polynomial operations, see [38, §8.3, §9.1, Theorem 14.14].
The characteristic and minimal polynomials of g can be computed in the claimed

time using the Las Vegas algorithms of [1, 27] and [20] respectively.
Hence B can be obtained in the claimed time.
Using Lemma 2.6, we can express B as the product of at most 2d+1 factors, each of

which is either a pseudo-prime factor of B, or a prime-power factor of B. To compute
the pseudo-order of g from this information requires O(log |g| log d) operations in the
ring GF(q)[t]/(f(t)), as in [15]. 2

We choose the bound of d + 1 on the primes being extracted in our definition of
pseudo-order for two reasons: Lemma 2.6 shows that bound must be at least d; the
algorithm of [31] requires knowledge of the precise prime divisor in question if this is
d + 1 (in the definition of a large primitive prime divisor). Of course, the upper bound
could be enormously increased without problems of integer factorisation arising.

Observe that the concept of primitive prime divisor is only well-defined if one re-
gards q as part of the data. If q = pf , then a primitive prime divisor of qe − 1 need

9

not be a primitive prime divisor of pef − 1, since the prime in question might divide
pn − 1 for some n < ef , but not qm − 1 for any m < e. If the prime does not divide
pn − 1 for any n < ef , then it is a strong primitive prime divisor of qe − 1, and in some
cases this is a requirement for the algorithm of [31]. To accommodate this condition,
we need to factorise B accordingly, this being achieved by the same algorithm that was
used above, but with the parameters q and e replaced by p and fe respectively. These
variations do not affect the complexity analysis.

3 Standard generators for classical groups

We now describe standard generators for the groups SX(d, q) for odd q.
Recall that V is the natural module for G = SX(d, q). The standard generators

for G are defined with respect to a hyperbolic basis for V , which in turn is defined in
terms of the given basis by a change-of-basis matrix. We define a hyperbolic basis for
V as follows.

1. If V does not support a classical form, then any ordered basis, say (e1, . . . , ed),
is hyperbolic.

2. If the form supported by V is symplectic of rank 2n, then a hyperbolic basis
for V is an ordered basis (e1, f1, . . . , en, fn), where ei.ej = fi.fj = 0 for all i, j
(including the case i = j), and ei.fj = 0 for i 6= j, and ei.fi = −fi.ei = 1 for all i.

3. If the form supported by V is hermitian of rank 2n, then a hyperbolic basis for
V is exactly as for Sp(2n, q) except that, the form being hermitian, the condition
ei.fi = −fi.ei = 1 for all i is replaced by the condition ei.fi = fi.ei = 1 for all i.

4. If the form supported by V is hermitian of rank 2n+1, then a hyperbolic basis for
V is an ordered basis of the form (e1, f1, . . . , en, fn, w), where the above equations
hold, and in addition ei.w = fi.w = 0 for all i, and w.w = 1.

5. If the form supported by V is symmetric bilinear of + type and of rank 2n, then
a hyperbolic basis for V is an ordered basis of the form (e1, f1, . . . , en, fn), where
the equations used to define the form for SU(2n, q) again apply.

6. If the form supported by V is symmetric bilinear of − type and of rank 2n, then a
hyperbolic basis for V is an ordered basis of the form (e1, f1, . . . , en−1, fn−1, w1, w2),
where the above relations hold for i, j < n; in addition w1.ei = w1.fi = w2.ei =
w2.fi = w1.w2 = 0, w1.w1 = −2, and w2.w2 = 2ω where ω is a primitive element
of GF(q). Since ω is not a square in GF(q), this defines a form of − type (see
Lemma 2.3).

7. If V has dimension 2n+1, then there are two equivalence classes of non-degenerate
symmetric bilinear forms on V , distinguished by their discriminants. To convert
a form in one class to a form in the other class, we multiply it by a non-square

10

scalar, thus obtaining an inequivalent form preserved by the same group. A
hyperbolic basis is an ordered basis of the form (e1, f1, . . . , en, fn, w), where again
the relations in 3 hold, and in addition w.ei = w.fi = 0, and w.w = −1/2. If
necessary, we multiply the form for the input group by a non-square scalar.

For uniformity of exposition, we sometimes label the ordered basis for SL(2n, q) as
(e1, f1, . . . , en, fn) and that for SL(2n + 1, q) as (e1, f1, . . . , en, fn, w).

Subject to the following conventions, the standard generators for the non-orthogonal
groups SX(d, q) are defined in Table 1, and for SOǫ(d, q) in Table 2.

1. γ is a specified primitive element for GF(q2), and α = γ(q+1)/2, and ω = α2 is a
primitive element for GF(q).

2. In all but one case, we describe v as a signed permutation matrix acting on
the hyperbolic basis for V . We adopt the following notation. Given a basis
for V , a signed permutation matrix with respect to this basis will be given as
a product of disjoint signed cyclic permutations of the basis elements. Such a
cycle either permutes the vectors in the cycle, no sign being involved, or it sends
each vector in the cycle to the next, except for the last vector which is sent to
minus the first vector. In this case the cycle is adorned with the superscript −,
as in (e1, e2, . . . , en)−. The superscript + has no effect, so that (e1, e2, . . . , en)+ =
(e1, e2, . . . , en). If we use the notation (e1, e2, . . . , en)ǫn, then ǫn = + if n is odd,
and ǫn = − if n is even.

3. For SU(2n+1, q), the matrices x and y normalise the subspace U having ordered
basis B = (e1, w, f1) and centralise 〈e2, f2, . . . , en, fn〉. We list their action on U
with respect to basis B.

4. The remaining generators, other than v, of groups in Table 1 normalise a subspace
U having ordered basis B, where B = (e1, f1) or B = (e1, f1, e2, f2), and centralise
the space spanned by the remaining basis vectors. We write the action of a
generator on U with respect to basis B.

5. We assume n > 1 for the groups SOǫ(2n, q). In Table 2 the generators of
SO+(2n, q) given as 4×4 matrices normalise a subspace U having ordered basis B,
where B = (e1, f1, e2, f2), and centralise the subspace spanned by the remaining
basis vectors. We write the action of a generator on U with respect to basis B.
For SO−(2n, q) the same applies but with B = (e1, f1, w1, w2). For SO(2n + 1, q)
we write the action of matrices with respect to basis B = (e1, f1, w).

6. In the definition for SO−(2n, q), the variables A, B, C have the following values:

A =
1

2
(γq−1 + γ−q+1)

B =
1

2
α(γq−1 − γ−q+1)

C =
1

2
α−1(γq−1 − γ−q+1).

11

7. For SOǫ(d, q), the generator σ has spinor norm −1; the others are the standard
generators for the corresponding Ωǫ(d, q). For ǫ = 0, +, the value of b is deter-
mined by q − 1 = 2a · b where b is odd; λ = (−1)(q−1)/2.

8. To facilitate uniform exposition, we introduce trivial generators. If the dimension
required to define a generator is greater than the dimension of the group, then
the generator is assumed to be trivial.

By analogy with the general case, we assume that SO+(2, q) has the same sequence
of nine standard generators, where the only non-trivial elements are:

δ =

(

ω2 0
0 ω−2

)

σ =

(

ωb 0
0 ω−b

)

;

of course, Ω+(2, q) = 〈δ〉.
Once a hyperbolic basis has been chosen for V , the Weyl group of G can be defined

as a section of G, namely as the group of monomial matrices in G modulo diagonal
matrices, thus defining a subgroup of the symmetric group Sd. The Weyl group of
SL(d, q) is Sd. The Weyl group of Sp(2n, q) is the subgroup of S2n that preserves the
system of imprimitivity with blocks {ei, fi} for 1 ≤ i ≤ n, and is thus C2 ≀ Sn. The
Weyl group of each of SU(2n, q) and SU(2n + 1, q) is also C2 ≀ Sn. The Weyl group of
Ω+(2n, q) is the subgroup of C2 ≀ Sn consisting of even permutations. The Weyl group
of Ω−(2n, q) is C2 ≀ Sn−1, and that of Ω(2n + 1, q) is C2 ≀ Sn.

If G is SL(d, q) or Sp(d, q), then its standard generators have the property that it is
easy to construct from them any of its root groups, and consequently we deduce that
they generate G. The root groups are defined with respect to a maximal split torus,
the group of diagonal matrices in SX(d, q); for a detailed description see [13]. The
situation is similar for SU(d, q) and the orthogonal groups, as we now show.

Lemma 3.1 Let G = SU(d, q) for d ≥ 2. Then G = 〈s, t, δ, u, v, x, y〉.

Proof: If d = 2, then u, v, x and y are by convention trivial, and 〈s, t, δ〉 is isomorphic
to SL(2, q) ∼= SU(2, q). If d = 2n + 1, then a direct computation shows that

xy =

1 ωq−2 −ω−(q+1)/2
0 1 ω−2q+1

0 0 1

 .

Observe that y has order q2 − 1. Thus S = 〈xyk
: 1 ≤ k ≤ q2 − 1〉 is non-abelian of

order q3, having derived group and centre of order q. A similar calculation for d = 2n
where n > 1 shows that 〈xyk

: 0 ≤ k < q2 − 1〉 has order q2. These groups correspond
to the subgroups X1

S of [13] and the result follows from [13, Proposition 13.6.5]. 2

12

Group s t δ u v x y

SL(2n, q)

„

0 1
−1 0

« „

1 1
0 1

« „

ω 0
0 ω−1

«

I2 (e1, e2, . . . , en)(f1, f2, . . . , fn)

0

B

@

0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

1

C

A
I4

SL(2n + 1, q)

„

0 1
−1 0

« „

1 1
0 1

« „

ω 0
0 ω−1

«

I2

„

0 1
−I2n 0

«

I4 I4

Sp(2n, q)

„

0 1
−1 0

« „

1 1
0 1

« „

ω 0
0 ω−1

«

0

B

@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

C

A
(e1, e2, . . . , en)(f1, f2, . . . , fn)

0

B

@

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

1

C

A
I4

SU(2n, q)

„

0 α
α−q 0

« „

1 α
0 1

« „

γq+1 0

0 γ−(q+1)

«

0

B

@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

C

A
(e1, e2, . . . , en)(f1, f2, . . . , fn)

0

B

@

1 0 1 0
0 1 0 0
0 0 1 0
0 −1 0 1

1

C

A

0

B

B

@

γ 0 0 0

0 γ−q 0 0

0 0 γ−1 0
0 0 0 γq

1

C

C

A

SU(2n + 1, q)

„

0 α
α−q 0

« „

1 α
0 1

« „

γq+1 0

0 γ−(q+1)

«

0

B

@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

C

A
(e1, e2, . . . , en)(f1, f2, . . . , fn)

0

@

1 1 −1/2
0 1 −1
0 0 1

1

A

0

@

γ 0 0

0 γq−1 0

0 0 γ−q

1

A

Table 1: Standard generators for non-orthogonal classical groups

13

Group s t δ u v σ

SO+(2n, q)

0

B

@

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

1

C

A

0

B

@

1 0 0 −1
0 1 0 0
0 1 1 0
0 0 0 1

1

C

A

0

B

@

ω 0 0 0
0 ω−1 0 0
0 0 ω 0
0 0 0 ω−1

1

C

A
I4 (e1, e2, . . . , en)ǫn (f1, f2, . . . , fn)ǫn

0

B

B

@

ωb 0 0 0
0 ω−b 0 0
0 0 1 0
0 0 0 1

1

C

C

A

s′ t′ δ′
0

B

@

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

1

C

A

0

B

@

1 0 1 0
0 1 0 0
0 0 1 0
0 −1 0 1

1

C

A

0

B

@

ω 0 0 0
0 ω−1 0 0
0 0 ω−1 0
0 0 0 ω

1

C

A

Group s t δ u v σ

SO−(2n, q)

0

B

@

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

1

C

A

0

B

@

1 1 1 0
0 1 0 0
0 2 1 0
0 0 0 1

1

C

A

0

B

@

ω 0 0 0
0 ω−1 0 0
0 0 A B
0 0 C A

1

C

A
(e1, e2)−(f1, f2)− (e1, . . . , en−1)

ǫn−1 (f1, . . . , fn−1)
ǫn−1

„

λI2 0
0 −λI2

«

Group s t δ u v σ

SO(2n + 1, q)

0

@

0 1 0
1 0 0
0 0 −1

1

A

0

@

1 1 2
0 1 0
0 1 1

1

A

0

@

ω2 0 0
0 ω−2 0
0 0 1

1

A (e1, e2)−(f1, f2)− (e1, . . . , en)ǫn (f1, . . . , fn)ǫn

0

@

ωb 0 0
0 ω−b 0
0 0 1

1

A

Table 2: Standard generators for orthogonal groups

14

Lemma 3.2 Let G = Ω+(2n, q) for n ≥ 2. Then G = 〈s, s′, t, t′, δ, δ′, v〉.

Proof: If n = 2 then G is the central product of two copies of SL(2, q) (see [37,
Corollary 12.39]). Let the natural modules for these copies of SL(2, q) be U1 and U2,
and let these modules have ordered bases (a1, b1) and (a2, b2) respectively. Define an
alternating bilinear form on Ui by ai.bi = 1 for i = 1, 2. This form is preserved by
the respective copies of SL(2, q). Now define a bilinear form on V = U1 ⊗ U2 by
(u1 ⊗ u2).(v1 ⊗ v2) = u1.v1 × u2.v2. This defines a non-degenerate symmetric form on
V . A hyperbolic basis for V is then given by (a1 ⊗ a2, b1 ⊗ b2, a1 ⊗ b2,−b1 ⊗ a2). Let
s, t, δ in SL(U1) be defined, with respect to the basis (a1, b1), by the matrices

(

0 1
−1 0

) (

1 1
0 1

) (

ω 0
0 ω−1

)

,

and let s′, t′, δ′ denote the corresponding elements of SL(U2). Now Ω+(4, q) is the
central product of these two copies of SL(2, q). Abusing notation by writing s, t and
δ for the images of (s, I2), (t, I2) and (δ, I2) in Ω+(4, q), and s′, t′, δ′ for the images of
(I2, s

′), (I2, t
′) and (I2, δ

′), we obtain the first six given generators. Observe that v = s′

in dimension 4.
We next prove that the spinor norm of v is +1 if n > 2. If n is odd, this follows

since v is of odd order. If n > 2 is even, then

(en−1, en)−(fn−1, fn)−(e1, . . . , en−1)
ǫn−1(f1, . . . , fn−1)

ǫn−1 = (e1, . . . , en)ǫn(f1, . . . fn)ǫn

and the result now follows from that for n = 2 and odd n > 2.
Since the Weyl group of Ω+(2n, q) is generated modulo diagonal elements by {s, s′, v},

the claim follows. 2

Lemma 3.3 Let G = Ω−(2n, q) for n ≥ 2. Then G = 〈s, t, δ, u, v〉.

Proof: If n = 2 then G is isomorphic to PSL(2, q2) (see [37, Corollary 12.43]). This
isomorphism arises as follows. Take the natural module U for SL(2, q2), and let W
be U twisted by the automorphism of GF(q2) given by a 7→ aq. Then U ⊗ W gives
rise to a representation of PSL(2, q2) over GF(q2). If (a1, b1) is a basis for U , and
(a2, b2) is a basis for W , then the resulting representation of PSL(2, q2) on U ⊗W with
respect to the ordered basis (a1 ⊗ a2, a1 ⊗ b2, b1 ⊗ a2, b1 ⊗ b2) preserves the symmetric
non-degenerate bilinear form

(

0 J
−J 0

)

,

where

J =

(

0 1
−1 0

)

.

15

Now let γ be a primitive element of GF(q2), and let α = γ
1
2
(q+1), so that α2 is a

primitive element ω of GF(q). Conjugating by the matrix

1 0 0 0
0 α 1 0
0 −α 1 0
0 0 0 1

transforms the above image of PSL(2, q2) into a subgroup of SL(4, q). Interchanging the
second and fourth basis vectors now transforms this image into a group that preserves
the form

0 1 0 0
1 0 0 0
0 0 −2 0
0 0 0 2ω

,

and thus into our chosen copy of Ω−(4, q). It is straightforward to check that the given
generators s, t, δ are the images of the matrices

(

0 1
−1 0

) (

1 1
0 1

) (

γ 0
0 γ−1

)

,

and hence generate Ω−(4, q).
A similar argument to that in Lemma 3.2 shows that v has spinor norm +1. Since

the Weyl group of Ω−(2n, q) is generated modulo diagonal elements by {s, u, v}, the
claim follows. 2

Lemma 3.4 Let G = Ω(2n + 1, q) for n ≥ 1. Then G = 〈s, t, δ, u, v〉.

Proof: If n = 1 then G is isomorphic to PSL(2, q) (see [37, Theorem 11.6]). This
isomorphism arises as follows. Take the natural module U for SL(2, q), and let V be
the symmetric square of U . If (a, b) is a basis for U then, with respect to the ordered
basis (a2, b2, ab) of V , the form

0 1 0
1 0 0
0 0 1/2

is preserved by G. This exhibits PSL(2, q) as Ω(3, q). The generators s, t, δ correspond,
respectively, to the matrices

(

0 1
−1 0

) (

1 1
0 1

) (

ω 0
0 ω−1

)

.

A similar argument to that in Lemma 3.2 shows that v has spinor norm +1. Since
the Weyl group of Ω(2n + 1, q) is generated modulo diagonal elements by {s, u, v}, the
claim follows. 2

16

Lemma 3.5 The standard generator σ lies in SOǫ(d, q) \ Ωǫ(d, q).

Proof: Clearly in all cases σ ∈ SOǫ(d, q), so it remains to compute the spinor norm
of σ.

If ǫ ∈ {+, 0}, then the spinor norm of σ is ωb modulo the subgroup of squares of
GF(q)× (see [39] and the proof of Lemma 8.14). Since b is odd and ω is a primitive
element of GF(q), the result follows.

Now assume ǫ = −. Observe that σ acts as −1 on a 2-dimensional subspace that
supports a form of + type if q ≡ 3 mod 4, and of − type if q ≡ 1 mod 4, and σ acts
as +1 on the orthogonal complement of this 2-dimensional subspace. The conclusion
now follows since Ω+(2, q) has odd order (q − 1)/2 if q ≡ 3 mod 4, and Ω−(2, q) has
odd order (q + 1)/2 if q ≡ 1 mod 4. 2

Note that we could have taken σ ∈ SOǫ(2n, q) to be −I2n if ǫ = − and either
q ≡ 1 mod 4 or n is even; or if ǫ = + and n is odd and q ≡ 3 mod 4. In these cases
SOǫ(2n, q) ∼= Ωǫ(2n, q) × 〈−I2n〉.

We conclude with the following observation which influences the algorithms we
develop in Section 4.

Lemma 3.6 Let G = 〈s, t, δ, u, v, x, y〉 ≤ GL(2n, q) and let H = 〈s, t, δ, u, v〉. If G is
SL(2n, q) or Sp(2n, q) or SU(2n, q), then H = SL(2, q) ≀ Cn, or H = SL(2, q) ≀ Sn or
H = SU(2, q) ≀ Sn respectively.

4 Algorithm One for non-orthogonal groups

Let G = SX(d, q) denote a non-orthogonal group in C. Algorithm One takes as input
a generating set X for G and the classical form preserved by G, and returns standard
generators for G as SLPs in X. The standard generators are written with respect to a
hyperbolic basis for the natural module V . The change-of-basis matrix from the given
basis to the hyperbolic basis is also returned.

The algorithm employs a ‘divide-and-conquer’ strategy.

Definition 4.1 A strong involution in SX(d, q) for d > 2 is an involution whose −1-
eigenspace has dimension in the range (d/3, 2d/3].

The main algorithm OneMain has two subcases, according to the parity of the input
dimension d: algorithms OneEven and OneOdd address the case of even and odd d,
respectively. If d = 2n, then Lemma 3.6 shows that Y0 := {s, t, δ, u, v} generates
SX(2, q) ≀Cn or SX(2, q) ≀Sn according to the type of the input group. If d is even, then,
as the first and major task of the main algorithm, OneEven constructs Y0; as a final
step, OneMain constructs the additional elements x, y. This reduces the time spent in
more difficult base cases.

17

Algorithm 1: OneEven (X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic, of
type SL or Sp or SU, in even dimension. The classical form preserved by G is
F . Return the standard generating set Y0 for SL(2, q) ≀ Cd/2 if type is SL,
otherwise for SX(2, q) ≀ Sd/2, as subgroup of G, the SLPs for the elements of
Y0, and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d = 2 then return BaseCase (X, type ,F);3

Find by random search g ∈ G := 〈X〉 of even order such that g powers to a4

strong involution h;
Let E+ of dimension 2k and E− be the eigenspaces of h;5

Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E+ and E−;7

In C find generating sets X1 and X2 for SX(E+) and SX(E−);8

((s1, t1, δ1, u1, v1), B1) := OneEven (X1, type,F|E+);9

((s2, t2, δ2, u2, v2), B2) := OneEven (X2, type,F|E−
);10

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, . . . , ed/2, fd/2) be the concatenation of11

the hyperbolic bases defined by B1 and B2;
a := (s2

1)
v−1
1 (s2

2);12

Find generators for the centraliser D of a in G;13

In D find a generating set X3 for SX(〈ek, fk, ek+1, fk+1〉);14

In 〈X3〉 find the permutation matrix b = (ek, ek+1)(fk, fk+1);15

v := v2bv1;16

return (s1, t1, δ1, u1, v) and the change-of-basis matrix for B;17

end18

If the type is SL, then the centraliser of h is (GL(E+)×GL(E−))∩ SL(d, q) where
E+ and E− are the eigenspaces of h. If the type is Sp, it is Sp(E+)×Sp(E−); if the type
is SU, it is (U(E+)×U(E−))∩SU(d, q). Thus, if the eigenspaces have dimensions e and
d−e, then the derived group of the centraliser of h in SX(d, q) is SX(e, q)×SX(d−e, q).

We make the following observations on Algorithm OneEven.

1. The SLPs that express the standard generators in X are also returned.

2. Generators for the involution centralisers in lines 6 and 14 are constructed us-
ing the algorithm of Bray [8], see Section 12. We need only a subgroup of the
centraliser that contains the derived group.

3. The generators for the direct factors in line 8 are constructed using the algorithm
described in Section 11.

4. The algorithms for the BaseCase call in line 3 are discussed in Section 13. In
summary, BaseCase (X, type ,F) returns the standard generators, the associated

18

SLPs, and the corresponding change-of-basis matrix for the classical group 〈X〉
of the specified type having associated form F .

5. The search in line 4 for an element that powers to a strong involution is discussed
in Section 8.

6. The recursive calls in lines 9 and 10 are in smaller dimension. As shown in
Lemma 2.4, these only affect the time and space complexity of the algorithm
up to a constant multiple; however they contribute to the length of the SLPs
produced. We consider these issues in Sections 15 and 16.

7. In line 12, a is an involution with −1-eigenspace 〈ek, fk, ek+1, fk+1〉.

8. The element b is the glue, used in the assignment v := v2bv1 to ‘glue’ the elements
v1 and v2. We discuss how to find b as an element of 〈X3〉 in Section 13.2.

Algorithm OneOdd, for the odd degree case, is similar to Algorithm OneEven and
much of this commentary also applies.

Algorithm 2: OneOdd (X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic and
odd dimension, of type SL or SU. The classical form preserved by G is F .
Return the standard generating set for G, the SLPs for elements of this
generating set, and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d = 3 then return BaseCase (X, type ,F);3

Find by random search g ∈ G := 〈X〉 of even order such that g powers to a4

strong involution h;
Let E+ and E− be the eigenspaces of h;5

Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E+ and E−;7

In C find generating sets X1 and X2 for SX(E+) and SX(E−);8

((s1, t1, δ1, u1, v1, x, y), B1) := OneOdd (X1, type ,F|E+);9

((s2, t2, δ2, u2, v2), B2) := OneEven (X2, type,F|E−
);10

If B1 = (e1, f1, . . . , ek, fk, w) and B2 = (ek+1, fk+1, . . . , e(d−1)/2, f(d−1)/2), then11

let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, . . . , e(d−1)/2, f(d−1)/2, w);

a := (s2
1)

v−1
1 (s2

2);12

Find generators for the centraliser D of a in G;13

In D find a generating set X3 for SX(〈ek, fk, ek+1, fk+1〉);14

In 〈X3〉 find the permutation matrix b = (ek, ek+1)(fk, fk+1);15

v := v2bv1;16

return (s1, t1, δ1, u1, v, x, y) and the change-of-basis matrix for B;17

end18

19

We summarise the main algorithm for non-orthogonal groups as Algorithm OneMain.

Algorithm 3: OneMain (X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic, of
type SL or Sp or SU. The classical form preserved by G is F . Return the
standard generating set for G, the SLPs for elements of this generating set,
and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d is odd then3

((s, t, δ, u, v, x, y), B) := OneOdd (X, type,F);4

else5

((s, t, δ, u, v), B) := OneEven (X, type ,F);6

Construct additional elements x and y;7

end8

return (s, t, δ, u, v, x, y) and the change-of-basis matrix for B;9

end10

The correctness and complexity of this algorithm, and the lengths of the result-
ing SLPs for the standard generators, are discussed in Sections 8 and 15–16. The
construction of x and y is discussed in Section 13.

5 Algorithm Two for non-orthogonal groups

We present a variant of the algorithms in Section 4 based on one recursive call rather
than two. Again we denote the groups SL(d, q), Sp(d, q) and SU(d, q) by SX(d, q), and
the corresponding projective group by PX(d, q).

The key idea is as follows. Suppose that d is a multiple of 4. We find g ∈ SX(d, q)
of order 2m and an involution h := gm, as in line 4 of OneEven, but insist that both
eigenspaces of h have dimension d/2.

Let h̄ be the image of h in PX(d, q). The centraliser of h̄ in PX(d, q) interchanges
the eigenspaces E+ and E− of h. We construct the projective centraliser of h in SX(d, q)
by applying the algorithm of [8] to construct the centraliser of h̄ in PX(d, q), and taking
its preimage C. We identify c ∈ C that interchanges the two eigenspaces.

If we now find recursively the subset Y0 of standard generators for SX(E+) with
respect the basis B, then Y c

0 is a set of standard generators for SX(E−) with respect to
the basis Bg. We now use these to construct standard generators for SX(d, q) exactly
as in Algorithm One.

If d is an odd multiple of 2, then we find an involution with one eigenspace of
dimension exactly 2. The centraliser of this involution allows us to construct SX(2, q)
and SX(d− 2, q). The d− 2 factor is now processed as above, since d− 2 is a multiple
of 4, and the 2 and d − 2 factors are combined as in the first algorithm. Thus the

20

algorithm deals with SX(d, q), for even values of d, in a way that is similar in outline
to the familiar method of powering, that computes an, by recursion on n, as (a2)n/2 for
even n and as a(an−1) for odd n.

Algorithms TwoTimesFour and TwoTwiceOdd describe the case of even d. Algorithm
TwoTimesFour calls no new procedures except in line 5, where we construct an invo-
lution with eigenspaces of equal dimension. This construction is discussed in Section
9. Algorithm TwoEven, which summarises the even degree case, returns the generating
set Y0 defined in Section 4. We complete the construction of Y exactly as in Section 4.

Algorithm 4: TwoTimesFour(X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic, of
type SL or Sp or SU, in dimension a multiple of 4. The classical form
preserved by G is F . Return the standard generating set Y0 for SL(2, q) ≀ Cd/2

if type is SL, otherwise for SX(2, q) ≀ Sd/2, as subgroup of G, the SLPs for the
elements of Y0, and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d = 4 return OneEven (X, type,F);3

k := d/4;4

Find by random search g ∈ G := 〈X〉 of even order such that g powers to an5

involution h with eigenspaces of dimension 2k;
Let E+ and E− be the eigenspaces of h;6

Find generators for the projective centraliser C of h in G and identify an7

element c of C that interchanges the two eigenspaces;
Rewrite with respect to the concatenation of bases for E+ and E−;8

In C find a generating set X1 for SX(E+);9

((s1, t1, δ1, u1, v1), B1) := TwoEven(X1, type ,F|E+);10

s2 := sc
1;11

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, . . . , e2k, f2k) be the concatenation of the12

bases defined by B1 and Bc
1;

a := (s2
1)

v−1
1 (s2

2);13

Find generators for the centraliser D of a in G;14

In D find a generating set X3 for SX(〈ek, fk, ek+1, fk+1〉);15

In 〈X3〉 find the permutation matrix b = (ek, ek+1)(fk, fk+1);16

v := v2bv1;17

return (s1, t1, δ1, u1, v) and the change-of-basis matrix for B;18

end19

21

Algorithm 5: TwoTwiceOdd(X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic, of
type SL or Sp or SU, in dimension d = 2(k + 1) for even k. The classical
form preserved by G is F . Return the standard generating set Y0 for
SL(2, q) ≀ Cd/2 if type is SL, otherwise for SX(2, q) ≀ Sd/2, as subgroup of G, the
SLPs for the elements of Y0, and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

If d ≤ 8 return OneEven (X, type,F);3

Find, by random search, g ∈ G := 〈X〉 of even order such that g powers to4

an involution h with eigenspaces of dimensions 2 and d − 2;
Let E1 and E2 be the eigenspaces of h, of dimensions d−2 and 2 respectively;5

Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E1 and E2;7

In C find generating sets X1 and X2 for SX(E1) and SX(E2) respectively;8

((s1, t1, δ1, u1, v1), B1) := TwoTimesFour (X1, type,F|E1);9

((s2, t2, δ2, u2, v2), B2) := BaseCase (X2, type,F|E2);10

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1) be the concatenation of the hyperbolic11

bases B1 and B2;
a := (s2

1)
v−1
1 (s2

2);12

Find generators for the centraliser D of a in G;13

In D find a generating set X3 for SX(〈ek, fk, ek+1, fk+1〉);14

In 〈X3〉 find the permutation matrix b = (ek, ek+1)(fk, fk+1);15

v := bv1;16

return (s1, t1, δ1, u1, v) and the change-of-basis matrix for B.17

end18

Algorithm 6: TwoEven(X, type ,F) for non-orthogonal groups

/* X is a generating set for the classical group G ∈ C in odd characteristic, of
type SL or Sp or SU, in even dimension d. The classical form preserved by G
is F . Return the standard generating set Y0 for SL(2, q) ≀ Cd/2 if type is SL,
otherwise for SX(2, q) ≀ Sd/2, as subgroup of G, the SLPs for the elements of
Y0, and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d mod 4 = 2 then3

return TwoTwiceOdd(X, type ,F);4

else5

return TwoTimesFour(X, type ,F);6

end7

end8

22

If d is odd, then we find an involution whose −1-eigenspace has dimension d − 3,
thus splitting d as (d−3)+3. Since d−3 is even, we apply the odd case precisely once.

The resulting TwoOdd is otherwise the same as OneOdd, except that it calls TwoEven
rather than OneEven; similarly TwoMain is the same as OneMain, except that it calls
TwoOdd or TwoEven rather than OneOdd or OneEven.

The primary advantage of the second algorithm lies in its one recursive call. As we
show in Section 16, this significantly reduces the lengths of the SLPs for the standard
generators.

6 Algorithm One for orthogonal groups

The algorithms for orthogonal groups are more complex in design than those for other
classical groups.

If q ≡ 3 mod 4, then Ω+(2, q) has odd order and so does not contain −I2. Hence
we must use a new strategy to construct the involution whose centraliser contains the
‘glue’ element. In particular, the algorithm for Ωǫ(d, q) depends both on the type of
form preserved and on the residue of q mod 4.

For each of the form types, we present three algorithms: for Ωǫ(d, q) when q ≡
1 mod 4, then for SOǫ(d, q) for all odd q, and finally for Ωǫ(d, q) when q ≡ 3 mod 4.

The base cases for the orthogonal groups are discussed in Section 14 and are realised
via OrthogonalBaseCase.

6.1 Groups preserving forms of + type

6.1.1 Ω+(2n, q) for q ≡ 1 mod 4

This case is similar to Algorithm One for the other classical groups. Let G = Ω+(2n, q)
when q ≡ 1 mod 4, and let V denote the underlying vector space. An involution of G is
suitable if it is strong and has the additional property that the symmetric bilinear form
preserved by G, when restricted to each of its eigenspaces, is of + type. Algorithm
OneOmegaPlus summarises the construction of standard generators for G.

6.1.2 SO+(2n, q)

The definition of a suitable involution is as in Section 6.1.1. The centraliser in SO+(2n, q)
of a suitable involution contains the direct product of SO(E+) and SO(E−). We con-
struct each group as a subgroup of the centraliser, and proceed recursively.

We modify OneOmegaPlus to obtain the resulting algorithm, OneSpecialPlus, by
making the following changes:

• the recursive calls are to OneSpecialPlus, and so construct the additional stan-
dard generator needed to generate SO+(2n, q);

23

Algorithm 7: OneOmegaPlus (X,F)

/* X is a generating set for the orthogonal group G of type + defined over a
field of odd characteristic and size q ≡ 1 mod 4. The classical form preserved
by G is F . Return the standard generating set Y for G, the SLPs for the
elements of Y , and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d ≤ 4 then return OrthogonalBaseCase (X,F);3

Find by random search g ∈ G := 〈X〉 of even order such that g powers to a4

suitable involution h;
Let E+ be the +1-eigenspace of h having dimension 2k and let E− be its5

−1-eigenspace;
Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E+ and E−;7

In C find generating sets X1 and X2 for Ω+(E+) and Ω+(E−);8

((s1, t1, δ1, u1, v1, s
′
1, t

′
1, δ

′
1), B1) := OneOmegaPlus (X1,F|E+);9

((s2, t2, δ2, u2, v2, s
′
2, t

′
2, δ

′
2), B2) := OneOmegaPlus (X2,F|E−

);10

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, . . . , ed/2, fd/2) be the concatenation of11

the hyperbolic bases defined by B1 and B2;
m := (q − 1)/4;12

a := ((δ1δ
′
1)

m)v−1
1 (δ2δ

′
2)

m;13

Find generators for the centraliser D of a in G;14

In D find a generating set X3 for Ω+(〈ek, fk, ek+1, fk+1〉);15

In 〈X3〉 find the permutation matrix b = (ek, ek+1)
−(fk, fk+1)

−;16

v := v2bv1;17

return (s1, t1, δ1, u1, v, s′1, t
′
1, δ

′
1) and the change-of-basis matrix for B;18

end19

• in line 12, m := (q − 1)/2 if q ≡ 1 mod 4, otherwise m := 1; in line 13, a :=

(σm
1)v−1

1 (σm
2).

6.1.3 Ω+(2n, q) when q ≡ 3 mod 4

The algorithm for G = Ω+(2n, q) when q ≡ 3 mod 4 is more elaborate than when
q ≡ 1 mod 4: now Ω+(2, q) has odd order (q − 1)/2 and so does not contain −I2. To
construct the involution whose centraliser contains the ‘glue’ element, we must move
outside Ω(E) to SO(E) where E is a particular eigenspace.

We outline the steps of the algorithm, OneOmegaPlus3, which applies when n > 2.
The remaining cases are considered in Section 14.

1. Find, by random search, an element of G that powers to a strong involution i
having eigenspaces E and F , with the additional property that the symmetric

24

bilinear form preserved by G, when restricted to these eigenspaces, is of + type.

2. Construct a generating set for the centraliser H = SO(E) ×C2 SO(F) of i in G,
and hence generating sets X and Y for Ω(E) and Ω(F) as subgroups of H .

3. Find, by random search within H , an element g = (g1, g2), where g1 ∈ SO(E)
and g2 ∈ SO(F), and the spinor norms of g1 and of g2 are both −1. Hence both
have even order. We also require one of the gj, say g2, to have twice odd order.
Hence |g1| = 2sk1 and |g2| = 2k2 where ki is odd and s ≥ 1. Assign g := gk1k2;
now g has order a power of 2, and g2 is an involution.

4. Let A = 〈X, g〉. Its projection onto E is SO(E). Using OneSpecialPlus, con-
struct SLPs in the generators of A that map onto standard generators for SO(E).

5. If z is an element of SO(E), then z is the projection onto E of an SLP on
X ∪ {g} ⊂ SO(E)× SO(F). Evaluating this SLP gives rise to an element (z, z1),
where z1 ∈ SO(F). Since X centralises F , z1 is a power of g2, and hence is either
the identity or g2. But the spinor norms of z and z1 are equal; so z1 = g2 if the
spinor norm of z is −1, and z1 = 1 otherwise. Thus, from Step 4, we obtain
h = (σE , g2) where σE is the standard generator of SO(E) with spinor norm −1.
Note that σE is an involution since q ≡ 3 mod 4.

6. Let B = 〈Y, h〉. Its projection onto F is SO(F). Using OneSpecialPlus, con-
struct SLPs in the generators of B that map onto standard generators for SO(F).
Now apply Step 5 with E and F , and also σE and g2, interchanged. We thus
construct (σE , σF).

7. Now conjugate (σE , σF) by a suitable power of v1 to obtain a, the involution in
whose centraliser the ‘glue’ element can be found.

The remaining steps of the algorithm are identical to those described in OneOmegaPlus

when q ≡ 1 mod 4. Namely, we find generators for the centraliser D of a in G; construct
a generating set X3 for Ω+(〈ek, fk, ek+1, fk+1〉); in 〈X3〉 find the permutation matrix
b = (ek, ek+1)

−(fk, fk+1)
−; and finally construct the standard generator v := v2bv1.

6.2 Groups preserving forms of − type

6.2.1 Ω−(2n, q) when q ≡ 1 mod 4

In summary, we construct an involution in G = Ω−(2n, q) whose centraliser contains a
direct product of Ω+(2n − 4, q) and Ω−(4, q). We then recursively construct standard
generators for each factor. Within the centraliser of an involution of + type, we find
the ‘glue’ element.

An involution of G is suitable if it has one eigenspace of dimension 4 supporting a
form of − type; and its other eigenspace, consequently of dimension 2n − 4, supports
a form of + type.

25

Algorithm OneOmegaMinus summarises the construction of standard generators
for G.

Algorithm 8: OneOmegaMinus (X,F)

/* X is a generating set for the orthogonal group G of type − defined over a
field of odd characteristic and size q ≡ 1 mod 4. The classical form preserved
by G is F . Return the standard generating set Y for G, the SLPs for the
elements of Y , and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d = 4 then return OrthogonalBaseCase (X,F);3

Find by random search g ∈ G := 〈X〉 of even order such that g powers to a4

suitable involution h;
Let E be the eigenspace of h of dimension d − 4 and let F be the eigenspace5

of h having dimension 4;
Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E and F ;7

In C find generating sets X1 and X2 for Ω+(E) and Ω−(F);8

((s1, t1, δ1, u1, v1, s
′
1, t

′
1, δ

′
1), B1) := OneOmegaPlus (X1,F|E);9

((s2, t2, δ2, u2, v2), B2) := OrthogonalBaseCase (X2,F|F);10

k := (d − 4)/2;11

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, ed/2, fd/2) be the concatenation of the12

hyperbolic bases defined by B1 and B2;
m := (q − 1)/4;13

a := ((δ1δ
′
1)

m)v−1
1 δ

m(q+1)
2 ;14

Find generators for the centraliser D of a in G;15

In D find a generating set X3 for Ω+(〈ek, fk, ek+1, fk+1〉);16

In 〈X3〉 find the permutation matrix b = (ek, ek+1)
−(fk, fk+1)

−;17

v := bv1;18

return (s2, t2, δ2, u2, v) and the change-of-basis matrix for B;19

end20

6.2.2 SO−(d, q)

The definition of a suitable involution is as in Section 6.2.1. The centraliser in SO−(2n, q)
of a suitable involution contains the direct product of SO+(E) and SO−(F). We con-
struct each group as a subgroup of the centraliser, and proceed recursively. By anal-
ogous modifications to those outlined in Section 6.1.2, we modify OneOmegaMinus to
obtain OneSpecialMinus.

26

6.2.3 Ω−(2n, q) when q ≡ 3 mod 4

In summary, we construct an involution in G = Ω−(2n, q) whose centraliser contains
a direct product of Ω+(2n − 2k, q) and Ω−(2k, q), where k is 2 or 3, depending on the
parity of n. We then recursively construct standard generators for each factor. As in
the corresponding case of Ω+(2n, q), we must move from Ωǫ to the corresponding SOǫ

to find the involution whose centraliser contains the ‘glue’ element.
However, the definition of a suitable involution is now more complex.

• If n > 3 is even, then an involution is suitable if its +1-eigenspace has dimension
4 and supports a form of − type, and its −1-eigenspace of dimension 2n − 4
supports a form of + type.

• If n > 3 is odd, then an involution is suitable if it has one eigenspace of dimension
6 that supports a form of − type, and its other eigenspace of dimension 2n − 6
supports a form of + type.

We now outline the steps of the algorithm OneOmegaMinus3. Similar in structure
to OneOmegaPlus3, it applies only when n > 3.

1. Find, by random search, an element of G that powers to a suitable involution i.
Let E and F denote the eigenspaces of i which support the forms of + and −
type respectively.

2. Construct a generating set for the centraliser H = SO+(E) ×C2 SO−(F) of i in
G, and hence generating sets X and Y for Ω(E) and Ω(F) as subgroups of H .

3. Find, by random search within H , an element g = (g1, g2), where g1 ∈ SO+(E),
and g2 ∈ SO−(F), and the spinor norms of g1 and of g2 are both −1. We also
require one of the gj to have twice odd order. The proportion of elements of
H with this property is the proportion of elements of SO+(E) (if j = 1) or
of SO−(F) (if j = 2) of twice odd order, and of spinor norm −1. For ease of
exposition we assume that j = 2. Hence |g1| = 2sk1 and |g2| = 2k2 where ki is
odd and s ≥ 1. Assign g := gk1k2 ; now g has order a power of 2, and g2 is an
involution.

4. Let A = 〈X, g〉. Its projection onto E is SO+(E). Using OneSpecialPlus,
construct SLPs in the generators of A that map onto standard generators for
SO+(E).

5. If z is an element of SO(E), then z is the projection onto E of an SLP on
X ∪ {g} ⊂ SO(E)× SO(F). Evaluating this SLP gives rise to an element (z, z1),
where z1 ∈ SO(F). Since X centralises F , z1 is a power of g2, and hence is either
the identity or g2. But the spinor norms of z and z1 are equal; so z1 = g2 if the
spinor norm of z is −1, and z1 = 1 otherwise. Thus, from Step 4, we obtain
h = (σE , g2) where σE is the standard generator of SO(E) with spinor norm −1.
Note that σE is an involution since q ≡ 3 mod 4.

27

6. Let B = 〈Y, h〉. Its projection onto F is SO(F). Using OneSpecialMinus,
construct SLPs in the generators of B that map onto standard generators for
SO(F). Now apply Step 5 with E and F , and also σE and g2, interchanged. We
thus construct (σE , σF).

7. Now conjugate (σE , σF) by a suitable power of v1 to obtain a, the involution in
whose centraliser the ‘glue’ element can be found.

The remaining steps of the algorithm are identical to those described in OneOmegaPlus

when q ≡ 1 mod 4.
If n = 3 then the non-central involutions in Ω−(6, q) have centralisers containing

Ω+(4, q) × Ω−(2, q). Algorithms for Ω−(4, q) and Ω−(6, q) are presented in Section 14.

6.3 Groups preserving forms of 0 type

6.3.1 Ω(2n + 1, q) when q ≡ 1 mod 4

In summary, we construct an involution in G = Ω(2n+1, q) whose centraliser contains
Ω+(2n − 2, q) × Ω(3, q). We then recursively construct standard generators for each
factor. Within the centraliser of an involution of + type, we find the ‘glue’ element.

An involution of G is suitable if its −1-eigenspace has dimension 2n−2 and supports
a form of + type.

Algorithm OneOmegaCircle summarises the construction of standard generators
for G.

6.3.2 SO(2n + 1, q)

The definition of a suitable involution is as in Section 6.3.1. The centraliser in SO(2n+
1, q) of a suitable involution contains the direct product of SO+(E) and SO−(F). We
construct each group as a subgroup of the centraliser, and proceed recursively. By
analogous modifications to those outlined in Section 6.1.2, we modify OneOmegaCircle

to obtain OneSpecialCircle.

6.3.3 Ω(2n + 1, q) when q ≡ 3 mod 4

In summary, we construct an involution in Ω(2n + 1, q) whose centraliser contains a
direct product of Ω+(2n − 2k, q) and Ω(2k + 1, q), where k = 1 or k = 2 according as
n is odd or even. We then recursively construct standard generators for each factor.
Within the centraliser of an involution of + type, we find the ‘glue’ element.

• If n > 2 is odd, then an involution i is suitable if it has a −1-eigenspace E of
dimension 2n − 2 which supports a form of + type.

• If n > 2 is even, then an involution i is suitable if it has a −1-eigenspace E of
dimension 2n − 4 which supports a form of + type.

28

Algorithm 9: OneOmegaCircle (X,F)

/* X is a generating set for the orthogonal group G of type 0 defined over a field
of odd characteristic and size q ≡ 1 mod 4. The classical form preserved by G
is F . Return the standard generating set Y for G, the SLPs for the elements
of Y , and the change-of-basis matrix. */

begin1

d := the rank of the matrices in X;2

if d = 3 then return OrthogonalBaseCase (X,F);3

Find by random search g ∈ G := 〈X〉 of even order such that g powers to a4

suitable involution h;
Let E be the eigenspace of h of dimension d − 3 and let F be the eigenspace5

of h having dimension 3;
Find generators for the centraliser C of h in G;6

Rewrite with respect to the concatenation of bases for E and F ;7

In C find generating sets X1 and X2 for Ω+(E) and Ω0(F);8

((s1, t1, δ1, u1, v1, s
′
1, t

′
1, δ

′
1), B1) := OneOmegaPlus (X1,F|E);9

((s2, t2, δ2, u2, v2), B2) := OrthogonalBaseCase (X2,F|F);10

k := (d − 3)/2;11

Let B = (e1, f1, . . . , ek, fk, ek+1, fk+1, w) be the concatenation of the12

hyperbolic bases defined by B1 and B2;
m := (q − 1)/4;13

a := ((δ1δ
′
1)

m)v−1
1 δm

2 ;14

Find generators for the centraliser D of a in G;15

In D find a generating set X3 for Ω+(〈ek, fk, ek+1, fk+1〉);16

In 〈X3〉 find the permutation matrix b = (ek, ek+1)
−(fk, fk+1)

−;17

v := bv1;18

return (s2, t2, δ2, s
′
1, v) and the change-of-basis matrix for B;19

end20

Our algorithm, OneOmegaCircle3, is similar to OneOmegaPlus3 and applies when n >
2. We construct the subgroup H := SO(E−)×C2 SO(E+) of the centraliser of i, and call
OneSpecialPlus and OneSpecialCircle to construct the involution whose centraliser
contains the ‘glue’ element.

Algorithms for Ω(3, q) and Ω(5, q) are presented in Section 14.

7 Algorithm Two for orthogonal groups

If G = Ω+(d, q) and q ≡ 1 mod 4, or if G = SO+(d, q) with no such restriction on q,
then Algorithm Two is essentially the same as that presented for non-orthogonal groups.

If G = Ω+(d, q) and q ≡ 3 mod 4, then the −1-eigenspace of an involution in G has
dimension a multiple of 4 if it supports a form of + type (see Lemma 2.2).

29

Hence, if d is a multiple of 8, then we find an involution whose eigenspaces are of
equal dimension, and which support forms of + type. We next find generators for the
centraliser of this involution, and call Algorithm Two for SO+(d/2, q) acting on one of
the eigenspaces. We then proceed as in Algorithm Two for non-orthogonal groups.

If d ≡ e mod 8, where e ∈ {2, 4, 6}, and d > 8, then we find an involution with one
eigenspace of dimension e and one of dimension d − e, construct generating sets for
SO+(e, q) and SO+(d − e, q), apply Algorithm One to the former, and Algorithm Two

to the latter, and glue.
For ǫ ∈ {−, 0}, we process Ωǫ(d, q) as in Algorithm One, but apply Algorithm Two,

rather than Algorithm One, in the call that processes a copy of Ω+(d − e, q).

8 Finding and constructing involutions

Our principal algorithms require the construction, as an SLP in a generating set of a
group G, of an involution with various properties; so we search randomly in G for an
element that powers to an involution with these properties. In this section, we estimate
the proportion of elements of G that power to such an involution; we also consider how
we determine whether a given element of G has this property, and estimate the time
taken to construct the involution.

We first consider the proportion of elements with the given property. In Table 3
we summarise the types of involution required, including those needed for certain base
cases. Recall from Section 2 that the eigenspaces are denoted by E and F , where E has
dimension e, or by E+ and E− where these are respectively the +1 and −1-eigenspaces
of the involution. If e is required to be the dimension of E−, then we write e− for e. If
G is a symplectic group or an orthogonal group of + or − type, then clearly d and e
must be even; also e− is always even as the involution must have determinant 1. If G is
an orthogonal group of type 0, then d is odd. We assume d > e. These restrictions on
d and e are omitted from Table 3. The type of an eigenspace in an orthogonal group
is the type +, − or 0, of the form restricted to the eigenspace.

The first entry in Table 3 identifies the group G, the second entry gives restrictions
on the involution, and the third entry gives a lower bound to the proportion of elements
of G that power to an involution satisfying these restrictions. This lower bound is gen-
erally conservative. If e− is required to lie in the range (d/3, 2d/3], then the proportion
is a lower bound to the proportion of elements of G that power to an involution with
e− taking any non-specified value in this range, this being the property required of our
algorithms. However the bound is proved by proving that this bound applies to one
specific value of e−, namely the unique power of 2 in this range.

Since the precise lower bounds for many of the entries are complex, we summarise
these in Table 3 using notation of the form (c/d)(1 + O(1/q)) where c is a specified
constant. However, we stress that the actual results are in all cases strictly positive,
and more precise bounds are specified in the corresponding statements, or can readily
be derived from these.

30

Group Conditions Proportion
SL(d, q) e− ∈ (d/3, 2d/3] (1/(2d))(1 + O(1/q))
SL(d, q) d ≡ 2 mod 4, e = 2 (1/(2d))(1 + O(1/q))

SL(d, q) d odd, e = 3 (1/(3d))(1 + O(1/q))

Sp(d, q) d even, e− ∈ (d/3, 2d/3] (3/(4d))(1 + O(1/q))

Sp(d, q) d ≡ 2 mod 4, e = 2 (1/(2d))(1 + O(1/q))
Ω+(d, q) q ≡ 1 mod 4, e− ∈ (d/3, 2d/3] (3/(4d))(1 + O(1/q))

E and F of + type
Ω+(d, q) q ≡ 3 mod 4, e− ∈ (d/3, 2d/3] (3/(4d))(1 + O(1/q))

e− ≡ 0 mod 4, E and F of + type
Ω+(d, q) q ≡ 3 mod 4, d mod 8 6= 0 (1/(2d))(1 + O(1/q))

e = d mod 8, E and F of + type
Ω−(d, q) q ≡ 1 mod 4, d ≥ 6, e = 4 (1/(4d))(1 + O(1/q))

F of + type
Ω−(d, q) q ≡ 3 mod 4, d ≡ 0 mod 4, e+ = 4 (1/(4d))(1 + O(1/q))

F of + type
Ω−(d, q) q ≡ 3 mod 4, d ≡ 2 mod 4, e = 6 (1/(4d))(1 + O(1/q))

F of + type

Ω−(6, q) q ≡ 3 mod 4, e = 2, F of + type 1/8 + O(1/q)
Ω0(5, q) q ≡ 3 mod 4, q > 3, e+ = 1 3/4 + O(1/q)

F of + type
Ω0(d, q) q ≡ 1 mod 4 or d ≡ 3 mod 4, e = 3 (1/(4d))(1 + O(1/q))

F of + type
Ω0(d, q) q ≡ 3 mod 4, d ≡ 1 mod 4, e = 5 (3/(16d))(1 + O(1/q))

F of + type

SO+(d, q) e− ∈ (d/3, 2d/3], E and F of + type (3/(4d))(1 + O(1/q))

SO−(d, q) e = 4, F of + type (3/(8d))(1 + O(1/q))

SO0(d, q) e = 3, F of + type (1/(8d))(1 + O(1/q))

SU(d, q) e− ∈ (d/3, 2d/3] (3/(4d))(1 + O(1/q))

SU(d, q) d ≡ 2 mod 4, e = 2 (1/(2d))(1 + O(1/q))

SU(d, q) d odd, e = 3 (1/(6d))(1 + O(1/q))

Table 3: Elements of even order and lower bounds on proportions

31

The first objective of this section is to prove the following theorem.

Theorem 8.1 The proportion of elements of the group named in the first entry of any
row in Table 3 that are of even order, and power to an involution whose eigenspaces
satisfy the conditions imposed in the second entry, is at least the value given in the
third entry, and is strictly positive.

The theorem will be proved in stages. We commence our analysis with GL(d, q).

8.1 The general linear group

We estimate the proportion of elements of GL(d, q) that power to an involution having
an eigenspace of specified dimension within a given range.

Lemma 8.2 The number of irreducible monic polynomials of degree e > 1 with coeffi-
cients in GF(q) is k where (qe − 1)/e > k ≥ qe(1 − q−1)/e.

Proof: Let k denote the number of such polynomials. We use the inclusion-exclusion
principle to count the number of elements of GF(qe) that do not lie in any maximal
subfield containing GF(q), and divide this number by e, since every irreducible monic
polynomial of degree e over GF(q) corresponds to exactly e such elements. Thus

k =
qe −

∑

i q
e/pi +

∑

i<j qe/pipj − · · ·

e

where p1 < p2 < · · · are the distinct prime divisors of e. The inequality (qe − 1)/e > k
is obvious. If e is a prime, then k = (qe − q)/e ≥ qe(1 − q−1)/e, with equality if e = 2.
Now suppose that e is composite, and let ℓ denote the largest prime dividing e. Hence,
from the above formula,

ek ≥ qe − qe/ℓ − q(e/ℓ)−1 − . . . − 1 > qe − qe−1.

The result follows. 2

Lemma 8.3 The number of irreducible monic polynomials of degree e > 1 with co-
efficients in GF(q), and specified non-zero constant term a ∈ GF(q)×, is k(a), where
(qe − 1)/e ≥ (q − 1)k(a) ≥ qe(1 − q−1)/e if e > 2. If e = 2, then k(a) = (q ± 1)/2.

Proof: Suppose first that e = 2. Then 2k(a) is the number of elements of GF(q2) \
GF(q) of norm a. The number of elements of GF(q2) of norm a is q + 1, and either
2 or 0 of these lie in GF(q), depending on whether or not a is a square in GF(q). It
follows that k(a) = (q ± 1)/2.

Now suppose that e > 2. If e is prime, then the number of elements of GF(qe) of
norm a is (qe−1)/(q−1), and the number of elements of GF(q) of norm a lies between

32

0 and q−1. It follows easily that k(a) lies between the given bounds. If e is composite
then, with the notation of Lemma 8.2,

(qe − 1)/(q − 1) > ek(a) > (qe − 1)/(q − 1) −
∑

i

qe/pi +
∑

i<j

qe/pipj − · · ·

For the lower bound, we take the number of elements of GF(qe) of norm a, and subtract
the number of elements in the proper subfields of GF(qe) containing GF(q), regard-
less of their norm. Since (qe − 1)/(q − 1) = qe−1 + qe−2 + · · · + 1, it follows that
ek(a) ≥ qe−1 > qe−1(1 − q−1), giving the required lower bound. 2

Lemma 8.4 Let e > d/2 and d ≥ 4. The proportion of elements of GL(d, q) whose
characteristic polynomial has an irreducible factor of degree e lies between (1/e)(1−q−1)
and 1/e, and is independent of d. Moreover, the number of such elements is independent
of the choice of irreducible factor.

Proof: Let the characteristic polynomial of g ∈ GL(d, q) have an irreducible factor
h(x) of degree e. Then the kernel of h(g) is a subspace of V of dimension e. It follows
that the number of elements of GL(d, q) of the required type is k1k2k3k4k5 where k1 is
the number of subspaces of V of dimension e, k2 is the number of irreducible monic
polynomials of degree e over GF(q), k3 is the number of elements of GL(e, q) that have
a given irreducible characteristic polynomial, k4 is the order of GL(d − e, q), and k5 is
the number of complements in V to a subspace of dimension e. In more detail:

k1 =
(qd − 1)(qd − q) · · · (qd − qe−1)

(qe − 1)(qe − q) · · · (qe − qe−1)

k3 = (qe − q)(qe − q2) · · · (qe − qe−1)

k4 = (qd−e − 1)(qd−e − q) · · · (qd−e − qd−e−1)

k5 = qe(d−e).

The formula for k3 arises by taking the index in GL(e, q) of the centraliser of an ir-
reducible element, this centraliser being cyclic of order qe − 1. The formula for k2 is
given in Lemma 8.2. Hence k1k2k3k4k5 = |GL(d, q)|×k2/(qe−1). The result follows. 2

Lemma 8.5 Let e ∈ (d/3, d/2] and d ≥ 4. The proportion of elements of GL(d, q)
that have a characteristic polynomial with exactly one irreducible factor of degree e lies
in the interval [e−1(1− q−1)− e−2(1− q−1)2, e−1 − e−2]. Moreover, the number of such
elements is independent of the choice of irreducible factor.

Proof: This proportion may be estimated as in the proof of Lemma 8.4, but k4 must
be replaced by the number of elements of GL(d − e, q) whose characteristic polyno-
mial does not have an irreducible factor of degree e. Thus the proportion required is
(1/e)(1 − c/q) − (1/e2)(1 − c/q)2, where c lies in the interval [0, 1]. 2

33

Lemma 8.6 The proportion of elements of GL(d, q) whose characteristic polynomial is
irreducible, and with a specified determinant, lies in the interval ((dq)−1, d−1(q − 1)−1]
if d > 2 and is d−1(q ± 1)−1 if d = 2. Moreover, the number of such elements is
independent of the choice of characteristic polynomial.

Proof: The proportion is k(a)/(qd − 1), where a is the determinant in question, and
k(a) is defined and estimated in Lemma 8.3. 2

8.2 The special linear group

We now show how the results of Section 8.1 must be adjusted if GL(d, q) is replaced
by SL(d, q).

Lemma 8.7 The proportion in Lemma 8.4 is unaltered if GL(d, q) is replaced by
SL(d, q), provided that e < d.

Proof: Since e < d, the number of elements of SL(d, q) of the required type may be
obtained by replacing k4 with the number of elements of GL(d − e, q) of a specified
determinant. But the number of such elements is exactly the number of elements of
GL(d − e, q) divided by q − 1; so the result follows. 2

Lemma 8.8 The proportion in Lemma 8.5 is unaltered if GL(d, q) is replaced by
SL(d, q), provided that e < d/2.

Proof: The proof is similar to that of Lemma 8.7. 2

Lemma 8.9 The proportion of elements of SL(2e, q) whose characteristic polynomial
has a unique irreducible factor of degree e lies in the interval [e−1(1 − q−1) − e−2(1 −
q−1), e−1 − e−2(1 − q−1)2). Moreover, the number of such elements is independent of
the choice of irreducible factor.

Proof: The proportion in question is α(1− (q − 1)β), where Lemma 8.4 implies that
α ∈ [e−1(1 − q−1), e−1], and Lemma 8.6 implies that β ∈ (1/(eq), 1/(e(q − 1))] if e > 2
and β = 1/(e(q ± 1)) if e = 2. Thus the proportion lies in the given interval. 2

If n is an integer, then we write v2(n) for the 2-adic value of n; so 2v2(n) is the
largest power of 2 that divides n.

Lemma 8.10 If v2(m) = v2(n) then v2(q
m − 1) = v2(q

n − 1).

Proof: It suffices to consider the case where m = kn and k is odd. Now (qm−1)/(qn−
1) is the sum of k powers of qn, and so is odd. 2

34

Lemma 8.11 If u < v then v2(q
2u

− 1) < v2(q
2v
− 1), and if u > 0 then v2(q

2u
− 1) =

v2(q
2u+1

− 1) − 1.

Proof: Observe that (q2u+1
−1)/(q2u

−1) = q2u
+1 which is even. Now v2(q

2u
−1) > 1

if u > 0. It follows that v2(q
2u

+ 1) = 1. 2

We now obtain a lower bound to the proportion of g ∈ SL(d, q) such that g has
even order 2n, and gn has an eigenspace with specified dimension in a given range.

Theorem 8.12 Let d ≥ 4. The proportion of elements of SL(d, q) that power to an
involution whose −1-eigenspace lies in the range (d/3, 2d/3] is greater than

(

1

2d

)(

1 −
1

q

)

.

Proof: Let 2k be the unique power of 2 in the range (d/3, 2d/3]. If the characteristic
polynomial of g ∈ SL(d, q) has a unique irreducible factor of degree 2k, and the order
of the restriction of g to the corresponding block of dimension 2k has order a multiple
of v2(q

2k
− 1), then by the previous two lemmas g will power to an involution whose

−1-eigenspace has dimension 2k. We prove the theorem by estimating the proportion
of elements of SL(d, q) of this type.

By Lemma 8.7, the proportion of elements of SL(d, q) whose characteristic polyno-
mials have exactly one irreducible factor of degree e = 2k is at least e−1(1 − q−1) if
e > d/2, and, by Lemma 8.8, is at least (e−1−e−2)(1−q−1) if d/2 > e > d/3. If e = d/2,
then, by Lemma 8.9, the proportion is at least (e−1 − e−2)(1 − q−1) ≥ d−1(1 − q−1).
Thus the proportion is at least d−1(1 − q−1) in all cases.

Suppose now that the characteristic polynomial of g has exactly one irreducible
factor of degree 2k. Set x = v2(q

2k
− 1). We now prove that the probability that the

order of g is a multiple of 2x is greater than 1/2.
The action of g on the g-invariant block W of dimension 2k can be used to map

g into T = GF(q2k
) \ U , where U is the union of all proper subfields of GF(q2k

)
that contain GF(q): namely, we map g to a zero of the characteristic polynomial of
g restricted to W . This mapping is not unique. The Galois group of GF(q2k

) over
GF(q) acts regularly on T , and the image of g is determined up to the action of this
Galois group. Since we do not distinguish among elements of the same orbit of this
Galois group on T , we may assume that the image of g is uniformly distributed in T .
But exactly half the elements of GF(q2k

)× have order a multiple of 2x, and none of the
elements of U has order a multiple of 2x. Thus more than half of the elements of T
have order a multiple of 2x.

The result follows, and covers the first row of Table 3. 2

We now deal with the other cases of SL(d, q) in Theorem 8.1.

Lemma 8.13 Let 1 < e < d− 1, where v2(e) 6= v2(d− e). Of the elements of SL(d, q),
the proportion that are of even order and power to an involution with an eigenspace

35

of dimension e is at least (1 − q−1)2/(e(d − e)) if 2 < e < d − 2 and is at least
(1 − q−1)(1 − 2(q + 1)−1)/(e(d − e)) if e ∈ {2, d − 2}.

Proof: We look for elements of SL(d, q) with one irreducible factor of degree e, and
one of degree d − e. The proportion of elements of SL(d, q) with this property is
π := (q − 1)

∑

a∈GF(q)× α(a)β(a), where α(a) is the proportion of elements of GL(e, q)

that have an irreducible characteristic polynomial with constant term a, and β(a) is
the proportion of elements of GL(d− e, q) that have an irreducible characteristic poly-
nomial with constant term a−1. Lemma 8.6 implies that π > (1 − q−1)2/(e(d − e))
if 2 < e < d − 2 and π > (1 − q−1)(1 − 2(q + 1)−1)/(e(d − e)) if e ∈ {2, d − 2}. If
g ∈ SL(d, q) has this property, and if u and w are eigenvalues (in an algebraic closure
of GF(q)) of the restriction of g to the e and d − e-dimensional g-invariant subspaces
of V , then u(qe−1)/(q−1) = a and w(qd−e−1)/(q−1) = a−1, for some a ∈ GF(q)×. Since
v2(e) 6= v2(d − e), the orders of the restriction of g to these two spaces have unequal
2-adic values; and so g powers to an involution whose −1-eigenspace has dimension e
if v2(e) > v2(d − e), and dimension d − e if v2(e) < v2(d − e). This covers the second
and third entries in Table 3. 2

8.3 The symplectic and orthogonal groups

We now turn to the symplectic and orthogonal groups. If h(x) ∈ GF(q)[x] is a monic
polynomial with non-zero constant term, then let h̃(x) ∈ GF(q)[x] be the monic poly-
nomial whose zeros in the algebraic closure of GF(q) are the inverses of the zeros of
h(x). Hence the multiplicity of a zero of h(x) is the multiplicity of its inverse in h̃(x),
and h(x)h̃(x) is a symmetric polynomial. We call h̃ the reverse of h.

Lemma 8.14 Let g ∈ SL(2n, q), where n > 1, have characteristic polynomial f(x) =
h(x)h̃(x), where h(x) 6= h̃(x) is irreducible. Let c be the constant term of h(x). Then
g preserves a non-degenerate orthogonal form on the underlying space, and every such
form is of + type. As an element of the corresponding orthogonal group, g has spinor
norm c mod U2, where U is the multiplicative group of GF(q).

Proof: Clearly g preserves an orthogonal form, since f̃ = f . Choose one such form.
The null spaces of h(g) and h̃(g) are orthogonal complements, and the form restricted
to each of these is the null form, as h(x) 6= h̃(x), so the form is of + type. The
spinor norm of g may be calculated using the definition in [39, p. 444]. This defini-
tion gives the spinor norm as the product of two terms in U/U2. The first term is
the discriminant of the quadratic form restricted to the maximum subspace W of V
on which 1 + g acts nilpotently. Since, by hypothesis, −1 is not an eigenvalue of g,
this term vanishes. The second term is det((1 + g)/2) restricted to the orthogonal
complement of W , modulo U2; but here W = 0. Since the dimension is even, the
factor of 1/2 does not make any contribution. Let a be a zero of h(x) in GF(qn),
so 1/a is a zero of h̃(x). Let N denote the norm map from GF(qn) to GF(q). Thus

36

det(1 + g) = N(1 + a)N(1 + a−1) U2 = N(1 + a)2N(a−1) U2 = c U2. 2

Corollary 8.15 The proportion of elements of SO+(2n, q), for n > 1, and q > 3
if n = 2, whose characteristic polynomial is the product of two distinct irreducible
polynomials, each the reverse of the other, divided by the proportion of such elements
in Ω+(2n, q), is 1 if n is odd, lies in the interval (1, 1 + 2/(qn/2 − 3)) if n is a power of
2, and in the interval (1, 1 + 2/(qn/2 − 6)) otherwise.

Proof: Lemma 8.14 implies that the ratio in question equals the number of irreducible
polynomials of degree n over GF(q) not equal to their reverses, divided by twice the
total number of such polynomials whose constant terms are squares.

Suppose first that n is odd. An irreducible polynomial of odd degree (greater than
1) cannot be equal to its reverse; so this ratio is the number of elements of GF(qn)
that lie in no proper subfield containing GF(q) divided by twice the number of such
elements whose norm (under the norm map from GF(qn) to GF(q)) is a square. But
exactly half the non-zero elements of every subfield of GF(qn) containing GF(q) are
mapped to squares, since n is odd, and the result follows in this case.

Now suppose that n is a power of 2. The proportion is now changed, since every
element of GF(qn/2) has square norm, as does every element of GF(qn) whose minimum
polynomial is equal to its reverse, these latter being the elements of order dividing
qn/2 + 1. The set of elements of GF(qn)× that do not lie in GF(qn/2), and whose order
does not divide qn/2 +1, is of cardinality qn −2qn/2 +1. Since all elements of GF(qn) of
non-square norm (that is to say, elements that are themselves not squares) lie in this
set, the number of squares in this set is qn−2qn/2 +1− (qn−1)/2 = (qn −4qn/2 +3)/2.
Thus the ratio in question is

qn − 2qn/2 + 1 : qn − 4qn/2 + 3 = qn/2 − 1 : qn/2 − 3 = 1 + 2/(qn/2 − 3).

Note that Ω(4, 3) has no elements of the required type, reflecting the fact that qn/2−3 =
0 if n = 2 and q = 3.

Now suppose that n is even, but not a power of two. Consider the following disjoint
subsets of GF(qn)×:

• A is the subset of elements that lie in GF(qn/r) for some odd prime r;

• B = GF(qn/2)× \ A;

• C is the subset of elements of order dividing qn/2 + 1 that do not lie in A ∪ B.

Half the elements of A have spinor norm 1, but all the elements of B and C have spinor
norm 1. Thus the proportion in question is

|GF(qn)×| − |A| − |B| − |C|

2(1
2
|GF(qn)×| − 1

2
|A| − |B| − |C|)

= 1 +
|B| + |C|

|GF(qn)×| − |A| − 2|B| − 2|C|
.

37

Since A, B and C all have fewer than qn/2 elements, and n ≥ 6, this proportion is less
than 1 + 2/(qn/2 − 6). The result follows. 2

The following result is an analogue of Lemma 8.4.

Lemma 8.16 Let G be one of the groups Sp(2n, q), SO+(2n, q), SO−(2n, q), SO(2n +
1, q). Let n ≥ m > n/2 where n ≥ 2, and n > m if G = SO−(2n, q). The proportion
of elements of G whose characteristic polynomial has an irreducible factor of degree m
that is not equal to its reverse lies in the interval

(m−1(1 − q−1)/2 − q−⌈m/2⌉/2, m−1/2),

is independent of n, and hence is strictly positive. If q = 3 and m = 2, then the
proportion is 1/16. Moreover, the number of such elements is independent of the choice
of irreducible factor.

Proof: Let g ∈ G act on the natural module V , and let h(x) be an irreducible factor
of degree m of the characteristic polynomial f(x) of g not equal to its reverse. Let
V0 be the kernel of h(g). Since h(x) 6= h̃(x), and g acts irreducibly on V0, it follows
that V0 is totally isotropic. Also h̃(x) is a factor of f(x) since f(x) = f̃(x), and if
V1 is the kernel of h̃(g) then V1 is totally isotropic. Since h(x) and h̃(x) divide f(x)
with multiplicity 1, V0 and V1 are uniquely determined, and the form restricted to
V2 = V0 ⊕ V1 is non-degenerate.

Thus the number of possibilities for g is the product ℓ1ℓ2ℓ3ℓ4ℓ5/2, where ℓ1 is the
number of choices for V2, ℓ2 is the number of choices for V0 given V2, ℓ3 is the number of
irreducible monic polynomials h(x) of degree m over GF(q) such that h(x) 6= h̃(x), ℓ4 is
the number of elements of GL(m, q) with a given irreducible characteristic polynomial,
and ℓ5 is the order of SX(V ⊥

2). The factor 1/2 in the above expression arises since the
symmetry between h(x) and h̃(x) ensures that every such element g is counted twice.
In more detail:

ℓ1 = |GX(V)|/|GX(V2) × GX(V ⊥
2)|

ℓ2 = |GX(V2)|/|GL(V0)|

ℓ3 ∼ qm/m

ℓ4 = |GL(V0)|/(qm − 1)

ℓ5 = |SX(V ⊥
2)|.

These results are obtained as follows. By Witt’s Theorem (see Theorem 2.1), GX(V)
acts transitively on the subspaces of V that are isometric to V2, and the normaliser of
V2 in GX(V) is GX(V2)×GX(V ⊥

2). Similarly GX(V2) acts transitively on the maximal
totally isotropic subspaces of V2, and the normaliser of V0 in GX(V2) is isomorphic to
GL(V0). Thus ℓ1 and ℓ2 are as stated. We observe that ℓ3 is the number of orbits of
the Galois group of GF(qm) over GF(q) acting on those a ∈ GF(qm) that do not lie
in a proper subfield containing GF(q), and have the property that the orbit of a does

38

not contain a−1. This last condition is equivalent to the statement that h(x) 6= h̃(x).
(If h(x) is irreducible and of degree m, then h(x) = h̃(x) if and only if m is even, and

a−1 = aqm/2
for every zero a of h(x) in GF(qm). This could be used to obtain an exact

formula for ℓ3.) The estimate for k(a) in Lemma 8.2 becomes an estimate for ℓ3 once
we subtract (at least from the lower bound) the number of monic irreducible symmetric
polynomials of degree m over GF(q). The number of monic symmetric polynomials of
degree m over GF(q) is q⌊m/2⌋, and at least one of these vanishes at 1, and hence is
reducible. Thus m−1(qm − 1) > ℓ3 ≥ m−1qm(1− q−1)− q⌊m/2⌋ + 1. The product of the
ℓi is ℓ3|G|/(qm − 1), and the result follows. 2

The detail of adding 1 to the lower bound, proved by observing that at least one of
these polynomials is reducible, ensures that the stated lower bound is strictly positive
in all cases: it is the precise value, namely 1, when q = 3 and m = 2, the polynomial
in question being x2 + x + 2.

Lemma 8.17 Let G be as in the previous lemma, and let m ∈ (n/3, n/2], and m <
n/2 if G is SO−(2n, q). Let S denote the set of elements of G whose characteristic
polynomial has exactly two distinct irreducible factors of degree m, each the reverse of
the other. Then

|S|

|G|
=

1

2

ℓ3

qm − 1
−

1

4

(

ℓ3

qm − 1

)2

where m−1(qm − 1) > ℓ3 ≥ m−1qm(1 − q−1) − q⌊m/2⌋ + 1. In particular,

|S|

|G|
=

(

1

2m
−

1

4m2

)

(1 + O(1/q)).

If G = SO−(2n, q) and m = n/2, so n is even, then

|S|

|G|
=

1

2

ℓ3

qm − 1
=

(

1

2m

)

(1 + O(1/q)).

Proof: The proof is similar to that of Lemma 8.5. The case G = SO−(2n, q) and
m = n/2 is exceptional: G cannot have two pairs of distinct irreducible mutually re-
verse factors of degree n/2. 2

Lemma 8.18 If m < n, then Lemmas 8.16 and 8.17 apply essentially unchanged when
SO±(2n, q) is replaced by Ω±(2n, q).

Proof: Suppose first that m > n/2. In the notation of Lemma 8.16 let G = Ω(V).
The restriction of g ∈ G to V2 and to V ⊥

2 must have equal spinor norms. But exactly
half the elements of SO(V ⊥

2) have spinor norm 1, so the proportion of elements g
satisfying the required condition is exactly the same in Ω(V) as in SO(V). Similarly,
the proportions are exactly equal if n/3 < m < n/2.

39

This leaves the case m = n/2, so n is even. If G = Ω−(2n, q), then the above
argument still applies, for the same reason that SO−(2n, q) was an exceptional case
in Lemma 8.17. If G = Ω+(2n, q), then we need to exclude from our count those
elements of Ω+(2n, q) whose restriction to V ⊥

2 has a characteristic polynomial that is
the product of two distinct irreducible factors, each the reverse of the other. Corollary
8.15 implies that the required proportion is obtained by dividing the proportion given
in Lemma 8.17 by a factor in the interval (1, 1 + 2/(qn/2 − 3)) if n is a power of 2, and
in (1, 1 + 2/(qn/2 − 6)) otherwise. 2

We now obtain the analogue of Theorem 8.12.

Theorem 8.19 Let G be one of the groups Sp(2n, q), SO±(2n, q), SO(2n + 1, q),
Ω±(2n, q), Ω(2n + 1, q), where n ≥ 3. The proportion of elements of G that power
to an involution with −1-eigenspace having dimension in the range (2n/3, 4n/3] is
greater than m−1(1 − q−1)/4 − q−⌈m/2⌉/4 where m = ⌊2n/3⌋, and is always positive. If
G is orthogonal, then the −1-eigenspace of the involution supports a form of + type.

Proof: Using Lemmas 8.16, 8.17 and 8.18, the proof is similar to that of Theorem
8.12.

Let 2k be the unique power of 2 in the range (2n/3, 4n/3], so k ≥ 2. We look for
an element g of G whose characteristic polynomial has a unique pair of factors h(x)
and h̃(x), where h(x) 6= h̃(x) is irreducible of degree 2k−1, and consider the probability
that g will power to an involution whose −1-eigenspace has dimension 2k. If U is the
null space of h(g)h̃(g), then the restriction of g to U has order dividing q2k

−1, and so,
with probability slightly greater than 1/2, the 2-adic value of the order of g restricted
to U will be v2(q

2k
− 1). Now V , regarded as a module for GF(q)[C], where C is the

cyclic group generated by g, has a series V = V1 > V2 > · · ·, where the characteristic
polynomial of g acting on Vi/Vi+1 is either the product of two distinct irreducible factors
hi(x) and h̃i(x), or an irreducible polynomial fi(x) with fi(x) = f̃i(x). Let ni denote
the dimension of Vi/Vi+1. In the former case ni is even and the order of g acting on
Vi/Vi+1 divides qni/2 − 1. Also, by assumption, ni 6= 2k, and so v2(ni) < v2(2

k), and
v2(q

n1/2 − 1) < v2(q
2k−1

− 1). In the latter case ni is even or ni = 1. If ni is even, then
the order of g acting on Vi/Vi+1 divides qni/2 +1, and if ni = 1 this order is ±1. Hence,
in any case, the 2-adic value of this order is less than v2(q

2k−1
− 1). It follows that g

will power to an involution with −1-eigenspace equal to U if the order of the restriction
of g to U has 2-adic value equal to v2(q

2k−1
− 1). The proportion of elements g of G

satisfying the conditions now imposed on g may be estimated using Lemmas 8.16 and
8.17. The proportion given by these lemmas, for m ∈ (n/3, 2n/3], is least when m is
the integral part of 2n/3. Thus the proportion of elements g of G satisfying all the
conditions imposed on g is greater than m−1(1−q−1)/4−q−⌈m/2⌉/4 where m = ⌊2n/3⌋.

Note that the proportion of elements satisfying the conditions imposed on g if
G = SO(V) is exactly the same as the proportion if G = Ω(V). The restriction of g to
U⊥ must be chosen to have the same spinor norm as the restriction of g to U , and half
the elements of SO(U⊥) will have this property.

40

If G is orthogonal, then the −1-eigenspace of the involution obtained by powering
g supports a form of + type, since the form restricted to the kernel of h(g), or of h̃(g),
is null.

Thus the entries in Table 3 for orthogonal and symplectic groups that require e−
to lie in the range (d/3, 2d/3] are valid. 2

Observe that the dimension of U in the proof is a power of 2, and is at least 4.
Thus the theorem is compatible with the fact that Ωǫ(2n, q) does not have an involution
whose −1-eigenspace is an odd multiple of 2 if both q ≡ 3 mod 4 and ǫ = +, or if both
q ≡ 1 mod 4 and ǫ = −.

Theorem 8.20 The remaining entries in Table 3 for orthogonal and symplectic groups
are valid.

Proof: Consider first the case where d − e is even and d > 2e. Let S be the set
of elements of such a group G whose characteristic polynomial contains two distinct
irreducible factors h(x) and h̃(x), where h̃(x), the reverse of h(x), is not equal to h(x),
and where h has degree (d−e)/2. Lemma 8.16 implies that the proportion of elements
of G with this property is (1/(d− e))(1 + O(1/q)) and is positive for all values of q. It
is a straightforward, if tedious, exercise to use the explicit lower bound given there to
obtain explicit bounds for the proportions stated here.

It remains to estimate the probability that the 2-adic value of the order of such an
element g restricted to the null space U of h(g)h̃(g) is greater than the 2-adic value of
the order of its restriction to U⊥, since in this case g will power to an involution with
−1-eigenspace F = U and +1-eigenspace E = F⊥. If the form is orthogonal, then the
restriction of the form to F is either required or permitted to be of + type.

If G = Ω(V), then the spinor norms of g restricted to E and to F must be equal. It
is easy to see that the proportion of elements of G that satisfy the conditions imposed
on g is higher when g is required to have spinor norm −1 in both E and F than when g
is required to have spinor norm +1 in these spaces. This is because the condition that h
be irreducible and not equal to its reverse excludes a higher proportion of polynomials
whose constant terms are squares than of general polynomials; more significantly, the
2-adic value of the order of such an element (restricted to F) takes its maximum value
when the constant term of h(x) is not a square.

Thus, if G = Ω(V), then we define T to be the subset of S consisting of elements
that act on E and on F with spinor norm +1, and estimate the proportion of elements
of T that power to a suitable involution.

Note that the order of the restriction of g to F has 2-adic value at most v2(q
(d−e)/2−

1), and at most v2(q
(d−e)/2−1)−1 in the orthogonal case if g restricted to F has spinor

norm +1. Moreover, the proportion of elements of S or of T for which this value is
achieved is greater than 1/2.

Let π denote a lower bound to the probability that the 2-adic value of the order
of the restriction of a random element of S (or of T if G = Ω(V)) to F exceeds the

41

2-adic value of its restriction to E, so that the proportion of elements of G that power
to an involution as required is greater than (π/(d− e))(1 + O(1/q)), a bound we often
replace with (π/d)(1 + O(1/q)).

We now consider the individual cases in Table 3, where we use ad-hoc arguments
to handle the exceptional cases.

• G = Sp(d, q), d ≡ 2 mod 4; e = 2.

Now v2(q
(d−e)/2 − 1) ≥ v2(q

2 − 1), which is greater than the 2-adic value of the
restriction of g to E; so π > 1/2.

• G = Ω+(d, q), d > 8, q ≡ 3 mod 4, d mod 8 6= 0; e = d mod 8, so e < 8; E and F
of + type.

Now v2(q
(d−e)/2 −1)−1 ≥ v2(q

4−1)−1, and this is greater than the 2-adic value
of the restriction of g to E; so π > 1/2.

• G = Ω−(d, q), q ≡ 1 mod 4, d ≥ 6; e = 4; F of + type.

Suppose first that d > 8. Since Ω−(4, q) ∼= PSL(2, q2), the proportion of elements
of Ω−(4, q) of odd order is greater than 1/2 (see [19, p. 288]), and so π > 1/4.

If d ≤ 8, then our assumption that d > 2e fails.

Suppose that d = 6. Consider elements g of G whose characteristic polynomials
factorise as f(x) = h(x)(x − α)(x − α−1), where h(x) = h̃(x) is irreducible of
degree 4, and the 2-adic value of the multiplicative order of α is greater than the
2-adic value of the order of g restricted to the kernel of h(g). This latter order
divides q2 + 1, and hence has 2-adic value at most 1. Then the involution that
is a power of g has −1-eigenspace the sum of the α and α−1 eigenspaces of g,
which is, as required, of dimension 2 and of + type. The proportion of elements
of Ω−(6, q) of this type, ignoring the restriction on the order of α, but excluding
the cases α = ±1, is q − 3 : 4(q + 1), and so, allowing for this restriction, the
proportion of elements of G of the required type is greater than 1/8 + O(1/q).

Now suppose that d = 8. By the exceptional case of Lemma 8.18, the proportion
of elements g of G whose characteristic polynomial has exactly two irreducible
factors h(x) and h̃(x) of degree 2 that are the reverse of each other is 1/4+O(1/q).
Let g be a random element of T . Now g lies in SO(F) × SO(E), where F is the
null space of h(g)h̃(g), and the probability that g powers to a suitable involution
is greater than 1/2, since the largest possible value for the 2-adic value of the
order of g restricted to F is greater than the corresponding value for E. This
gives the required proportion of elements of G as greater than 1/8 + O(1/q).

• G = Ω−(d, q), q ≡ 3 mod 4, d ≡ 0 mod 4; e+ = 4; F is of + type.

This can be dealt with exactly as the previous case.

• G = Ω−(d, q), q ≡ 3 mod 4, d ≡ 2 mod 4; e = 6; F of + type.

42

Assume first that d > 2e. The proportion of elements of Ω−(6, q) of order not a
multiple of 4 is easily seen to be at least 1/2+O(1/q). But v2(q

(d−6)/2 − 1)− 1 ≥
v2(q

2 − 1) − 1 ≥ 2, so π > 1/4 + O(1/q). Now suppose that d ≤ 2e, so d = 10.
We argue as in the case d > 10, but use Lemma 8.17 rather than Lemma 8.16.
This replaces the factor 1/(d − e) by 1/(d− e) − 1/(d − e)2 = 1/4 − 1/16. Since
we simplify our estimates, replacing 1/(d − e) by 1/d, this value is within our
general bounds.

• Ω−(6, q), q ≡ 3 mod 4; e = 2; F of + type.

v2(q
(d−e)/2 − 1) − 1 = v2(q

2 − 1) − 1 ≥ 2. The restriction of g to E has order
dividing (q + 1)/2; so π > 1/2.

• G = Ω0(5, q), q ≡ 3 mod 4, q > 3; e+ = 1; F of + type.

v2(q
(d−e)/2 − 1) − 1 = v2(q

2 − 1) − 1 ≥ 2, so π > 3/4.

• G = Ω0(d, q), q ≡ 1 mod 4 or d ≡ 3 mod 4; e = 3; F of + type.

Now v2(q
(d−e)/2 − 1) − 1 is at least v2(q

2 − 1) − 1 if d ≡ 3 mod 4, and is at
least v2(q − 1) − 1 if q ≡ 1 mod 4, and hence is at least 1 in either case. The
proportion of elements of Ω(3, q) ∼= PSL(2, q) of odd order is greater than 1/2;
so π > 1/4 + O(1/q).

• G = Ω0(d, q), q ≡ 3 mod 4, d ≡ 1 mod 4; e = 5; F of + type.

Suppose first that d > 2e. Then v2(q
(d−e)/2 − 1) − 1 ≥ v2(q

2 − 1) − 1 ≥ 2.
Elements of SO(E) of order not a multiple of 4 include those whose characteristic
polynomials are of the form (x−1)f(x), where f(x) is irreducible and f(x) = f̃(x).
Such elements correspond to equivalence classes, under the action of the group
generated by the Frobenius map, of elements of GF(q4) that do not lie in GF(q2),
and that are of order dividing q2 + 1. Such elements have centralisers in SO(E)
of order q2 + 1, so the number of such elements is |SO(E)|(q2 − 1)/(4(q2 + 1)).
Thus the proportion of elements of SO(E) of order not a multiple of 4 is at least
1/4 + O(1/q2), and the same applies to Ω(E); so π > 1/8 + O(1/q).

This leaves the case d = 9, e = 5. Again we proceed as when d > 2e, but
use Lemma 8.17 rather than Lemma 8.16. This replaces the factor 1/(d − e) by
1/(d − e) − 1/(d − e)2 = 1/4 − 1/9. Since this is greater than 1/9, our stated
lower bound holds.

• G = SO−(d, q); e = 4; F of + type.

If q ≡ 1 mod 4 or d ≡ 0 mod 4, then the proportion is the same as for Ω−(d, q),
since SO−(d, q) ∼= Ω−(d, q) × C2 in this case.

Now consider q ≡ 3 mod 4. If d = 6, then the analysis is similar to that for
Ω−(d, q) when q ≡ 1 mod 4 and e = 4. The order of α may now be a multiple
of 2, but not of 4. Hence the probability of the order condition being satisfied is

43

now slightly greater then 1/4, and the proportion of elements of the type required
is now greater than 1/16 + O(1/q). The case d = 8 is covered by Lemma 8.17. If
d > 8 then v2(q

(d−e)/2 − 1) ≥ v2(q
2 − 1) ≥ 3, so π > 3/8.

• G = SO0(d, q); e = 3; F is of + type.

Assume d > 5. Since v2(q
(d−e)/2 − 1) ≥ v2(q − 1) ≥ 1, and the proportion of

elements of SO(3, q) of odd order is greater than 1/4, it follows that π > 1/8.

If d = 5, then we look for elements whose characteristic polynomial factorises
as (x − α)(x − α−1)(x − 1)h(x), where h(x) = h̃(x) is irreducible. The factor
(x−1)h(x) is the characteristic polynomial of an element of SO(3, q). We impose
the condition α 6= ±1. The proportion of such elements in SO(5, q) is ((q −
3)/2)((q2 − 1)/2) : (q − 1)(q2 + 1) = 1/4 + O(1/q). 2

8.4 The unitary groups

We finally turn to the unitary groups. If h(x) ∈ GF(q2)[x] is a monic polynomial with
non-zero constant term, then define ĥ(x) to be the monic polynomial obtained from
h̃(x) by raising each coefficient to the power q. We call ĥ(x) the hermitian reverse of
h(x).

Lemma 8.21 Let ℓ̂3 := ℓ̂3(q, m) denote the number of irreducible monic polynomials
of degree m over GF(q2) that are not equal to their hermitian reverse. Then

q2m − 1

m
> ℓ̂3 >

q2m(1 − q−1)

m
.

Proof: If m is even, then no irreducible monic polynomial is equal to its hermitian
reverse, so (q2m − 1)/m > ℓ̂3 ≥ q2m(1 − q−2)/m by Lemma 8.2. If m is odd, then
the number of monic polynomials over GF(q2) of degree m (reducible or not) that are
equal to their hermitian reverse is qm−1(q +1), so ℓ̂3 > q2m(1− q−2)/m− qm−1(q +1) ≥
q2m(1 − q−1)/m. 2

If m is odd, then the irreducible monic polynomials over GF(q2) of degree m that
are equal to their hermitian reverse define elements of GF(q2m) that lie in no proper
subfield containing GF(q2) and have order dividing qm + 1. This could be used to
obtain a precise formula for l̂3.

Lemma 8.22 Let G = SU(d, q), and m > d/4. The proportion of elements of G whose
characteristic polynomial has an irreducible factor of degree m that is not equal to its
hermitian reverse lies in the interval ((1 − q−1)/(2m), 1/(2m)), and is independent of
d. Moreover, the number of such elements is independent of the choice of irreducible
factor.

44

Proof: The proof is almost identical to that of Lemma 8.16. The proportion is
ℓ̂3/(2(q2m − 1)), and the result then follows from Lemma 8.21. 2

Lemma 8.23 Let G = SU(d, q), and let m ∈ (d/6, d/4). Let S denote the set of ele-
ments of G whose characteristic polynomial has exactly two distinct irreducible factors
of degree m, each the hermitian reverse of the other. Then

|S|

|G|
=

1

2

ℓ̂3

q2m − 1
−

1

4

(

ℓ̂3

q2m − 1

)2

where (q2m − 1)/m > ℓ̂3 ≥ q2m(1 − q−2)/m. In particular,

|S|

|G|
=

(

1

2m
−

1

4m2

)

(1 + O(1/q2)).

Lemma 8.24 Let G = SU(4m, q). The proportion of elements of G whose charac-
teristic polynomial has exactly two distinct irreducible factors of degree m, each the
hermitian reverse of the other, lies in the interval

1

2

ℓ̂3

q2m − 1
−

1

4

(

ℓ̂3

q2m − 1

)2

(1 − q−2),
1

2

ℓ̂3

q2m − 1
−

1

4

(

ℓ̂3

q2m − 1

)2

(1 − q−2)−1

 .

Proof: This case is exceptional: the constant term of h(x)ĥ(x), where h(x) is the
irreducible factor in question, need not be 1. Consider the excluded case when g ∈ G
has a characteristic polynomial with two pairs of hermitian reverse factors of degree m:
there is a restriction on the constant terms of these polynomials, since G is the special
unitary group. By Lemma 8.3, this restriction multiplies the number of excluded cases
by a factor that lies between 1 − q−2 and (1 − q−2)−1. 2

Theorem 8.25 Let d ≥ 3. The proportion of elements of SU(d, q) that power to
an involution whose −1-eigenspace has dimension in the range (d/3, 2d/3] is at least
(3/(4d))(1 − q−1).

Proof: Using the three previous lemmas, the analysis is similar to that for the sym-
plectic and orthogonal groups. 2

There remain two unitary cases to consider.

• G = SU(d, q), d ≡ 2 mod 4; e = 2.

The proportion of elements of G whose characteristic polynomial has an irre-
ducible factor of degree (d − 2)/2 not equal to its hermitian reverse lies in the
interval ((1 − q−1)/(d − 2), 1/(d − 2)), by Lemma 8.22. Such an element will
power to an involution as required with probability greater than 1/2: observe
v2(q

(d−2) − 1) > v2(q
2 − 1) since d ≡ 2 mod 4.

45

• G = SU(d, q), d odd; e = 3.

The proportion of elements g of G whose characteristic polynomial has two dis-
tinct irreducible hermitian reverse factors h(x) and ĥ(x), each of degree (d−3)/2,
and a third irreducible factor k(x) of degree 3, is (1/(3d))(1 + O(1/q)). Let E
denote the null space of k(g), and F the null space of h(g)ĥ(g). The order of
g restricted to E divides q3 + 1, and hence is an odd multiple of q + 1. The
order of g restricted to F divides qd−3 − 1, and hence divides q2 − 1. Thus
the probability that g will power to an involution as required is greater than
1/2. Thus the proportion of elements of G with the required property is at least
(1/(6d))(1 + O(1/q)).

This completes the proof of Theorem 8.1.

8.5 Constructing an involution

We now analyse the cost of determining whether a given matrix powers to a suitable
involution.

Lemma 8.26 Given g ∈ GL(d, q), one can determine whether or not g is of even
order, and in the positive case determine an integer n such that gn is an involution,
and find bases for the eigenspaces of this involution, using a Las Vegas algorithm having
complexity O(d3 log d + d2 log d log log d log q) measured in field operations.

Proof: The characteristic polynomial f(t) of g can be computed in O(d3 log d) field
operations. It can be factorised as f(t) =

∏m
i=1 fi(t)

ni , where the fi(t) are distinct
monic irreducible polynomials in O(d2 log d log log d log q) field operations.

Let the 2-part of the order of t + (fi(t)) in the group of units of GF(q)[t]/(fi(t))
be 2xi. To compute xi, we first raise t + (fi(t)) to the power ai, where ai is the
odd part of qdeg(fi)−1; now xi is the number of times that the resulting field element
needs to be squared to give rise to the identity. Computing tk in any ring requires
at most 2 log k ring operations, and k is at most qd, so this can be carried out in
O(d2 log d log log d log q) field operations.

If x := maxi(xi) = 0, then g has odd order. Otherwise, n is 2x−1 ·
∏

i ai · p
maxi {ni},

where GF(q) has characteristic p. Let I = {i : xi = x}. Clearly the dimension of the
−1-eigenspace of gn is

∑

i∈I nidi, where di is the degree of fi(t).
To obtain the bases for the eigenspaces, we compute gn using the algorithm of

Lemma 10.1, and evaluate the appropriate nullspaces. The claim follows. 2

Observe that we learn the dimension of the −1-eigenspace of gn without evaluating
gn, and so can decide if gn is a strong or suitable involution without computing its
eigenspaces.

We now summarise the results of Section 8.

46

Theorem 8.27 There is a Las Vegas algorithm that takes as input a generating set X
for G, where G is the first entry in a row in Table 3, and returns an SLP in X for g ∈ G
that powers to an involution whose eigenspaces satisfy the conditions imposed in the
second entry, together with bases for these eigenspaces, and an integer n such that gn is
the involution in question. This algorithm takes O(d(ξ+d3 log d+d2 log d log log d log q))
field operations.

8.6 Two related results on orthogonal groups

We conclude with two results of a flavour similar to the other results of Section 8.
These guarantee that the search in Step 3 of OneOmegaPlus3 and OneOmegaMinus3

terminates in O(n) random selections.

Lemma 8.28 If q ≡ 3 mod 4, then the proportion of elements of SO+(2n, q) that are
of twice odd order and have spinor norm −1 is 1/8 if n = 2, and is greater than
(2n − 2)−1(1 − q−1)/2 − q−n/2/4 if n > 2.

Proof: Suppose first that n = 2. Let D denote the subgroup of GL(2, q) consisting
of elements of determinant ±1. Then SO+(4, q) is the section of D × D obtained
by taking the subgroup consisting of pairs of elements with equal determinants, and
amalgamating the centres; Ω+(4, q) is obtained from elements of D × D whose entries
in each factor have determinant 1. Thus an element of SO+(4, q) of twice odd order
and spinor norm −1 arises from an element (g1, g2) of D × D where each of g1 and g2

has order a multiple of 4 and dividing 2(q − 1). The proportion of elements of D that
satisfy this condition is 1/4, and the result follows.

Now suppose that n > 2. By Lemma 8.16, the proportion π of elements g of
SO+(2n, q) whose characteristic polynomial has an irreducible factor h(x) 6= h̃(x) of
degree n − 1 lies in the interval ((2n − 2)−1(1 − q−1) − q−n/2/2, 1/(2n − 2)). Since
qn−1 + 1 ≡ 2 mod 4, these elements, restricted to the null space of h(g)h̃(g), are either
of odd order, or of twice odd order; and the restriction of g to this null space has
spinor norm −1 if and only if the restriction is of even order. Moreover, g acts on
the orthogonal complement of the null space as an element of SO+(2, q). This is a
cyclic group of twice odd order, the elements with spinor norm −1 (in their action on
this 2-dimensional space) being those of even order. Thus the proportion of elements
of SO+(2n, q) whose characteristic polynomial satisfies the above condition and have
spinor norm −1 (and necessarily have twice odd order) is π/2, and this proves the
lemma. 2

Lemma 8.29 If q ≡ 3 mod 4, then the proportion of elements of SO−(2n, q) that are
of twice odd order and have spinor norm −1 is at least 1/(4n)+O(1/q), and is strictly
positive.

47

Proof: The case n = 1 being trivial, suppose first that n = 2. Now SO−(4, q) ∼=
C2 ×PSL(2, q2). The proportion of elements of PSL(2, q2) of odd order is greater than
1/2 (see [19, p. 288]). Thus the proportion of elements of SO−(4, q) of spinor norm −1
and of twice odd order is greater than 1/4.

If n > 2 is odd, then we consider elements g of SO−(2n, q) whose characteristic
polynomial f(x) is irreducible, and hence satisfy the condition f(x) = f̃(x). Such
elements preserve an irreducible form of − type, and have order dividing qn +1, which
is twice odd. Since −I2n has spinor norm −1, it follows that g has spinor norm −1 if
and only if g is of even order. Hence the proportion of elements of SO−(2n, q) satisfying
these conditions is 1/(4n) + O(1/q).

If n > 2 is even, then we consider elements of SO−(2n, q) whose characteristic
polynomial has two irreducible factors f(x) and f̃(x), each of degree n − 1. Again
these elements have order not divisible by 4. The proportion of such elements having
spinor norm −1 (and hence of twice odd order) is exactly 1/2. Hence the proportion
of elements of this type is 1/(4n − 4) + O(1/q), as required. 2

Lemma 8.28 implies that the proportion of elements g of H considered in Step 3 of
OneOmegaPlus3, is greater than (4f − 2)−1(1− q−1 − q−f)/4. Lemma 8.29 implies that
the corresponding proportion in Step 3 of OneOmegaMinus3 is greater than 1/(4n) +
O(1/q).

9 Involutions with eigenspaces of equal dimension

Let G be one of the following: SL(4n, q), Sp(4n, q), SU(4n, q), Ω+(4n, q) if q ≡ 1 mod 4,
Ω+(8n, q) if q ≡ 3 mod 4, or SO+(4n, q). We describe an algorithm to construct an
involution in G with both eigenspaces of the same dimension. We use this as one
component in Algorithm Two.

Our algorithm is more general in nature: it constructs an involution, each of whose
eigenspaces has a specified dimension. If G is orthogonal, then the eigenspaces must
support forms of + type; hence the dimension of the −1-eigenspace must always be
even, and a multiple of 4 if G = Ω+(d, q) and q ≡ 3 mod 4.

Consider first the case where G = SL(d, q). We outline an algorithm to construct
an involution with −1-eigenspace of dimension e where 0 ≤ e < d. Its design ensures
that recursive calls involve matrices having dimension at most 2d/3.

1. Find, by random search, g ∈ G of even order that powers to a strong involution
h1.

2. Let r and s denote the ranks of the −1 and +1-eigenspaces, E− and E+ respec-
tively, of h1.

3. If r = e then return the involution h1.

48

4. Construct the centraliser in G of h1. Obtain generators for SL(E−) and for
SL(E+) as subgroups of G. (See Sections 11 and 12 for details of the algorithms
used.)

5. Consider the case where s ≤ e < r. By recursion, find in SL(E−) an involution
whose −1-eigenspace has dimension e.

6. Consider the case where e ≤ min(r, s). If r < s, then, by recursion, find in SL(E−)
an involution whose −1-eigenspace has dimension e. Similarly, if s < r, then, by
recursion, find in SL(E+) an involution whose −1-eigenspace has dimension e.

7. Consider the cases where s ≥ e > r or e ≥ max(r, s). By recursion, find in
SL(E+) an involution h2 whose −1-eigenspace has dimension e − r. Now return
h1h2, an involution of the required type.

The recursion is founded trivially with the case d = 4.

Theorem 9.1 In O(d(ξ + d3 log d + d2 log d log log d log q)) field operations, this Las
Vegas algorithm constructs an involution in SL(4n, q) that has its −1-eigenspace of
any even dimension in [0, d].

Proof: Theorem 8.27 proves that the strong involution h1 in Step 1 can be found and
constructed using a Las Vegas algorithm in O(d(ξ+d3 log d+d2 log d log log d log q)) field
operations. In Sections 11 and 12, we show that generators for SL(E−) and SL(E+)
as subgroups of G can be constructed using the same number of operations. Since the
dimension of the matrices in a recursive call is at most 2d/3, Lemma 2.4 implies that
the total complexity is as stated. 2

The other classical groups are dealt with in essentially the same way, and the corre-
sponding algorithms have the same complexity. If G is an orthogonal group preserving
a form of + type, then the involution constructed in Step 1 has both eigenspaces
supporting a form of + type, so the involution returned has the same property.

10 Exponentiation

A frequent task in our algorithms is computing gn for some g ∈ GL(d, q) and integer n
where n < qd. We could construct gn with O(log n) multiplications using the familiar
black-box squaring technique. Instead, we describe the following faster Las Vegas
algorithm to perform this task.

1. Construct the Frobenius normal form of g and record the change-of-basis matrix.

2. From the Frobenius normal form, read off the minimal polynomial h(x) of g, and
factorise h(x) as a product of irreducible polynomials.

49

3. Following Section 2.2, compute a multiplicative upper bound, m, to the order of
g.

4. If n > m, then replace n by n mod m. By repeated squaring, calculate xn mod
h(x) as a polynomial of degree k − 1, where k is the degree of h(x).

5. Evaluate this polynomial in g to give gn.

6. Conjugate gn by the inverse of the change-of-basis matrix to return to the original
basis.

We now consider the complexity of this algorithm.

Lemma 10.1 Let g ∈ GL(d, q) and let 0 ≤ n < qd. This Las Vegas algorithm computes
gn in O(d3 log d + d2 log d log log d log q) field operations.

Proof: Using the Las Vegas algorithm of [20], in O(d3 log d) field operations we
obtain the Frobenius normal form of g, the corresponding change-of-basis matrix,
and thus the minimal polynomial of g. The minimal polynomial can be factored in
O(d2 log d log log d log q) field operations.

Calculating xn mod h(x) requires O(log n) multiplications in GF(q)[x]/(h(x)), and
hence O(d2 log d log log d log q) field operations. Evaluating the resultant polynomial
in g requires O(d) matrix multiplications; but multiplying by g only costs O(d2) field
operations, since g is sparse in Frobenius normal form. Conjugating g by the inverse
of the change-of-basis matrix costs O(d3) field operations. 2

11 Constructing direct factors

We consider the following problem.

Problem 11.1 Let G = 〈X〉 be a subgroup of the centraliser of an involution g in
GX(d, q), so G ≤ GX(E) × GX(F), where E and F are the eigenspaces of g. If G
contains Ω(E) × Ω(F), find (as SLPs in X) generating sets for ΩX(E) and ΩX(F).

We prove the following result.

Theorem 11.2 There is a Las Vegas algorithm, with complexity O(d log log d
log d

(ξ+d3 log d+

d2 log d log log d log q)) measured in field operations, that takes as input a subset X of
GX(E) × GX(F), where E and F are the eigenspaces of an involution in GX(d, q),
such that X generates a group containing ΩX(E) × ΩX(F), and returns generating
sets for ΩX(E) and ΩX(F) as SLPs in X.

Our proof of this theorem relies heavily on the one-sided Monte Carlo recognition
algorithm of Niemeyer & Praeger [31, 32]. We outline this algorithm briefly. The input
is 〈X〉 = G ≤ GX(d, q), of known type X, where d > 2. It decides whether or not G

50

contains ΩX(d, q), given that G is an irreducible subgroup of GX(d, q) that does not
preserve any bilinear or quadratic form not preserved by GX(d, q).

In order to decide this, a set S of subsets of GX(d, q) is defined with the property
that any irreducible subgroup of GX(d, q) that does not preserve any non-degenerate
form not preserved by GX(d, q), and that contains a subset S ∈ S, generates a group
containing ΩX(d, q). In this case S is a witness to this fact. For most values of the
parameters (X, d, q), the following is the case. A set P of pairs of primes or squares
of primes, each dividing |ΩX(d, q)| but prime to q − 1, is defined. The elements of S
are pairs, and S ∈ S if and only if there is a pair (ℓ1, ℓ2) ∈ P such that ℓ1 divides the
order of one element of S, and ℓ2 divides the order of the other.

We call parameters (X, d, q) for which S is defined in this way standard. (These
include all generic cases of [31] and some of the non-generic cases of [32].) If the
parameters are not standard, then the algorithm requires different types of witness. To
find a witness, a sample of O(log log d) random elements must be considered; see [31,
Proposition 7.5].

Recall that a primitive prime divisor of qe − 1 is a prime divisor of qe − 1 that does
not divide qi − 1 for any positive integer i < e. If r is a primitive prime divisor of
qe − 1 then r ≡ 1 mod e, and so r ≥ e + 1. If (ℓ1, ℓ2) ∈ P , then in most cases ℓi is a
primitive prime divisor of qei − 1 for some ei > d/2 for i = 1, 2, and e1 6= e2. Further
conditions may be imposed, and in some cases ℓi is the square of a primitive prime
divisor of qei − 1. We are not concerned here with the precise variations used.

A sufficient condition for g ∈ SX(d, q) to have order prime to ℓi is that the char-
acteristic polynomial of g should have no irreducible factor of degree a multiple of
ei.

Before describing the algorithms to solve our problem, we present two related results
which assist in our analysis.

Lemma 11.3 Let π be a partition of d > 2, and let ΩX(d, q) ≤ G ≤ GX(d, q). Denote
by P (G, π) the proportion of g ∈ G such that the degrees of the irreducible factors of
the characteristic polynomial of g partition d as π.

(i) Let X = SL and π = (k, d−k): if 1 ≤ k < d/2 then P (G, π) > (1− q−1)2/(k(d−
k)).

(ii) Let X = SL and π = (1, k, d − k − 1): if 1 < k < d − k − 1 then P (G, π) >
(1 − q−1)2/(k(d − k − 1)).

(iii) Let X 6= SL and π = (k/2, k/2, (d− k)/2, (d− k)/2), where d and k are even: if
1 < k < d/2 then P (G, π) > (1 − q−1)2/(4k(d − k))

(iv) Let X = SU or SO0 and π = (1, k/2, k/2, (d−k−1)/2, (d−k−1)/2), where d is
odd and k is even: if 2 < k < (d−1)/2 then P (G, π) > (1−q−1)2/(4k(d−k−1))

The proof is an easy exercise, using the techniques of Section 8.

51

Lemma 11.4 Let d > 2 and 1 < ℓ ≤ d, and assume ΩX(d, q) ≤ G ≤ GX(d, q). The
proportion of elements of G whose characteristic polynomial has no irreducible factor
of degree a multiple of ℓ is greater than c log d/d for some positive universal constant c.

Proof: Suppose that X = SL, and d > 4. An easy modification of Lemma 8.7 shows
that if ℓ > d/2, then the proportion of elements of G whose characteristic polynomial
has no irreducible factor of degree ℓ is at least 1/2.

We now consider smaller values of ℓ. We apply Lemma 11.3 to obtain the proportion
of elements of G whose characteristic polynomial has exactly two irreducible factors
of unequal degrees. Observe that, for any a > 0,

∑a
k=1 1/(k(d − k)) = (2/d)

∑a
1 1/k.

Taking a = ⌊(d− 1)/2⌋, and letting k denote the smaller degree, so that k ≤ a, we see
that the proportion in question is at least c log d/d for some absolute constant c > 0.

Similarly, if the degree k is required to be congruent to some fixed value modulo ℓ,
then the proportion in question is at least c log d/(dℓ) for some c > 0.

Now consider the values of k for which k or d − k is a multiple of ℓ. If ℓ > 2 then
at least ℓ − 2 of the ℓ residue classes give values of k that satisfy the conditions of the
lemma, and complete the proof in this case.

Now assume ℓ = 2. If k is odd, and d is even, then d−k is odd; so one of the residues
classes give values of k that satisfy the conditions. If d ≥ 9 is odd, then we consider
the proportion of elements of G whose characteristic polynomial has one irreducible
factor of degree 1, one of degree k, and one of degree d − k − 1, as in case (ii) above.
The proof now proceeds exactly as before.

The remaining cases occur for bounded d only and there clearly exist elements
which satisfy the present lemma.

The proof for the other classical groups is essentially the same. 2

11.1 The standard parameter case

Our task is the following. Let ΩX(E) × ΩX(F) ≤ G = 〈X〉 ≤ GX(E) × GX(F); find
(as SLPs in X) a generating set for ΩX(E). Let e and f denote the dimensions of E
and F respectively. We assume that (X, e, q) is standard; in particular, this implies
that e > 2.

Our algorithm, GenerateFactor, is the following.

1. Repeatedly construct random (g, h) ∈ G, where g ∈ GX(E) and h ∈ GX(F),
until we find two elements (g1, h1) and (g2, h2) such that (g1, g2) acts as a witness
for ΩX(E), with corresponding prime powers (ℓ1, ℓ2), and the pseudo-order ni of
hi is prime to ℓi for i = 1, 2.

2. Let mi = ni(q − 1). Compute gm1
1 = (g1, h1)

m1 and gm2
2 = (g2, h2)

m2 .

3. If 〈gm1
1 , gm2

2 〉 is irreducible, and it also preserves no non-degenerate bilinear form
when X = SL, then return (gm1

1 , gm2
2); else return to Step 1.

52

Lemma 11.5 If the parameters (X, e, q) for G are standard, then the Las Vegas al-
gorithm, GenerateFactor, constructs a generating pair for ΩX(E) in O(d log log d

log d
(ξ +

d3 log d + d2 log d log log d log q)) field operations.

Proof: The algorithm of [31] requires O(log log e) trials to find a pair of elements
(g1, h1) and (g2, h2) of G such that (g1, g2) will act as a witness for ΩX(E). If (g1, g2)
is a witness because gi has order a multiple of ℓi, then Lemma 11.4 implies that the
probability that hi has pseudo-order coprime to ℓi is O(log f/f).

We must also consider the probability that 〈g1, g2〉 is reducible, or, if X = SL,
that it preserves a non-degenerate form. Since gi acts irreducibly on a subspace of
dimension ei > d/2, the probability that 〈g1, g2〉 is irreducible is bounded away from 0,
and tends to 1 as q or d tends to infinity. The same is clearly true for the probability
that 〈g1, g2〉 preserves no non-degenerate form if X = SL.

Computing and factorising the characteristic polynomial of g ∈ G takes O(d3 log d+
d2 log d log log d log q) field operations. The powering operation, which need only take
place in E, is performed twice, assuming that 〈g1, g2〉 is irreducible and does not pre-
serve a form. 2

11.2 The dimension 2 case

We now consider the case where (X, e, q) = (SL, 2, q) and q > 3. We first show
that, with high probability, SL(2, q) can be generated by an irreducible element and a
random conjugate. Let M(q) be the metacyclic group of order 2(q + 1) defined by the
presentation {a, b | aq+1 = 1, ab = a−1, b2 = a(q+1)/2}.

Lemma 11.6 Let H be a maximal irreducible subgroup of SL(2, q). Then H is either
conjugate to SL(2, r), where q = rℓ for an odd prime ℓ; or to an extension SL(2, r).2
of SL(2, r) by a cyclic group of order 2, where q = r2; or is isomorphic to M(q); or is
isomorphic to an extension of a cyclic group of order 2 by one of A4, S4 or A5.

Proof: This result can be read off from [25, Hauptsatz II.8.27]. 2

Corollary 11.7 Let q > 3 and let g ∈ SL(2, q) act irreducibly. The probability that
a random conjugate of g, together with g, will generate SL(2, q) is at least 1 − q−2/3,
independently of the choice of g.

Proof: An irreducible element g of SL(2, q) lies in a unique cyclic subgroup of order
q + 1, since distinct cyclic subgroups of PSL(2, q) of order (q + 1)/2 intersect trivially
(see [25, Hauptsatz II.8.5]). Thus the probability that g and a random conjugate h of
g will lie in the same copy of M(q) is 1 : k, where k = |SL(2, q)|/2(q + 1) = (q2 − q)/2,
unless g has order 4. If g has order 4, there remains the possibility that 〈g, h〉 is a
quaternion group of order 8.

53

If g has order 4 and acts irreducibly, then q ≡ 3 mod 4. The elements of SL(2, q)
of order 4 lie in a single conjugacy class, of size q(q − 1), so we may assume that

g =

(

0 1
−1 0

)

.

If 〈g, h〉 is a quaternion group of order 8, then a calculation shows that h is of the form

(

a b
b −a

)

,

where a2 + b2 = −1, giving q +1 possibilities. Hence the probability that g and h lie in
a single copy of M(q) is at most q+3 : q(q+1). (We must consider the q+1 conjugates
of h, and g±1.)

Now let SL(2, r) be a subgroup of SL(2, q) containing an element g that acts irre-
ducibly. This implies that q is an odd power of r. Now g lies in exactly (q + 1)/(r + 1)
conjugates of SL(2, r), which between them contain fewer than (q + 1)r(r − 1)/(r + 1)
of the q(q − 1) conjugates of g in SL(2, q). Thus the probability that h lies in one of
these subgroups is less than (q + 1)r(r − 1)/(q(q − 1)(r + 1)) < q−2/3.

The probability that g and h both lie in the same copy of 2.A4 or 2.S4 or 2.A5

is O(1/q3), since SL(2, q) contains at most two conjugacy classes of any one of these
groups (see [25, Satz II.8.13-18]). 2

We now describe our algorithm, TwoFactor, to construct a generating set for
SL(2, q) in G, where ΩX(d − 2, q) × SL(2, q) ≤ G = 〈X〉 ≤ GX(d − 2, q) × GL(2, q).
The output is a set of generators for SL(2, q), given as SLPs in X.

1. If q + 1 is not a power of 2, then search for (g, h) ∈ G where:

• the characteristic polynomial of g has no irreducible factor of even degree;

• h has an irreducible characteristic polynomial, and has pseudo-order divisi-
ble by an odd prime ℓ, where ℓ divides q + 1.

2. If q + 1 is a power of 2, then search for (g, h) ∈ G where, if g and h have
pseudo-orders a and b respectively, then v2(b) > v2(a) + 1.

3. Let k be the pseudo-order of (g, h), divided by ℓ, in Case 1; and let k be the odd
part of the pseudo-order of (g, h) in Case 2. Evaluate hk to obtain (1, x).

4. Now x is an irreducible element of SL(2, q). Find, by random search, y ∈ G such
that x and xy generate SL(2, q), and return {x, xy}.

Lemma 11.8 The Las Vegas algorithm TwoFactor takes O(d log log d
log d

(ξ + d3 log d +

d2 log d log log d log q) field operations.

54

Proof: The first step is to prove that (g, h) can be found with O(d/ log d) trials.
Suppose first that q + 1 is not a power of 2. Lemma 11.4 shows that the proportion
of elements of ΩX(d − 2, q) with the property that every irreducible factor of their
characteristic polynomials has odd degree is O(log d/d), and the result follows.

If q+1 is a power of 2, then we may require g to have odd order. Lemma 11.3 implies
that the proportion of elements of G whose characteristic polynomial has at most 5
irreducible factors, all of odd degree, is O(log d/d). Since q ≡ 3 mod 4, it follows that if
g ∈ G has such a characteristic polynomial, then the probability of g having odd order
is at least (1/25)(1 − O(1/q)). In fact the probability is at least (1/23)(1 − O(1/q)),
since, in the cases where there are more than three factors, those of degree greater than
1 are paired as h(x) and h̃(x) and k(x) and k̃(x), or as h(x) and ĥ(x) and k(x) and
k̂(x).

Thus, in either case, we can expect to find a suitable (g, h) with O(d/ log d) trials.
For each pair (g, h) considered, we compute and factorise the characteristic polynomial
of g in O(d3 log d + d2 log d log log d log q) field operations. In Step 3 we compute the
pseudo-order of (g, h) in O(d3 log d + d2 log d log log d log q) field operations. We also
need to raise (g, h) to a certain power, but only need to power h. (The pseudo-order
of (g, h) needs to be computed, rather than the pseudo-order of h, because we need
to record x as an SLP in the given generating set.) Corollary 11.7 implies that the
number of trials needed in Step 4 is constant. 2

11.3 Dimension 4 orthogonal cases

Two further non-standard sets of parameters are (Ωǫ, 4, q), for ǫ = ±.
Since Ω−(4, q) ∼= PSL(2, q2), this case is essentially covered by Lemma 11.8. We

need (g, h) ∈ Ω−(4, q)×Ωǫ(d− 4, q) that powers to an element of Ω−(4, q) of order not
dividing q2 − 1. We thus look for (g, h) where the order of g is a multiple of an odd
prime dividing q2 + 1, and the order of h is not. It is sufficient for the characteristic
polynomial of h to have no irreducible factor of degree a multiple of 4.

Recall that Ω+(4, q) is the central product of two copies of SL(2, q). If q > 3, then
we can find (g, h) where h ∈ Ω+(4, q), and its projection to a given copy of SL(2, q)
acts irreducibly (in dimension 2), and hence proceed as in Section 11.2.

In summary, if Ω(E) is isomorphic to Ωǫ(4, q), we construct one or (if ǫ = +) two
suitable elements of Ω(E) by powering a suitable element or elements of G, found by
random selection, and then construct a generating set for Ω(E) from conjugates of this
element, or pair of elements.

Thus we arrive at the following lemma.

Lemma 11.9 In O(d log log d
log d

(ξ + d3 log d + d2 log d log log d log q)) field operations, this

Las Vegas algorithm constructs a generating pair for Ω(E) ≡ Ωǫ(4, q) (where q > 3 if
ǫ = +).

55

11.4 The other non-standard cases

We are now left with a finite number of possibilities for ΩX(E), of which SL(2, 3) and
Ω+(4, 3) are soluble. Since SL(2, 3) is the normal closure of any one of its 8 elements
of order 3, these soluble examples pose no problems.

The remaining exceptional cases are listed in [31] and are perfect, being simple
modulo scalars. Since none of these groups consists entirely of diagonal elements, we
can find a non-diagonalisable element of the group, and generate ΩX(E) with a given
degree of confidence by a uniformly bounded number of random conjugates of this
element.

11.5 The strong involution case

Finally we consider the case in which e ∈ (d/3, 2d/3] and obtain a stronger result when
E is an eigenspace of a strong involution. We assume that d is sufficiently large to avoid
non-standard parameters. Using GenerateFactor, we search for (gi, hi) ∈ GX(E) ×
GX(F), where {g1, g2} is a witness for ΩX(E) by virtue of gi having order a multiple
of some primitive prime divisor of qki − 1 (or of its square), and the characteristic
polynomial of hi does not have an irreducible factor of degree a multiple of ki. Now ki >
e/2 ≥ d/6, and as d tends to infinity the probability that the characteristic polynomial
of hi will have such a factor clearly tends to 0. Thus the number of random elements
of G that we need to consider, with a given probability of success, is O(log log d).

Theorem 11.10 Assume that the parameters (X, d, q) are standard. There is a Las
Vegas algorithm, with complexity O(log log d(ξ + d3 log d + d2 log d log log d log q) mea-
sured in field operations, that takes as input a subset X of GX(E) × GX(F), where
E and F are the eigenspaces of a strong involution in GX(d, q), generates a group
containing ΩX(E) × ΩX(F), where the dimension of E is at least d/3, and returns a
generating set for ΩX(E) as an SLP in X.

12 Constructing an involution centraliser

In applying our algorithms to groups in C, we construct involution centralisers. In
particular, we must solve the following problems. Let u be an involution in G = SX(d, q)
and let E+ and E− denote the eigenspaces of u.

1. Construct a generating set for a subgroup of CG(u) that contains SX(E+) ×
SX(E−).

2. Suppose that E+ and E− are isometric. Construct the projective centraliser in
G of u.

If E+ and E− have the same dimension, then they are isometric, except when G is an
orthogonal group of − type (see Lemma 2.2). The second problem arises in Algorithm
Two for non-orthogonal groups and for orthogonal groups of + type only.

56

Elements of the centraliser of an involution in a black-box group having an order
oracle can be constructed using an algorithm of Bray [8], which employs the following
result.

Theorem 12.1 If u is an involution in a group G, and g is an arbitrary element of
G, then [u, g] either has odd order 2k + 1, in which case g[u, g]k commutes with u, or
has even order 2k, in which case both [u, g]k and [u, g−1]k commute with u.

That these elements centralise u follows from elementary properties of dihedral groups.
Bray [8] also proves that if g is uniformly distributed among the elements of G for

which [u, g] has odd order, then g[u, g]k is uniformly distributed among the elements of
the centraliser of u. If [u, g] has even order, then the elements returned are involutions;
but if just one of these is selected, then it is independently and uniformly distributed
within that class of involutions.

Parker & Wilson [35] prove the following.

Theorem 12.2 There is a absolute constant c such that if G is a finite quasisimple
classical group, with natural module of dimension d over a field of odd characteristic,
and u is an involution in G, then [u, g] has odd order for at least a proportion c/d of
the elements g of G.

Hence, by a random search of length O(d), we construct random elements of the
centraliser of the involution. Liebeck & Shalev [28] prove that if H0 ≤ H ≤ Aut(H0),
where H0 is a finite simple group, then the probability that two random elements of
H generate a group containing H0 tends to 1 as |H0| tends to infinity. A similar result
clearly holds for a direct product of two simple groups.

In its black-box application, this algorithm assumes the existence of an order or-
acle. We do not require such an oracle for a linear group. Recall, from Section 2.2,
that we can deduce if an element of a linear group has even order in O(d3 log d +
d2 log d log log d log q) field operations. Further, the construction of the centraliser of
an involution requires only knowledge of pseudo-orders.

In our context, the analysis of [23] implies the following.

Theorem 12.3 The Las Vegas algorithm to construct the centraliser of an involution
in SX(d, q) has complexity O(d(ξ + d3 log d + d2 log d log log d log q)) measured in field
operations.

This algorithm can be readily adapted (using projective rather than linear pseudo-
orders) to compute the preimage in SX(d, q) of the centraliser of an involution in the
projective image of SX(d, q).

Once we construct a subgroup of the centraliser containing its derived group, we
can apply the algorithms of Section 11 to obtain generators for the derived groups of
the projections of the centralisers of the two eigenspaces.

We summarise the preceding discussion.

57

Theorem 12.4 Let h be an involution in 〈X〉 = G, where ΩX(d, q) ≤ G ≤ GX(d, q).
Assume that the −1-eigenspace of h has dimension e in the range (d/3, 2d/3]. Generat-
ing sets for the images in ΩX(e, q) and ΩX(d−e, q) that centralise the eigenspaces can
be found in O(d(ξ+d3 log d+d2 log d log log d log q)) field operations. If the eigenspaces
are isometric, so e = d/2 and d ≡ 0 mod 4, then we can similarly find an element in
ΩX(d, q) ≀ C2 that interchanges the two copies of ΩX(d, q).

13 The base cases for the non-orthogonal groups

We now consider the base cases for Algorithms One and Two when SX(d, q) is a non-
orthogonal group. If d = 2n, then Lemma 3.6 shows that Y0 := {s, t, δ, u, v} generates
SX(2, q) ≀ Cn or SX(2, q) ≀ Sn according to the type of SX(d, q). As the first and major
task of each algorithm, we construct Y0. As a final step, we construct the additional
elements x, y.

Observe that the elements of Y0 act non-trivially only on a 4-dimensional space; they
can be obtained by constructively recognising SX(2, q) ≀ C2, a computation practically
more efficient than that for SX(4, q).

Hence we designate the following as base cases: SX(2, q), SX(2, q) ≀C2, SX(3, q) and
SX(4, q). The last two arise at most once during an application of Algorithm One or
Two.

In the remainder of this section, we outline the specialised algorithms for the base
cases. We first summarise their cost.

Theorem 13.1 Subject to the availability of a discrete logarithm oracle for GF(q),
SLPs for standard generators and other elements of 〈X〉 = SX(d, q) for d ≤ 4 can be
constructed in O(ξ log log q + log q) field operations.

13.1 SX(2, q)

The base case encountered most frequently is SL(2, q) in its natural representation. An
algorithm to construct an element of SL(2, q) as an SLP in an arbitrary generating set is
described in [18]. This algorithm requires O(log q) field operations, and the availability
of a discrete logarithm oracle for GF(q).

Observe that G = SU(2, q) is isomorphic to SL(2, q). We can write G over GF(q)
by conjugating G by a diagonal matrix diag(α, 1) where α is an element of trace 0 in
GF(q2); alternatively we could use the algorithm of [21]; either requires O(log q) field
operations.

13.2 SL(2, q) ≀ C2

In executing Algorithms OneEven or OneOdd, or TwoTimesFour or TwoTwiceOdd, each
pair of recursive calls generates an instance of the following problem.

58

Problem 13.2 Let V be the natural module of G = SX(4, q), and let (e1, f1, e2, f2) be
a hyperbolic basis for V . Given a generating set for G, and the involution u, where u
maps e1 to −e1 and f1 to −f1, and centralises the other basis elements, construct the
involution b of G that permutes the basis elements, interchanging e1 with e2, and f1

with f2.

Consider the procedure OneEven. Observe that in line 14 we construct SX(4, q).
Now b is the permutation matrix used in line 15 to ‘glue’ v1 and v2 together to form
v, the long cycle. We could use the algorithm of Section 13.3 to find b directly in
SX(4, q). Instead, for reasons of practical efficiency, we use the following algorithm to
find b inside the projective centraliser of u ∈ SX(4, q).

1. Construct the projective centraliser H of u in SX(4, q); it contains SL(2, q) ≀ C2.

2. Find h ∈ H that interchanges the spaces 〈e1, f1〉 and 〈e2, f2〉. Observe that bh
lies in SL(2, q) × SL(2, q).

3. Using the algorithms described in Section 11, construct the two direct factors
and so construct bh and thus b as an SLP.

Observe that we can conjugate, using h, the solution from one copy of SL(2, q) to the
other, thus requiring just one constructive recognition of SL(2, q). This algorithm has
the same complexity as that for SL(2, q).

13.3 SX(3, q) and SX(4, q)

For SL(3, q) we use the algorithm of [29] to construct standard generators. It assumes
the existence of an oracle to recognise constructively SL(2, q) and its complexity is that
of the oracle.

We use the involution-centraliser algorithm of [23] to construct standard generators
for the remaining groups SX(3, q), and the additional elements x, y ∈ SX(4, q).

We briefly summarise this algorithm. Assume G = 〈X〉 is a black-box group with
order oracle. We are given g ∈ G and want to express it as an SLP in X. In our
description, if we “find” an element of G, then we obtain it as an SLP in X. First find
by random search h ∈ G such that gh has even order 2ℓ, and z := (gh)ℓ is a non-central
involution. Now find, by random search and powering, an involution x ∈ G such that
xz has even order 2m, and y := (xz)m is a non-central involution. Note that an SLP
is known for x, but, at this stage, not for either of y or z. Observe that x, y and z are
non-central involutions. We construct their centralisers using the Bray algorithm. We
assume that we can solve the explicit membership problem in these centralisers; see
below for further discussion of this point. In particular, we find y as an element of the
centraliser in G of x, and z as an element of the centraliser in G of y, and gh as an
element of the centraliser in G of z. Now that we know SLPs for both gh and h, we
can construct an SLP for g.

59

In summary, this algorithm reduces the constructive membership test for G to three
constructive membership tests in involution centralisers in G. But this is an imperfect
recursion, since the algorithm may not apply to these centralisers. We do not rely on
the recursion; instead we construct explicitly the desired elements of the centralisers,
since their derived groups are (direct products of) SL(2, q) and we can use the algorithm
of [18]. In this context, the complexity of the involution-centraliser algorithm is that
stated in Theorem 13.1.

As presented, this is a black-box algorithm requiring an order oracle. If G is a
linear group, the algorithm does not require an order oracle, exploiting instead the
multiplicative bound for the order of an element which can be obtained in polynomial
time as described in Section 2.2.

Since the practical performance of this algorithm is rather slow for large fields,
we organised Algorithms One and Two to ensure that they each need at most one
application. If the dimension d of the input group is odd, then we invoke this algorithm
once to construct standard generators for SX(3, q). If d is even, then as a final step, we
construct the additional generators x and y using this algorithm. Let h ∈ G = SX(d, q)
be the involution whose −1-eigenspace is 〈e1, f1, e2, f2〉. Observe that h can be readily
constructed from the elements of Y0, and that both x and y are elements of CG(h).

14 Base cases for orthogonal groups

14.1 Groups preserving forms of + type

Both Ω+(2, q) and SO+(2, q) are cyclic of order dividing q − 1. Hence the cost of their
constructive recognition is the cost of a call to a discrete logarithm oracle for GF(q).

The remaining base cases occur in dimension 4. As we observed in Lemma 3.2,
Ω+(4, q) is the central product of two copies of SL(2, q) arising from a tensor decom-
position of the underlying space.

This tensor decomposition is readily made explicit: by random selection, we con-
struct an element of Ω+(4, q) which acts as a scalar on one of the tensor factors and,
using the algorithm of [30, §4], construct the tensor factors. Subject to a discrete log-
arithm oracle for GF(q), we now use the algorithm of [18] to recognise constructively
the copies of SL(2, q).

The complexity of this Las Vegas algorithm, measured in field operations, is con-
stant, given a constant number of calls to the discrete logarithm oracle for GF(q).

Similar comments apply to SO+(4, q) = C2.(PSL(2, q) × PSL(2, q)).C2.

14.2 Groups preserving forms of − type

As we observed in Lemma 3.3, Ω−(4, q) ∼= PSL(2, q2). Subject to a discrete logarithm
oracle for GF(q2), we use the algorithm of [18] to recognise constructively this group,
Similar comments apply to SO−(4, q) ∼= C2 × PSL(2, q2).

60

We must also consider G = Ω−(6, q) when q ≡ 3 mod 4. The centraliser of a non-
central involution in G contains Ω+(4, q) × Ω−(2, q) and so OneOmegaMinus3 does not
apply. Instead, we outline a new algorithm to obtain standard generators for Ω−(6, q),
assuming that q > 3. Recall that V denotes the underlying 6-dimensional space.

1. Find, by random search, an element of G that powers up to an involution i, with
an eigenspace E of dimension 4 supporting a form of + type and an eigenspace
F of dimension 2 supporting a form of − type.

2. Construct a generating set for Ω(F) in CG(i).

3. Now find, by random search, h ∈ G such that T = E ∩Eh is of dimension 2, and
supports a form of + type.

4. The centraliser of T in G contains Ω(F) and Ω(F h). With high probability, the
union of these two cyclic groups generates the centraliser H := Ω−(4, q) of T in
G. Decide this using the ‘naming’ algorithm of [31]. If not, repeat Steps 3 and 4
until it is true.

5. Construct a hyperbolic basis (e2, f2, x, y) for the orthogonal complement T⊥ of
T .

6. Now construct standard generators for H . One of the standard generators for H
is δ, and δ(q2−1)/4 is the involution whose +1 and −1-eigenspaces, restricted to
T⊥, are 〈e2, f2〉 and 〈x, y〉.

7. Allowing this involution to act on the whole of V , the −1-eigenspace is unchanged;
and in the centraliser of this involution we find a copy of K = Ω+(4, q).

8. Construct a hyperbolic basis (e1, f1) for T , so that (e1, f1, e2, f2, x, y) is a hy-
perbolic basis for V . Rewrite the standard generators of H with respect to this
basis. All but one of the standard generators of G now appear among the stan-
dard generators of H .

9. The remaining standard generator for G is (e1, e2)
−(f1, f2)

− and is an element of
K. We now construct this generator as an SLP in the generators of K = Ω+(4, q).

If q = 3 then Ω(F) is of order 2, and this method fails. Instead we use permutation
group techniques to construct standard generators for Ω−(6, 3).

Lemma 14.1 The complexity of this Las Vegas algorithm, measured in field operations,
is constant, given a constant number of calls to the discrete logarithm oracle for GF(q2).

Proof: For Step 1, see Theorem 8.1. To compute the probability that E ∩ Eh is of
dimension 2, and supports a form of + type, we count the number of pairs of subspaces
of dimension 4 that support a form of + type, and count the number of pairs that in

61

addition intersect in a space of + type. This gives a probability that converges rapidly
to 1/2. To estimate the probability that the union of Ω(F) and Ω(F h) generates H , we
compute the probability that these subgroups lie in a maximal subgroup. For example,
the probability that they both lie in a copy of PSL(2, q) is O(1/q), and one sees easily
that the probability of failure is O(1/q). The use of the naming algorithm in Step 4 is
not necessary; we can simply start again if Step 6 fails. The discrete logarithm oracle
for GF(q2) is used in Step 6. The other steps clearly require a bounded number of field
operations. 2

14.3 Groups preserving forms of 0 type

As we observed in Lemma 3.4, Ω(3, q) ∼= PSL(2, q). Subject to a discrete logarithm
oracle for GF(q), we use the algorithm of [18] to recognise constructively this group.
Similar comments apply to SO(3, q).

We must also consider G = Ω(5, q) when q ≡ 3 mod 4. The centraliser of a non-
central involution in G contains Ω−(2, q) and so OneOmegaCircle3 does not apply.
Instead, we outline a new algorithm to obtain standard generators for Ω(5, q), assuming
that q > 3.

1. Find, by random search, an element of G that powers up to an involution i whose
−1-eigenspace E has dimension 4 and supports a form of + type.

2. Find, by random search, an element h of G such that T = E ∩Eh has dimension
3 and supports a non-degenerate form, and T⊥ supports a form of + type.

3. Construct standard generators in CG(i) for the centraliser Ω(E) of E⊥, and hence
for the centraliser Ω(Eh) of (E⊥)h.

4. Construct a hyperbolic basis (e2, f2, x) of T . Find the standard generators for the
centraliser Ω(T) of T⊥ with respect to this basis as SLPs in the given generators
of G by using explicit membership testing in Ω(E).

5. Observe that the centraliser K in Ω(E) of x acts as Ω(3, q) on the orthogonal com-
plement of 〈x〉 in E. Since we have found standard generators for Ω(E), we can
now construct standard generators for K as SLPs in these standard generators.

6. In the same way we construct generators for the centraliser L of x in Ω(Eh).

7. Construct a hyperbolic basis (e1, f1) for the orthogonal complement of T in V .

8. The union of K and L generates the centraliser M of x in G, which acts as
Ω+(4, q) on the orthogonal complement of x.

9. Construct standard generators for M = Ω+(4, q), and so obtain v = (e1, e2)
−(f1, f2)

−

as an SLP in the generators of M .

62

10. The standard generators of G with respect to the basis (e1, f1, e2, f2, x) are the
standard generators for Ω(T), together with v.

Lemma 14.2 The complexity of this Las Vegas algorithm, measured in field operations,
is constant, given a constant number of calls to the discrete logarithm oracle for GF(q).

Proof: For Step 1, see Theorem 8.1. The discrete logarithm oracle for GF(q) is used
in Step 9. 2

We can easily find standard generators for Ω(5, 3), for example, by considering it
as a permutation group acting on the set of isotropic vectors.

15 Complexity of the algorithms

We now analyse the principal algorithms, and in the next section estimate the length
of the SLPs that express the canonical generators as words in the given generators.
The time analysis is based on counting the number of field operations, the number of
random elements selected, and the number of calls to the discrete logarithm oracle.
Use of discrete logarithms in a given field requires first the setting up of certain tables,
and these tables are consulted for each application. The time spent in the discrete
logarithm oracle, and the space that it requires, are not proportional to the number of
applications in a given field.

A hyperbolic basis for a vector space with a given non-degenerate bilinear form can
be constructed in O(d3) field operations (see [9] for an algorithm to perform this task).

If a matrix group acts absolutely irreducible on its underlying vector space, then we
can determine the classical forms it preserves in O(d3) field operations (see [24, Section
7.5.4]).

Babai [2] presented a Monte Carlo algorithm to construct in polynomial time inde-
pendent nearly uniformly distributed random elements of a finite group. An alternative
is the product replacement algorithm of Celler et al. [14]. That this is also polynomial
time was established by Pak [34]. For a discussion of both algorithms, see [36, pp.
26-30].

We now complete our analysis of the main algorithms.

Theorem 15.1 The number of field operations carried out in the Las Vegas algorithm
OneEven is O(d(ξ + d3 log d + d2 log d log log d log q)).

Proof: The proportion of elements of G with the required property in line 4 is at
least k/d for some absolute constant k, as proved in Section 8. Theorem 8.27 shows
that the involution can be constructed in O(d(ξ +d3 log d+d2 log d log log d log q)) field
operations.

Lines 8 and 14 require O(d(ξ + d3 log d + d2 log d log log d log q)) field operations as
proved in Section 12.

63

The recursive calls in lines 9 and 10 involve matrices of dimension at most 2d/3;
Lemma 2.4 implies that they increase the number of field operations by only a constant
factor.

The result follows. 2

We estimate the number of calls to the SL(2, q) constructive recognition algorithm
and the associated discrete logarithm oracle.

Theorem 15.2 If d > 2, then Algorithms OneEven and TwoEven generate at most
2d − 3 and 6 log d calls to the discrete logarithm oracle for GF(q) respectively.

Proof: Each call to the constructive recognition oracle for SL(2, q) generates three
calls to the discrete logarithm oracle for GF(q) (see [18]). Each solution to Problem
13.2 requires three calls to the discrete logarithm oracle.

Let f(d) be the number of calls to the discrete logarithm oracle generated by ap-
plying OneEven to SX(d, q). Then f(2) = f(4) = 3 and f(d) = f(e) + f(d − e) + 3 for
d > 4 and some e ∈ (d/3, 2d/3]. It follows that f(d) ≤ 2d − 3 for d > 2.

Let g(d) be the number of calls generated by applying TwoEven to SX(d, q), where d
is even. Again g(2) = g(4) = 3 and g(2n) ≤ g(n)+6 for n > 2. Hence g(d) ≤ 6 log d. 2

Similar results hold for the other algorithms. If we use the involution-centraliser
algorithm [23] to construct either standard generators for SX(3, q), or the additional
generators x, y ∈ SX(4, q), then the number of calls to the oracle in each case is 9.

16 Straight-line programs

We now consider the length of the SLPs for the standard generators for SX(d, q) con-
structed by our algorithms.

In its simplest form, an SLP on a subset X of a group G is a string, each of whose
entries is either a pointer to an element of X, or a pointer to a previous entry of
the string, or an ordered pair of pointers to (not necessarily distinct) previous entries.
Every entry of the string defines an element of G. An entry that points to an element
of X defines that element. An entry that points to a previous entry defines the inverse
of the element defined by that entry. An entry that points to two previous entries
defines the product, in that order, of the elements defined by those entries.

Such a simple SLP defines an element of G, namely the element defined by the last
entry, and it can be obtained by computing in turn the elements for successive entries.
The SLP is primarily used by replacing the elements X of G by the elements Y of some
group H , where X and Y are in one-to-one correspondence, and then evaluating the
element of H that the SLP then defines.

Before we estimate their lengths, we identify other critical properties of SLPs.

1. We replace the second type of node, which defines the inverse of a previously
defined element, by a node type with two fields, one pointing to a previous entry,

64

and one containing a possibly negative integer. The element defined is then the
element defined by the entry to which the former field points, raised to the power
defined by the latter field. This reflects the fact that we raise group elements
to very large powers, and have an efficient algorithm described in Section 10 for
performing this.

2. An SLP may define a number of elements of G, and not just one element, so a
sequence of nodes may be specified as giving rise to elements of G. Thus we wish
to return a single SLP that defines all of the standard generators of SX(d, q),
rather than an SLP for each generator. This avoids duplication when two or
more of the standard generators rely on common calculations.

3. A critical concern is how the number of trials in a random search for a group
element affects the length of an SLP that defines that element. Any discussion
of this requires consideration of the algorithm used to generate random elements.
We make two reasonable assumptions:

(a) the associated random process is a stochastic process taking place in a graph
whose vertices are defined by a seed;

(b) a random number generator now determines which edge adjoining the cur-
rent vertex in the graph will be followed in the stochastic process.

By default, the length of the SLP will then increase by a constant amount for
every trial, successful or unsuccessful. Should its length reflect only those trials
that are successful? One additional assumption which allows us to explore this
question is the following:

When embarking on a search that is expected to require d trials, we
record the value of the seed, and repeatedly carry out a random search,
using our random process, but returning, after every ℓ(d) steps, for
some function ℓ of d, to the stored value of the seed, until we succeed.

We hypothesise that values for ℓ(d) range from log d to d and now analyse the
lengths of the SLPs for the boundary values.

Theorem 16.1 If the SLPs constructed satisfy properties 1−3 above, then their lengths
are the following.

ℓ(d) OneMain TwoMain

log d O(d log d) O(log3 d)

d O(d log d) O(d log d)

Proof: For each hypothesised value of ℓ(d), we wish to find functions f(d) and g(d)
such that the lengths of the SLPs returned by Algorithms One and Two are bounded
above by these functions respectively.

65

Let e ∈ (d/3, 2d/3]. Our analysis of Algorithm One implies that f(d) ≤ f(e)+f(d−
e) + c · ℓ(d) for some constant c > 0.

Consider, for example, the case where ℓ(d) = d. We wish to prove that f(d) ≤
k · d log d for some positive constant k. Let k > 3c/(3 log(3)− 2), taking all logarithms
to base 2. Assume by induction that f(n) < kn log(n) for all n < d for some d > 4.
Then

f(d) ≤ f(e) + f(d − e) + cd < ke log(e) + k(d − e) log(d − e) + cd < kd log(d),

as required, since e log(e) + (d − e) log(d − e) takes its maximum value, for e in the
given range, when e = 2d/3. The results are similar if ℓ(d) = log d.

Algorithm Two recurses either from the case d = 4n to the case d = 2n in one step,
or from the case d = 4n+2 to the case d = 4n and then to the case d = 2n. It is easy to
see that the effect on the length of the SLP in the latter situation is dominated by the
second step. If d is initially odd, then the contribution of the reduction to the even case,
which is carried out once, may also be ignored here. The main contribution to the length
of the SLP in passing from d = 4n to d = 2n arises from constructing an involution
whose eigenspaces have dimension 2n. This involution is constructed recursively, where
the length of the recursion is O(log d). Thus the contribution to the length of the SLP
in constructing this involution is O(log dℓ(d)). Hence, g(4n) ≤ g(2n)+c log(n)ℓ(n) and
g(4n + 2) ≤ g(2n) + c log(n)ℓ(n) for some c > 0.

If ℓ(d) = O(log d), then the inequality g(n) ≤ g(⌈n/2⌉) + c log2(n) is satisfied by
g(n) = k log3(n) for sufficiently large k. Similar calculations can be carried for the
other case, yielding the stated results. 2

17 An implementation

Our implementation of these algorithms is publicly available in Magma. It uses:

• the product replacement algorithm [14] to generate random elements;

• a new implementation of this algorithm by Bäärnhielm & Leedham-Green [5]
which realises the properties identified in Section 16;

• our implementations of Bray’s algorithm [8] and the involution-centraliser algo-
rithm [23].

• our implementations of the algorithms of [18] and [29].

The computations reported in Table 17 were carried out using Magma V2.13 on
a Pentium IV 2.8 GHz processor. We list the CPU time in seconds taken to construct
the standard generators for SX(d, q) for the non-orthogonal groups, and for Ωǫ(d, q) for
a range of values of d and q. We use Algorithm Two for the non-orthogonal groups,
Algorithm One for the orthogonal groups. The time is averaged over three runs.

66

d q SL Sp SU Ω+ Ω− Ω0

5 5 0.1 – 1.4 – – 2.8

6 5 0.4 2.7 1.4 3.3 2.2 –

10 5 0.5 4.5 1.6 5.4 4.8 –

20 5 0.9 6.1 2.3 14.0 12.2 –

25 5 1.5 – 4.8 – – 17.0

40 5 1.9 31.0 6.2 31.1 32.8 –

45 5 5.4 – 12.6 – – 41.7

60 5 6.2 13.0 26.8 51.1 64.2 –

80 5 13.0 16.5 39.3 40.3 114.2 –

100 5 34.7 24.3 83.8 120.0 203.9 –

5 54 0.7 – 5.1 – – 5.2

6 54 1.1 7.1 8.8 7.0 5.6 –

10 54 2.1 18.8 13.1 12.8 12.3 –

20 54 3.7 25.6 19.1 32.7 32.3 –

25 54 7.2 – 37.3 – – 56.4

40 54 18.6 39.8 41.6 103.0 128.7 –

45 54 21.2 – 98.6 – – 297.9

60 54 82.4 74.5 151.9 241.5 418.6 –

80 54 167.7 110.5 202.5 530.2 729.7 –

100 54 501.9 244.4 404.9 996.0 1571.6 –

Table 4: Performance of implementation for a sample of groups

67

References

[1] Sophie Ambrose. Matrix Groups: Theory, Algorithms and Applications. PhD the-
sis, University of Western Australia, 2006.

[2] László Babai. Local expansion of vertex-transitive graphs and random generation
in finite groups. Theory of Computing, (Los Angeles, 1991), pp. 164–174. Associ-
ation for Computing Machinery, New York, 1991.

[3] László Babai and Endre Szemerédi. On the complexity of matrix group problems,
I. In Proc. 25th IEEE Sympos. Foundations Comp. Sci., pages 229–240, 1984.

[4] Henrik Bäärnhielm. Recognising the Suzuki groups in their natural representa-
tions. J. Algebra 300 (2006), 171–198.

[5] Henrik Bäärnhielm and C.R. Leedham-Green. Extending the product replacement
algorithm. Preprint 2007.

[6] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger
and Ákos Seress. A black-box group algorithm for recognizing finite symmetric
and alternating groups I, Trans. Amer. Math. Soc. 355 (2003), 2097–2113.

[7] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system
I: The user language, J. Symbolic Comput., 24, 235–265, 1997.

[8] J.N. Bray. An improved method of finding the centralizer of an involution. Arch.
Math. (Basel) 74 (2000), 241–245.

[9] Peter A. Brooksbank. Constructive recognition of classical groups in their natural
representation. J. Symbolic Comput. 35 (2003), 195–239.

[10] Peter A. Brooksbank. Fast constructive recognition of black-box unitary groups.
LMS J. Comput. Math., 6:162–197 (electronic), 2003.

[11] Peter A. Brooksbank and William M. Kantor. On constructive recognition of a
black box PSL(d, q). In Groups and Computation, III (Columbus, OH, 1999),
volume 8 of Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 95–111,
2001.

[12] Peter A. Brooksbank and William M. Kantor. Fast constructive recognition of
black box orthogonal groups. J. Algebra, 300, 2006, 256-288.

[13] Roger Carter. Simple groups of Lie Type. Wiley-Interscience, 1989.

[14] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer and
E.A. O’Brien. Generating random elements of a finite group. Comm. Algebra, 23

(1995), 4931–4948.

68

[15] Frank Celler and C.R. Leedham-Green. Calculating the order of an invertible
matrix. In Groups and Computation II, volume 28 of Amer. Math. Soc. DIMACS
Series, pages 55–60. (DIMACS, 1995), 1997.

[16] F. Celler and C.R. Leedham-Green. A constructive recognition algorithm for the
special linear group. In The atlas of finite groups: ten years on (Birmingham,
1995), volume 249 of London Math. Soc. Lecture Note Ser., pages 11–26, Cam-
bridge, 1998. Cambridge Univ. Press.

[17] Marston Conder and Charles R. Leedham-Green. Fast recognition of classical
groups over large fields. In Groups and Computation, III (Columbus, OH, 1999),
volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 113–121, Berlin, 2001.
de Gruyter.

[18] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Constructive recognition
of PSL(2, q). Trans. Amer. Math. Soc. 358, 1203–1221, 2006.

[19] L. Dornhoff, Group Representation Theory, Part A, Marcel Dekker, 1971.

[20] Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms. PhD the-
sis, University of Toronto, 1993.

[21] S.P. Glasby, C.R. Leedham-Green, and E.A. O’Brien. Writing projective repre-
sentations over subfields. J. Algebra, 295, 51-61, 2006.

[22] Daniel Gorenstein, Richard Lyons, and Ronald Solomon. The classification of the
finite simple groups. Number 3. Part I, American Mathematical Society, Provi-
dence, RI, 1998.

[23] P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba and R.A. Wilson. Construc-
tive membership in black-box groups. Preprint 2007.

[24] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational
group theory. Chapman and Hall/CRC, London, 2005.

[25] B. Huppert. Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss.
Springer-Verlag, Berlin, Heidelberg, New York, 1967.

[26] William M. Kantor and Ákos Seress. Black box classical groups. Mem. Amer.
Math. Soc., 149, 2001.

[27] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoret.
Comput. Sci. 36, 309–317, 1985.

[28] M.W. Liebeck and A. Shalev. The probability of generating a finite simple group,
Geom. Ded. 56 (1995), 103–113.

69

[29] F. Lübeck, K. Magaard, and E.A. O’Brien. Constructive recognition of SL3(q). J.
Algebra, 316, 2007, 619–633.

[30] C.R. Leedham-Green and E.A. O’Brien. Tensor Products are Projective Geome-
tries. J. Algebra, 189, 514–528, 1997.

[31] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for classical
groups over finite fields, Proc. London Math. Soc. 77 (1998), 117–169.

[32] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for non-generic
classical groups over finite fields. J. Austral. Math. Soc. Ser. A 67 (1999), no. 2,
223–253.

[33] E.A. O’Brien. Towards effective algorithms for linear groups. Finite Geometries,
Groups and Computation, (Colorado), pp. 163-190. De Gruyter, Berlin, 2006.

[34] Igor Pak. The product replacement algorithm is polynomial. In 41st Annual Sym-
posium on Foundations of Computer Science (Redondo Beach, CA, 2000), 476–
485, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[35] C.W. Parker and R.A. Wilson. Recognising simplicity in black-box groups.
Preprint 2007.

[36] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2003.

[37] Donald E. Taylor. The geometry of the classical groups. Sigma Series in Pure
Mathematics, 9. Heldermann Verlag, Berlin, 1992.

[38] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cam-
bridge University Press, 2003.

[39] Hans Zassenhaus. On the spinor norm. Arch. Math. 13 1962 434–451.

School of Mathematical Sciences Department of Mathematics
Queen Mary, University of London Private Bag 92019, Auckland
London E1 4NS, University of Auckland
United Kingdom New Zealand
C.R.Leedham-Green@qmul.ac.uk obrien@math.auckland.ac.nz

Last revised December 20, 2007

70

