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Abstract. We develop general formulae for the numbers of conjugacy classes and
irreducible complex characters of finite p-groups of nilpotency class less than p. This
allows us to unify and generalize a number of existing enumerative results, and to
obtain new such results for generalizations of relatively free p-groups of exponent p.
Our main tools are the Lazard correspondence and the Kirillov orbit method.

1. Introduction

The study of the conjugacy classes and irreducible complex characters of groups is
an active area of research. The enumeration of classes and characters of finite groups
of Lie type, for instance, has played an important role in the work of Liebeck, Shalev
and others; see, for instance, [25]. Motivated by a conjecture of Higman [13], the classes
and characters of upper-unitriangular groups have been extensively studied; see, for
example, [18, 30].

‘Representation growth of groups’ is an umbrella term for the asymptotic and arith-
metic properties of group representations as a function of their dimensions. A key tool
in the study of representation growth is the Kirillov orbit method. Where applicable,
it provides a parameterization of the irreducible complex representations of a group in
terms of co-adjoint orbits. It was pioneered by Kirillov in the realm of nilpotent Lie
groups and later adapted to other classes of groups, including p-adic analytic groups,
finitely generated nilpotent groups, and finite p-groups; see [10, 14, 15, 20]. Under cer-
tain conditions the linearization achieved by this method facilitates a description of the
numbers of characters of a group in terms of geometric data attached to the dual of a
Lie algebra associated with the group, such as the numbers of rational points of certain
algebraic subvarieties.

Let p be a prime. In this paper we employ the Kirillov orbit method to study the
classes and characters of finite p-groups of nilpotency class less than p. Let G be a finite
p-group. For i ≥ 0, we define

cci(G) = #{conjugacy classes of G of cardinality pi} and

chi(G) = #{irreducible complex characters of G of degree pi}.

The vectors cc(G) = (cci(G))i and ch(G) = (chi(G))i are the class vector and the
character vector of G, respectively. We denote by cs(G) = {pi : cci(G) 6= 0} the class
sizes of G and by cd(G) = {pi : chi(G) 6= 0} the character degrees of G. We write

k(G) =
∑
i

cci(G) =
∑
i

chi(G)

for the class number of G.
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Let c be the nilpotency class of G, and assume that c < p. Let g = log(G) be the finite
Lie ring associated to G by the Lazard correspondence. We associate to G a subset S(G)

of g/z× ĝ′, where z denotes the centre of g and ĝ′ = HomZ(g′,C×) the Pontryagin dual
of the derived Lie ring g′. In Theorem A we show that the class and conjugacy vectors
of G may be described in terms of the cardinalities of fibres of the natural projections

from S(G) onto g/z and ĝ′.
Theorem B gives a geometric description of the class and character vectors of certain

p-groups and describes the variation of these vectors under ‘extension of scalars’. More
precisely, let o be a compact discrete valuation ring of characteristic zero with residue
field k of characteristic p. Theorem B asserts that if g is a finite, nilpotent o-Lie algebra
of class c < p, and g′ or, equivalently, g/z, is a k-vector space, then computing class and
character vectors of the p-group exp(g) associated to g under the Lazard correspondence
is equivalent to enumerating k-rational points of degeneracy loci of certain ‘commutator
matrices’ associated with g. Moreover, the formulae given in Theorem B are uniformly
valid for groups of the form exp(g⊗o O), where O is a finite, unramified extension of o.

The Lie algebra g may be obtained by base change from a globally defined object,
such as a nilpotent Z-Lie algebra. For some of the groups obtained from such Lie
algebras, Theorem B yields formulae which are uniform under variation of both the
cardinality and the characteristic of the residue field. Consider, for instance, the free
Fq-Lie algebras fr,c(Fq) on r generators and of nilpotency class c, where Fq is a finite
field of characteristic p > c. These algebras are of the form fr,c(Fq) = fr,c(Z) ⊗Z Fq,
where fr,c(Z) is the free nilpotent Z-Lie algebra of class c on r generators. Theorem B
applies to the groups Fr,c(Fq) := exp(fr,c(Fq)).

In Section 2 we state Theorems A and B, together with some applications to groups
of the form Fr,c(Fq). Our main tools are the Lazard correspondence for p-groups of
nilpotency class c < p and the Kirillov orbit method for such groups. In Section 3 we
review these tools and use them to prove Theorems A and B. In Section 4 we apply these
results to uniformize a number of existing enumerative results on classes and characters
of p-groups. In Section 5 we prove new results for the groups Fr,c(Fq), including those
stated in Section 2. They extend and generalize results of Ito and Mann [19] for the
relatively free groups of exponent p.

1.1. Notation. We denote the cardinality of a set S by either #S or |S|. We write N for
the set {1, 2, . . . } of natural numbers. For I ⊆ N and c ∈ R, we write I0 for I ∪ {0} and
cI0 for {ci : i ∈ I0}. Given a, b ∈ N0 we define [a] = {1, . . . , a} and [a, b] = {a, . . . , b}.
For x ∈ R we set bxc := max{m ∈ Z : m ≤ x}. If I is any ordered set then we write
I = {i1, . . . , il}< to indicate that i1 < · · · < il. Given a proposition P , the ‘Kronecker
delta’ δP is 1 if P holds and 0 otherwise. If n1, . . . , nr ∈ N0 and f ∈ N, we write
(n1, . . . , nr)f for the vector

(n1, 0, . . . , 0︸ ︷︷ ︸
f−1

, n2, 0, . . . , 0︸ ︷︷ ︸
f−1

, . . . , nr, 0, . . . , 0︸ ︷︷ ︸
f−1

) ∈ Nfr0 ;

if f = 1 we drop the subscript.
Given a ring R, an R-Lie algebra g is an R-algebra with a ‘Lie bracket’, that is to

say an R-bilinear map [ , ] : g× g→ g which is skew-symmetric and satisfies the Jacobi
identity. A Lie ring is a Z-Lie algebra. We write [u, v, w, . . . ] for the left-normed Lie
product [. . . [[u, v], w] . . . ] ∈ L, and [u,i v] denotes the Lie product [u, v, . . . , v] with i
occurrences of v.
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Throughout this paper, o is a compact discrete valuation ring of characteristic zero,
viz. a finite extension of the p-adic integers Zp, with maximal ideal p and residue field
k = o/p of characteristic p. An arbitrary field is denoted by K.

The centre and derived group of a group G are denoted by Z (or Z(G)) and G′

respectively; the centre and derived ring of a Lie algebra g are z (or Z(g)) and g′. We
write [ , ] also for the induced map g/z × g/z → g′, (x + z, y + z) 7→ [x, y]. Given g ∈ G
and x ∈ g we write CG(g) and Cg(x) for the respective centralizers.

Given a ring R and integers m and n, we write Mat(n×m,R) for the n×m-matrices
over R. We abbreviate Mat(n×n,R) to Mat(n,R). We denote the transpose of a matrix
A by Atr.

By a character of a group we always mean a complex irreducible character.

2. The main results

The Lazard correspondence establishes an order-preserving one-to-one correspondence
between finite p-groups of nilpotency class c < p on the one hand and finite nilpotent
Lie rings of p-power order and class c < p on the other; cf. [23, Example 10.24]. More
precisely, one may define a group operation on such a Lie ring g by the formula

u ? v :=
∑
i≤c

Fi(u, v), u, v ∈ g,

where Fi(X,Y ) is the homogeneous part of degree i of the Hausdorff series F (X,Y ),
an element in the completion of the free Q-Lie algebra on variables X and Y ; cf. [23,
§9.2]. Then exp(g) := (g, ?) is a p-group of class c. The theorem underlying the Lazard
correspondence asserts that the isomorphism type of every p-group G of class c < p
arises in this manner from a Lie ring g, unique up to isomorphism. We denote the map
underlying a fixed isomorphism exp(g) ∼= G by exp : g→ G, and write log for its inverse.

We write ĝ′ for the Pontryagin dual HomZ(g′,C×) of the finite abelian p-group g′.

Theorem A. Let G be a finite p-group of nilpotency class c < p and let g = log(G) be
the corresponding Lie ring. Define

S(G) := {(x, ω) ∈ g/z× ĝ′ : ω([x, z]) = 1 for all z ∈ g/z},

with projections π1 : S(G)→ g/z and π2 : S(G)→ ĝ′. For i ≥ 0,

cci(G) = #
{
x ∈ g/z : |π−1

1 (x)| = p−i|ĝ′|
}
|Z(G)|p−i,

chi(G) = #
{
ω ∈ ĝ′ : |π−1

2 (ω)| = p−2i|g/z|
}
|G/G′|p−2i.

In particular, the class number k(G) = |S(G)| |Z(G)| |G′|−1.

For a certain family of groups, Theorem B exploits this result to provide a uniform
description of the class and character vectors in terms of the numbers of rational points
of rank varieties of matrices of linear forms. We now formulate this more precisely.

Assume that o is a compact discrete valuation ring of characteristic zero and residue
characteristic p, and that g is a finite, nilpotent o-Lie algebra of class c < p. Set

a := rko(g/z), b := rko(g
′),

and fix an ordered set e = (e1, . . . , ea) of o-module generators for g/z and an ordered set
f = (f1, . . . , fb) of o-module generators for g′. We choose ‘structure constants’ λkij ∈ o
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such that

[ei, ej ] =

b∑
k=1

λkijfk and λkij = −λkji

for all i, j ∈ [a], k ∈ [b].

Definition 2.1. Let X = (X1, . . . , Xa) and Y = (Y1, . . . , Yb) be independent variables.
We define commutator matrices (with respect to e and f) of o-linear forms in X and Y,
namely

A(X) ∈ Mat(a× b, o[X]), where A(X)ik :=
a∑
j=1

λkijXj , i ∈ [a], k ∈ [b],

B(Y) ∈ Mat(a, o[Y]), where B(Y)ij :=
b∑

k=1

λkijYk, i, j ∈ [a].

If g is a K-algebra with K-basis B = (e1, . . . , eh) such that the residue classes of the
elements e1, . . . , ea form a K-basis e for g/z and f = (eh−b+1, . . . , eh) is a K-basis for g′

then we refer to the associated commutator matrices A and B as ‘with respect to B’.

Remark 2.2. The commutator matrix B is clearly skew-symmetric. Hence det(B) is a

square in o[Y], whose square root Pf(B) :=
√

det(B) is the Pfaffian of B. If a is odd
then Pf(B) = 0.

Assume now that g/z or, equivalently, g′ is annihilated by p, the maximal ideal of o.
We write k for the residue field o/p of characteristic p. The set of generators f for g′

may be regarded as a k-basis for the k-vector space g′. Similarly, we view e as a k-basis
for the k-vector space g/z.

The commutator matrices A and B may be considered as matrices of linear forms
over k. Let K be an extension of k. For x = (x1, . . . , xa) ∈ Ka we write A(x) ∈
Mat(a × b,K) for the matrix obtained by evaluating the variables Xi at xi. Likewise
B(y) ∈ Mat(a,K) is defined for y = (y1, . . . , yb) ∈ Kb. We note that the ranks of
matrices of the form B(y), for y ∈ Kb, are even integers.

It is well-known that every finite field k is self-dual, i.e. (noncanonically) isomorphic
to its Pontryagin dual. Indeed, let ψ : k → C× be a nontrivial additive character
of k. For a ∈ k define ψa(x) = ψ(ax) for x ∈ k. The map a 7→ ψa is an isomorphism

between k and its Pontryagin dual k̂; cf., for instance, [4]. Since g′ ∼= kb, this yields

an isomorphism between g′ and its dual ĝ′. On the other hand there is, of course, a
– likewise noncanonical – isomorphism between g′ and its linear dual Homk(g′,k). We

fix an isomorphism ψ1 : ĝ′ → Homk(g′,k). The dual k-basis f∨ = (f∨k ) for Homk(g′,k)
gives a coordinate system

ψ2 : Homk(g′,k)→ kb, y =

b∑
k=1

ykf
∨
k 7→ y = (y1, . . . , yb).

Set ψ := ψ2 ◦ ψ1 : ĝ′ → kb. Similarly, the k-basis e for g/z gives a coordinate system

ϕ : g/z→ ka, x =

a∑
j=1

xjej 7→ x = (x1, . . . , xa).

For a finite extension O of o, we write g(O) for g ⊗o O and z(O) for z ⊗o O. By
tensoring, the bases associated with g yield corresponding bases associated with g(O);
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we continue to write e for the O-basis e⊗o1 for g(O)/z(O), and likewise f for the O-basis
f ⊗o 1 of g(O)′. Note that the commutator matrices A and B remain unchanged.

Assume further that O is an unramified extension of o, with maximal ideal P. We
identify the residue field O/P, a finite extension of k, with Fq. The O-Lie algebra g(O)
inherits the property that the derived algebra and the cocentre of g(O) are annihilated
by P. We consider e and f as Fq-bases for the respective Fq-vector spaces of dimensions
a and b. Set G(O) := exp(g(O)). Note that our assumption on g implies that both
G(O)′ and G(O)/Z(G(O)) have exponent p. Our second main result gives a uniform
description of the set S(G(O)) introduced in Theorem A – and therefore for the class and
character vectors of G(O) – in terms of the numbers of Fq-rational points of degeneracy
loci of the commutator matrices A and B.

Theorem B. Let o be a compact discrete valuation ring of characteristic zero and
residue field k of characteristic p, and let g be a finite, nilpotent o-Lie algebra of class
c < p. Assume that g′ ∼= kb and that g/z ∼= ka as k-vector spaces. Let O be a finite,
unramified extension of o, with residue field isomorphic to Fq. The class sizes and

character degrees of G(O) are powers of q = pf . For i ≥ 0,

ccif (G(O)) = #
{
x ∈ Faq : rk(A(x)) = i

}
|Z(G(O))|q−i,

chif (G(O)) = #
{

y ∈ Fbq : rk(B(y)) = 2i
}
|G(O)/G(O)′|q−2i.

We illustrate Theorem B with a well-known example.

Example 2.3. Let G = U3(Fq) be the group of 3 × 3 upper-unitriangular matrices

over Fq, where q = pf . Thus |G| = q3, a = 2 and b = 1. For odd p, G is isomor-
phic to exp(f2,2(Fq)), where f2,2(Fq) is the Fq-Lie algebra with Fq-basis (u, v, w), subject
only to the relations [v, u] = w, [u,w] = [v, w] = 0. With respect to this Fq-basis

A(X) =

(
−X2

X1

)
and B(Y) =

(
−Y1

Y1

)
.

Theorem B confirms the well-known formulae cc(G) = (q, q2 − 1)f and ch(G) = (q2, q−
1)f . We note that S(G) may be identified with {(u, v, w) ∈ F3

q : wu = wv = 0}, showing

that k(G) = q2 + q − 1.

In Section 5 we study generalizations of the relatively free p-groups of exponent p. For
integers r ≥ 2 and c ≥ 1 we consider the free Fq-Lie algebra fr,c(Fq) on r generators and

nilpotency class c, where q = pf is a power of a prime p > c. The Lazard correspondence
associates the p-group Fr,c(Fq) = exp(fr,c(Fq)) to this Fq-Lie algebra. Our approach
yields, for instance, a simple, geometric proof of the following generalization of [19,
Theorem 5] and of Example 2.3.

Proposition 2.4. Let q = pf be an odd prime power. The character degrees of Fr,2(Fq)
are 1, q, q2, . . . , qbr/2c. For 0 ≤ 2i ≤ r

chif (Fr,2(Fq)) = qr+i
2−3i

∏2i−1
j=0 (qr−j − 1)∏i−1
j=0(q2(i−j) − 1)

.

Proof. We fix an Fq-basis (x1, . . . , xr, yk` : 1 ≤ k < ` ≤ r) for f2,r(Fq), subject to the
relations [x`, xk] = yk` for 1 ≤ k < ` ≤ r. Note that a = r and b =

(
r
2

)
. The commutator

matrix B(Y) with respect to this basis is the generic skew-symmetric matrix in variables
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Yk` for 1 ≤ k < ` ≤ r, so B(Y)k` = −Yk`. It is well known that, for 0 ≤ 2i ≤ r, the set

{y ∈ F(n2)
q : rk(B(y)) = 2i} has cardinality

νif (Fr,2(Fq)) := qi(i−1)

∏2i−1
j=0 (qr−j − 1)∏i−1
j=0(q2(i−j) − 1)

;

see [6, Equation (7.5)]. Theorem B implies that chif (Fr,2(Fq)) = qr−2iνif (Fr,2(Fq)). �

Recall that the ‘Witt formula’ is defined, for i ∈ N, by

(2.1) Wr(i) :=
1

i

∑
d|i

µ(d)ri/d,

where µ denotes the Möbius function; cf., for example, [12, Chapter 11]. We define

n(r, c) :=

{∑m
i=1Wr(i) if c = 2m+ 1,∑m−1
i=1 Wr(i) + bWr(m)

2 c if c = 2m.

Theorem 2.5. Assume that (r, c) 6= (2, 3), that p > c and let q be a power of p. The

character degrees of Fr,c(Fq) are 1, q, q2, . . . , qn(r,c).

The character vectors of the groups F2,3(Fq) are given in Proposition 5.8. For i ∈ [c] we
define

k(r, c, i) := −δi<(c+1)/2 +

c−i∑
`=1

Wr(`).

Theorem 2.6. Assume p > c and let q be a power of p. The class sizes of Fr,c(Fq) are

qk(r,c,i) for 1 ≤ i ≤ c. For j ≥ 1

(2.2) ccjf (Fr,c(Fq)) =
∑

{i∈[c−1] : k(r,c,i)=j}

(
qWr(i) − 1

)
q−j+

∑c
`=i+1Wr(`),

and cc0(Fr,c(Fq)) = |Z(Fr,c(Fq))| = qWr(c).

Observe that the function i 7→ k(r, c, i) is injective unless r = 2 and c ∈ {3, 4}; in these
cases the sum in (2.2) has at most two nonzero summands. Generically it has at most
one.

Theorems 2.5 and 2.6 will be proven in Section 5.

3. Proofs of Theorems A and B

The Lazard correspondence between p-groups and Lie rings of nilpotency class c < p
allows us to linearize the problem of enumerating conjugacy classes and characters. Let
G be a finite p-group of nilpotency class c < p, with associated Lie ring g = log(G).

3.1. Counting conjugacy classes. It follows from straightforward calculations with
the Hausdorff series that log induces an order-preserving correspondence between sub-
groups ofG and subalgebras of g, and log maps normal subgroups to ideals. In particular,
|G/Z| = |g/z| and |G′| = |g′|, and centralizers in G correspond to centralizers in g. Thus

cci(G) =#{conjugacy classes of G of cardinality pi}
=#{g ∈ G : |G : CG(g)| = pi}p−i

=#{x ∈ g : |g : Cg(x)| = pi}p−i

=#{x ∈ g/z : |g/z : Cg/z(x)| = pi} |z| p−i.
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The last equality reflects the fact that the centralizer of an element only depends on its
coset modulo the centre. For x ∈ g/z we define

adx : g/z→ g′, z 7→ [z, x]

ad?x : ĝ′ → ĝ/z, ω 7→ ω ◦ adx .

Hence
(3.1)

cci(G) = #{x ∈ g/z : | im(adx)| = pi} |z| p−i = #{x ∈ g/z : | ker(ad?x)| = p−i|ĝ′|} |z| p−i.

3.2. Kirillov’s orbit method and counting characters. The Kirillov orbit method
offers a linearization of the character theory of G in terms of co-adjoint orbits: characters
of G correspond to orbits in ĝ := HomZ(g,C×), the Pontryagin dual of g, under the
co-adjoint action Ad? of G on ĝ. The following is well-known; see, for example, [5,
Theorem 2.6] or [10, Theorem 4.4].

Theorem 3.1. Let G = exp(g) be a finite p-group of nilpotency class c < p. Let Ω ⊆ ĝ
be a co-adjoint orbit and ω ∈ Ω.

(1) There exists a polarizing subalgebra h ⊆ g for the bi-additive, skew-symmetric
form Bω : g×g→ C×, (u, v) 7→ ω([u, v]): namely, a subalgebra h that is maximal
with respect to the property that Bω |h×h ≡ 1. Setting

Rad(Bω) := {u ∈ g : Bω(u, v) = 1 for all v ∈ g},

exp(Rad(Bω)) is the Ad?-stabilizer StabG(ω), and |g : h| = |h : Rad(Bω)|. Thus,
with H := exp(h),

|Ω|1/2 = |G : StabG(ω)|1/2 = |g : Rad(Bω)|1/2 = |g : h| = |G : H|.

(2) Viewing ω as a function on G (via log), the function ω|H is a one-dimensional
representation of H. The induced representation UΩ := IndGH ω of G is irre-

ducible, independent of ω, and has dimension |Ω|1/2. All irreducible complex
representations of G have this form.

(3) The character of UΩ is given by |Ω|−1/2
∑

ω∈Ω ω(g), for g ∈ G.

Remark 3.2. A Kirillov orbit method for torsion-free finitely generated nilpotent pro-p
groups of class 2 that holds for all primes p is presented in [27, Section 2.4]. We expect
that it can be used to prove the conclusions of Theorem 3.1 for 2-groups of class 2.

Theorem 3.1 reduces the problem of enumerating the characters of G to that of
computing the indices in g of the radicals Rad(Bω), as ω ranges over ĝ. In fact, given

ω ∈ ĝ, the form Bω only depends on the restriction of ω to g′. Given ω ∈ ĝ′ we therefore
write Bω for Bω̃, where ω̃ ∈ ĝ is any extension of ω. With this notation, Theorem 3.1
implies that

chi(G) =#{irreducible complex characters of G of degree pi}
=#{co-adjoint orbits Ω ⊆ ĝ of size p2i}
=#{ω ∈ ĝ : |g : Rad(Bω)| = p2i} p−2i

=#{ω ∈ ĝ′ : |g : Rad(Bω)| = p2i} |g/g′| p−2i

=#{ω ∈ ĝ′ : |Rad(Bω)/z| = p−2i|g/z|} |g/g′| p−2i.(3.2)
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3.3. Proof of Theorem A. For i ∈ N0 we define

µi(G) := #{x ∈ g/z : | ker(ad?x)| = p−i|ĝ′|},

νi(G) := #{ω ∈ ĝ′ : |Rad(Bω)/z| = p−2i|g/z|}.

Equations (3.1) and (3.2) imply that cci(G) = µi(G)|z|p−i and chi(G) = νi(G)|g/g′|p−2i.

For x ∈ g/z and ω ∈ ĝ′, observe that x ∈ Rad(Bω)/z if and only if ω ∈ ker(ad?x). Thus

S(G) ={(x, ω) ∈ g/z× ĝ′ : ω([x, z]) = 1 for all z ∈ g/z}

={(x, ω) ∈ g/z× ĝ′ : ω ∈ ker(ad?x)}

={(x, ω) ∈ g/z× ĝ′ : x ∈ Rad(Bω)/z}.(3.3)

Using the natural projections π1 : S(G)→ g/z and π2 : S(G)→ ĝ′, we see that

µi(G) = #{x ∈ g/z : |π−1
1 (x)| = p−i|ĝ′|},

νi(G) = #{ω ∈ ĝ′ : |π−1
2 (ω)| = p−2i|g/z|}.

We obtain two descriptions of the class number k(G):

|g′|k(G) = |g′|
∑
i

cci(G) = |z|
∑
i

p−i|g′|µi(G) = |z||S(G)|,

|g/z|k(G) = |g/z|
∑
i

chi(G) = |g/g′|
∑
i

p−2i|g/z|νi(G) = |g/g′||S(G)|.

We deduce that k(G) = |S(G)| |z| |g′|−1 = |S(G)| |Z(G)| |G′|−1. This proves Theorem A.

3.4. Proof of Theorem B. Recall that o is a compact discrete valuation ring with
residue field k = o/p of characteristic p, and that g is a finite, nilpotent o-Lie algebra
of class c < p with the property that g/z and g′ are annihilated by p. Further recall

the isomorphisms ϕ : g/z → ka and ψ : ĝ′ → kb introduced in Section 2. Consider the
p-group G = exp(g). By (3.3),

S(G) = {(x, ω) ∈ g/z× ĝ′ : x ∈ Rad(Bω)/z}.

The following lemma, proved analogously to [1, Lemma 3.3], characterizes membership

of S(G) in terms of the above coordinate systems for g/z and ĝ′.

Lemma 3.3. Let x ∈ g/z and ω ∈ ĝ′ correspond to ϕ(x) = x ∈ ka and ψ(ω) = y ∈ kb.
Then

x ∈ Rad(Bω)/z if and only if A(x)ytr = B(y)xtr = 0.

Now let O be a finite, unramified extension of o, with residue field isomorphic to
Fq = Fpf , say. Applying Theorem A, (3.3) and Lemma 3.3 to g(O) = g ⊗o O reduces
the computation of the class and character vector of G(O) = exp(g(O)) to the problem
of counting the solutions to linear equations over Fq. In particular, all class sizes and

character degrees are powers of q = pf . For i ≥ 0,

µif (G(O)) = #
{
x ∈ Faq : rk(A(x)) = i

}
,

νif (G(O)) = #
{

y ∈ Fbq : rk(B(y)) = 2i
}
.

This proves Theorem B.
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4. Consequences of Theorems A and B

4.1. Isoclinism. Recall from [11] that two p-groups G1 and G2 are isoclinic if there
are isomorphisms θ : G1/Z1 → G2/Z2 and ϕ : G′1 → G′2 such that, for all α, β ∈ G′1,
ϕ([α, β]) = [θ(αZ1), θ(βZ1)]. The pair (θ, ϕ) is an isoclinism between G1 and G2.

If G1 and G2 have nilpotency class less than p and (θ, ϕ) is an isoclinism between
G1 = exp(g1) and G2 = exp(g2), then there is a pair of associated maps (Θ,Φ−1), where

Θ = log ◦ θ ◦ exp, Φ−1 = log ◦ϕ−1 ◦ exp and Φ̂−1 : ĝ1 → ĝ2, ω1 7→ ω1 ◦ Φ−1. The

isoclinism (θ, ϕ) induces a bijection (Θ, Φ̂−1) : S(G1) → S(G2), where, for i ∈ {1, 2},
S(Gi) are as defined in Theorem A; in particular

S(G1) = {(x1, ω1) ∈ (g1/Z(g1))× ĝ′1 : ω1([x1, z1]) = 1 for all z1 ∈ g1/Z(g1)}.
By definition, ω1([x1, z1]) = 1 if and only if ω1(Φ−1([Θ(x1),Θ(z1)])) = 1; this holds if

and only if Φ̂−1(ω1)([Θ(x1),Θ(z1)]) = 1. Therefore (Θ, Φ̂−1)(S(G1)) = S(G2). This, of
course, merely reflects the well-known fact that isoclinic groups have, up to multiplica-
tion by p-powers, identical class (and character) vectors.

4.2. Pfaffian hypersurfaces. Boston and Isaacs [3] studied the class vectors of some p-
groups of class 2 and exponent p. In this section we prove a generalization and extension
of [3, Theorem 3.2]. We first describe our broader context. Let o be a compact, discrete
valuation ring with residue field o/p, which we identify with Fq, where q = pf is an
odd prime power. Let g be a finite, nilpotent o-Lie algebra of class 2. Assume that
g/z and g′ are annihilated by p, so that Theorem B applies. The coordinate systems
introduced in Section 2 identify g/z with Faq and g′ with Fbq, where we write a for the
o-rank of g/z and b for the o-rank of g′. Recall from Definition 2.1 the commutator
matrix B associated to g with respect to the chosen bases. We denote by Pb−1(Fq)
the (b − 1)-dimensional projective space over Fq. Note that rk(B(ỹ)) is well-defined

for ỹ = (ỹ1 : · · · : ỹb) ∈ Pb−1(Fq). We write G = exp(g) and recall that, by Theorem B,

cs(G) and ch(G) consist of powers of q = pf .

Theorem 4.1. Assume that a > 2,

(4.1)
{

rk(B(ỹ)) : ỹ ∈ Pb−1(Fq)
}

= {a− 2, a}

and that, for every line L ⊂ Pb−1(Fq), there exists ỹ ∈ L such that rk(B(ỹ)) = a. Let

n := #{ỹ ∈ Pb−1(Fq) : rk(B(ỹ)) = a− 2}.
Then

(4.2) ccif (G) =


|Z| if i = 0,

|Z|q−b+1n(q2 − 1) if i = b− 1,

|Z|q−b(qa − 1− n(q2 − 1)) if i = b,

0 otherwise,

(4.3) chif (G) =


|G/G′| if i = 0,

|G/G′|q−a+2n(q − 1) if i = a/2− 1,

|G/G′|q−a(qb − 1− n(q − 1)) if i = a/2,

0 otherwise.
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In particular

k(G) = |G|(q−a + q−b + q−a−b(n(q2 − 1)(q − 1)− 1)).

Remark 4.2. Geometrically, the hypotheses of Theorem 4.1 imply that the projective
Pfaffian hypersurface defined by Pf(B) contains no lines over Fq. In particular, the
Pfaffian is not identically zero, and thus a is even; cf. Remark 2.2. Hypothesis (4.1)
implies that b > 1 and is satisfied if (but not only if) the Pfaffian defines a smooth
hypersurface in Pb−1(Fq); cf. [31, Lemma 5].

Proof. Remark 4.2 shows that a is even. To prove (4.3) we observe that, by the hy-
potheses,

νif (G) =


1 if i = 0

n(q − 1) if i = a/2− 1,

qb − 1− n(q − 1) if i = a/2,

0 otherwise.

The claim about ch(G) then follows from Theorem B which asserts that chif (G) =
νif (G) |G/G′|q−2i for i ∈ [a/2]0.

To prove (4.2) it suffices to show that, firstly, µif (G) = 0 for i ∈ [b− 2] and, secondly,

µ(b−1)f (G) = n(q2 − 1). Indeed, clearly µ0(G) = 1 and
∑b

i=0 µif (G) = qa, so that

µbf (G) = qa−1−n(q2−1). The claim about cc(G) then follows from Theorem B which
asserts that ccif (G) = µif (G) |Z|q−i for i ∈ [b]0.

Given y ∈ Fbq we view B(y) as the matrix of an endomorphism of Faq , whose kernel
we denote by ker(B(y)). Likewise, given x ∈ Faq , we view A(x) as the matrix of the

linear map Fbq → Faq ,y 7→ yA(x)tr, whose kernel we denote by ker(A(x)).

Let y ∈ Fbq be one of the n(q−1) elements with rk(B(y)) = a−2, so dim(ker(B(y))) =
2. Observe that rk(A(x)) < b for all x ∈ ker(B(y)). We claim that rk(A(x)) = b− 1 for
all such x which are nonzero. Indeed, assume that x 6= 0 with rk(A(x)) ≤ b − 2. Let
V ≤ Fbq be a 2-dimensional subspace of ker(A(x)). For every y ∈ V we deduce using

Lemma 3.3 that yA(x)tr = xB(y)tr = 0. Therefore V defines a line in Pb−1(Fq) on which
no point ỹ satisfies rk(B(ỹ)) = a, contradicting our hypotheses. Thus rk(A(x)) = b−1.
This shows that µif (G) = 0 for i ∈ [b− 2], establishing the first claim.

Every y ∈ Fbq \ {0} such that rk(B(y)) = a − 2 gives rise to q2 − 1 elements x ∈
Faq \ {0} such that rk(A(x)) = b− 1, namely the nonzero elements of the 2-dimensional
space ker(B(y)). Likewise, every x ∈ Faq \ {0} such that rk(A(x)) = b− 1 gives rise to
q− 1 elements y with this property, namely the nonzero elements of its nullspace. Thus

µ(b−1)f (G) = n(q − 1) (q2−1)
(q−1) = n(q2 − 1), establishing the second claim. �

Example 4.3. Let p be a prime and α ∈ F×p . Let gα be the 9-dimensional nilpotent
Fp-Lie algebra of class 2 with Fp-basis (e1, . . . , e6, f1, f2, f3) subject only to the relations
[e1, e4] = f1, [e1, e5] = f2, [e1, e6] = αf3, [e2, e4] = f3, [e2, e5] = f1, [e2, e6] = f2,
[e3, e4] = f3, [e3, e6] = f1, where 0 6= α ∈ Fp. With respect to this basis, the commutator
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matrices are:

A(X) =



−X4 −αX6 −X5

−X5 −X4 −X6

−X6 −X4 0

X1 X2 +X3 0

X2 0 X1

X3 αX1 X2


;

B(Y) =

(
0 U(Y)

−U(Y)tr 0

)
, where U(Y) =

Y1 Y2 αY3

Y3 Y1 Y2

Y3 0 Y1

 .

Boston and Isaacs [3] study the groups Gα = exp(gα), which satisfy the hypotheses of
Theorem 4.1 if p is odd. They prove that k(Gα) = p6 +p3−1 +nα(p2−1)(p−1), where
nα = #{ỹ ∈ P2(Fp) : rk(B(ỹ)) = 4}, which accords with Theorem 4.1. They also show
that #{nα : α ∈ F×p } → ∞ as p→∞. Thus they establish that the number of different

values assumed by k(G) as G runs over all groups of order p9 tends to infinity with p.

Example 4.4. Let g be the 8-dimensional nilpotent Fq-Lie algebra of class 2 with Fq-basis
(e1, . . . , e4, f1, . . . , f4) subject only to the relations [e1, e3] = f1, [e1, e4] = f2, [e2, e3] =
f3, [e2, e4] = f4. The class and character vectors of G = exp(g) are the following:

(ccif (G))i∈{0,1,2,3} = (q4, 0, 2(q2 − 1)q2, q(q2 − 1)2)f ,

(chif (G))i∈{0,1,2} = (q4, q2(q − 1)(q + 1)2, q4 − 1− (q + 1)2(q − 1))f .

This follows from inspection of the commutator matrices

A(X) =


X3 X4

X3 X4

−X1 −X2

−X1 −X2

 , B(Y) =


Y1 Y2

Y3 Y4

−Y1 −Y3

−Y2 −Y4

 .

The class vector differs from (4.2), but the character vector agrees with (4.3). The
hypothesis of Theorem 4.1 regarding lines in P3(Fq) is not satisfied. We observe that
the factor 2(q + 1) of cc2f (G) is the number of lines on the Pfaffian hypersurface, the
quadric surface defined by Y1Y4 − Y2Y3 = 0.

4.3. Prescribing class sizes and character degrees. It is known that every finite
set of p-powers containing 1 can be realized as the class sizes or character degrees of a
finite p-group; cf. [7] and [17] respectively. Such results can be obtained readily using
Theorems A and B. Throughout this section let p be an odd prime.

4.3.1. We show how to obtain the result of [17]. Let I ⊂ N be finite and let j = max(I).
To construct a p-group G such that cd(G) = {pi : i ∈ I0}, consider the Fp-Lie algebra g,
with Fp-basis consisting of x1, . . . , x2j and yi for i ∈ I, subject only to the relations

[xr, xt] =

{
yi if t− r = i ∈ I,
0 otherwise,

for r, t ∈ [2j].
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The commutator matrix B(Y) ∈ Mat(2j,Fp[Y]) in variables Yi for i ∈ I with respect
to this basis is the sum of the (2j × 2j)-matrices 0 Yi Idi

−Yi Idi 0

02(j−i)

 , where i ∈ I.

Clearly {rk(B(y)) : y ∈ F|I|p } = I0. Theorem B implies that cd(exp(g)) = {pi : i ∈ I0}.

4.3.2. Fernández-Alcober and Moretó [9] prove that for every two integers u, v > 1 there
exists a finite p-group H of class 2 such that | cd(H)| = u and | cs(H)| = v. As part of
their proof, they construct, for given l, n ∈ N, a p-group G with cd(G) = {1, pl}, and
cs(G) = {1, p, . . . , pl, pn}; cf. [9, Lemma 2.2].

We show how to construct such a group G. Consider the Fp-Lie algebra g, with
Fp-basis (x1, . . . , xl, x̃1, . . . , x̃l+n−1, y1 . . . , yn), subject only to the relations:

[xi, x̃j ] =

{
yj−i+1 if i ≤ j ≤ i+ n− 1,

0 otherwise,
for i ∈ [l], j ∈ [l + n− 1]

With respect to this basis the commutator matrix B(Y) ∈ Mat(2l + n− 1,Fp[Y]) is

(
0 U(Y)

−U(Y)tr 0

)
, where U(Y) =


Y1 Y2 · · · Yn

Y1 Y2 · · · Yn
. . .

. . .
. . .

Y1 Y2 · · · Yn

 .

The commutator matrix A(X) ∈ Mat((2l + n− 1)× n,Fp[X]) is

Xl+1 Xl+2 · · · Xl+n

Xl+2 Xl+3 · · · Xl+n+1
...

...

X2l X2l+1 · · · X2l+n−1

−X1
... −X1

−Xl
...

. . .

−Xl −X1

. . .
...

−Xl



.

Note that {rk(B(y)) : y ∈ Fnp} = {0, l} and {rk(A(x)) : x ∈ F2l+n−1
p } = {0, 1, . . . , l, n}.

Therefore cd(exp(g)) and cs(exp(g)) are as stated.

5. Relatively free p-groups of exponent p

Let p be a prime and let r ≥ 2, c ≥ 1. Ito and Mann [19] study the numbers of
classes and characters of the relatively free p-groups in the variety of groups of exponent
p and nilpotency class c on r generators. Our methods apply when c < p. We consider,
more generally, the groups Fr,c(Fq) := exp(fr,c(Fq)), where q = pf and fr,c(Fq) is the
free nilpotent Fq-Lie algebra of class c on r generators. The orders of the terms of the
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lower central series of fr,c(Fq), and so of Fr,c(Fq), may be expressed in terms of the Witt
formula (2.1): for i ∈ [c],

(5.1) |γi(fr,c(Fq)) : γi+1(fr,c(Fq))| = |γi(Fr,c(Fq)) : γi+1(Fr,c(Fq))| = qWr(i);

cf. [19, Proposition 1]. We often write F for Fr,c(Fq), f for fr,c(Fq) and W for Wr.

5.1. Proof of Theorem 2.6. We first prove a lemma about free Lie algebras over
arbitrary fields. Let K be a field and L a free K-Lie algebra of rank at least 2. We
fix a Lie basis B for L and, for m ∈ N, define Lm as the K-linear span of m-fold Lie
products of elements of B. The standard grading L = ⊕∞m=1Lm determines the lower
central series filtration Li := ⊕∞j=iLj of L. By convention, Li := L for i ≤ 0.

Let u =
∑∞

i=1 ui ∈ L be a nonzero element in the standard grading, i.e. ui ∈ Li for
all i. We denote by u the nonzero homogeneous component of lowest degree of u in the
standard grading: namely, u := udeg(u), where deg(u) := min{i ∈ N : ui 6= 0} is the
degree of u.

Lemma 5.1. Let u, v ∈ L with u 6= 0. If [u, v] ∈ Li+1 for some positive integer i, then
v ∈ Ku+ Li+1−deg u.

Proof. Without loss of generality, assume v 6∈ Ku. By the Shirshov-Witt theorem [26,
Theorem 2.5], every subalgebra of L is free, and so [u, v] 6= 0. Now [u, v] = [u, v] + z for
some z ∈ L with deg z > deg u+ deg v.

If [u, v] 6= 0 then it is homogeneous of degree deg u+ deg v. In this case [u, v] = [u, v]

and so [u, v] 6∈ Ldeg u+deg v+1. By hypothesis [u, v] ∈ Li+1, so i + 1 < deg u + deg v + 1
or, equivalently, deg v ≥ i+ 1− deg u which implies that v ∈ Li+1−deg u.

If [u, v] = 0 then the Shirshov-Witt theorem implies that v = ku for some nonzero k ∈
K. Thus deg(v − ku) > deg u. Since v − ku 6∈ Ku and so [u, v − kv] 6= 0, we may
apply the argument of the previous paragraph to v − ku instead of v, deducing that
v − ku ∈ Li+1−deg u. �

The Lazard correspondence implies the following.

Lemma 5.2. Let g ∈ F = Fr,c(Fq) and i ∈ [c]. If g ∈ γi(F ) \ γi+1(F ) then CF (g) =
〈g, γc−i+1(F )〉.

We now prove Theorem 2.6. By Lemma 5.2, the conjugacy class sizes in F = Fr,c(Fq)
are the indices of the subgroups 〈g, γc−i+1(F )〉, for g ∈ γi(F ) \ γi+1(F ) and i ∈ [c]. If

i ≥ c− i+1 then 〈g, γc−i+1(F )〉 = γc−i+1(F ), which has index q
∑c−i

j=1W (j) in F ; see (5.1).
If i < c − i + 1 then |〈g, γc−i+1(F )〉 : γc−i+1(F )| = q, and so |F : 〈g, γc−i+1(F )〉| =

q−1+
∑c−i

j=1W (j). Thus if g ∈ γi(F )\γi+1(F ) then the conjugacy class of g has size qk(r,c,i).

The statement that cc0(F ) = qW (c) follows immediately from (5.1), as Z(F ) = γc(F ).
Note that 0 = k(r, c, c). To determine ccjf (F ) where j = k(r, c, i) 6= 0, it suffices to
count the elements in each γi(F ) \ γi+1(F ) such that k(r, c, i) = j and to observe that
these elements fall into conjugacy classes of equal size qj . Thus

ccjf (F ) =
∑

{i∈[c−1] : k(r,c,i)=j}

|γi(F ) \ γi+1(F )| q−j

=
∑

{i∈[c−1] : k(r,c,i)=j}

(
qWr(i) − 1

)
q−j+

∑c
`=i+1Wr(`).

This concludes the proof of Theorem 2.6.
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Corollary 5.3. Let r ≥ 2, c ≥ 1 and q a power of p > c. The entries of the class vector
cc(Fr,c(Fq)), and hence also the class number k(Fr,c(Fq)), are given by a polynomial in q
which depends only on r and c. Expanded in q − 1, this polynomial has nonnegative
coefficients.

Proof. Theorem 2.6 shows that the relevant quantities may be written as sums of terms
of the form qα and (qβ − 1)qγ for nonnegative integers α, β, γ. �

Remark 5.4. Corollary 5.3 may be compared to an analogous conjecture about the class
vectors of the groups Un(Fq) of upper-unitriangular matrices over Fq; cf. [30]. Isaacs [18]
formulates a similar conjecture for the characters vectors of these groups; it is proved
in [8] for n ≤ 13. In Remark 5.12 we note that the corresponding statement for the
character vectors of the groups F2,5(Fq) is false.

5.2. Proof of Theorem 2.5. We recall the well-known definition of a Hall basis; cf. [21].

Definition 5.5. Let ∆ = {e(1)
1 , . . . , e

(1)
r } be a set of Lie algebra generators for f =

fr,c(Fq). If u ∈ f is a Lie product of elements from ∆ then u has weight wt(u) = i if
u ∈ γi(f) \ γi+1(f). A Hall basis (on ∆) for f is a well-ordered subset H of f, satisfying
the following.

(1) ∆ ⊆ H.
(2) If u, v ∈ H then [u, v] ∈ H if and only if

(5.2) u > v and (u = [u1, u2] implies u2 ≤ v).

(3) If w ∈ H \∆ then w = [u, v] for some u, v ∈ H satisfying (5.2).
(4) If u, v ∈ H and wt(u) > wt(v) then u > v.

Elements of H are basic commutators. For i ∈ [c], we set H(i) := {h ∈ H : wt(h) = i}
and label the basic commutators of weight i so that H(i) = {e(i)

1 , . . . , e
(i)
W (i)}<. Observe

that g(i) := [e
(1)
2 ,i−1 e

(1)
1 ] ∈ H(i).

Choose a Hall basis H for f. It is well-known that the elements of
⋃c
i=2H(i) yield

an Fq-basis for the derived Lie algebra f′, and that the residue classes of the elements

of
⋃c−1
i=1 H(i) yield an Fq-basis for the cocentre f/Z(f). Observe that the commutator

matrix B(Y) ∈ Mat
(∑c−1

j=1W (j),Fq[Y]
)

with respect to H is a skew-symmetric matrix

of Z-linear forms in b =
∑c

j=2W (j) variables. We label the variables as follows. For

k ∈ [2, c] we write Y(k) = (Y
(k)

1 , . . . , Y
(k)
W (k)). Thus Y = (Y(k))k∈[2,c] and

B(Y) =


B1,1(Y(2)) B1,2(Y(3)) . . . B1,c−1(Y(c))

B2,1(Y(3)) B2,2(Y(4)) . .
.

0
... . .

.
0

Bc−1,1(Y(c)) 0


where Bi,j(Y

(i+j)) is the zero matrix if i+ j > c, and for i, j ∈ [c− 1],

(5.3) Bi,j := Bi,j(Y
(i+j)) = −Bj,i(Y(i+j))tr ∈ Mat(W (i)×W (j),Fq[Y(i+j)]).

For each k ∈ [2, c], the variables Y(k) only occur in the matrices Bi,j with i+ j = k. It
follows from [28, Theorem 1] that

• if j > i and i does not divide j then Bi,j is generic: there are no linear relations
among its entries;
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• if i = j then Bi,i is generic skew-symmetric: the only linear relations between
its entries are those resulting from the identity Bi,i = −Btr

i,i.

To prove Theorem 2.5 it suffices, by Theorem B, to show that

(5.4)
{

rk(B(y)) : y ∈ Fbq
}

= 2[n(r, c)]0.

The containment ⊆ in (5.4) is clear, as the rank of B(y) is clearly bounded from above
by 2n(r, c). We establish the containment ⊇ in (5.4) by induction on c. For c = 1 there
is nothing to prove, and the case c = 2 is covered by Proposition 2.4, so let c > 2.
The induction step is divided into five steps. To ensure that the induction hypothesis
is applicable, we assume further that (r, c) 6= (2, 4). The statement of Theorem 2.5 for
groups of the form F2,4(Fq) follows from Proposition 5.10.

Step 1: By the induction hypothesis, we can obtain every rank in 2[n(r, c − 1)]0 by

setting the ‘new’ variables Y(c) to zero, and arguing as for c− 1.

Step 2: Let ρ ∈ 2[n(r, c− 1) + 1, n(r, c)]. If there exists a vector y = (y(k))k∈[2,c] ∈ Fbq,
with y(k) = 0 for k < c, satisfying

(1) rk(Bc−i,i(y
(c))) = min{W (i),W (c− i)} = W (i) for i < m = bc/2c,

(2) rk(Bc−m,m(y(c))) =

{
ρ/2−

∑m−1
i=1 W (i) if c = 2m+ 1,

ρ− 2
∑m−1

i=1 W (i) if c = 2m,

then rk(B(y)) = ρ. Indeed, B(y) is a matrix with nonzero blocks Bi,j(y
(c)) only in the

positions (i, j) where i + j = c. Moreover, apart from the ‘central block’ Bm,m(y(c)) if

c = 2m, or ‘central blocks’ Bm,m+1(y(c)) and Bm+1,m(y(c)) if c = 2m+1, all blocks have
maximal rank.

Step 3: We now prove that such a vector y exists. As (r, c) 6= (2, 3), W (i) < W (j)
whenever i < j. It suffices to show that, for each i < c/2, the matrix Bc−i,i has a square
submatrix

B̃c−i,i := B̃c−i,i(Y
(c)) ∈ Mat(W (i),Fq[Y(c)]),

obtained by choosing W (i) suitable rows of Bc−i,i, with the property that there are

no linear relations among the entries (B̃c−i,i)st, 1 ≤ s ≤ t ≤ W (i), for 1 < i < c/2,
and, if c = 2m, the entries (Bm,m)st, 1 ≤ s ≤ t ≤ W (m). Indeed, given such matrices

B̃c−i,i, it is easy to construct a vector y(c) such that, for all i < m, B̃c−i,i(y
(c)) is lower-

unitriangular (and thus, in particular, of maximal rank W (i)) and the central blocks

have the required ranks: namely, we set the diagonal entries of B̃i,c−i equal to one, and

all the (s, t)-entries of B̃i,c−i for s < t equal to zero.
If c = 2m, the matrix Bm,m is generic skew-symmetric, by [28, Theorem 1], and so

attains every rank in 2[bW (m)/2c]0.

Step 4: For i < c/2 we now exhibit such a submatrix B̃c−i,i of Bc−i,i. By definition of

the commutator matrix B, the matrix Bc−i,i is defined by (Bc−i,i)st =
∑W (c)

k=1 λkstY
(c)
k ,

where [e
(c−i)
s , e

(i)
t ] =

∑W (c)
k=1 λkste

(c)
k , where s ∈ W (c − i), t ∈ W (i). It suffices to find

S = {s1, . . . , sW (i)}< ⊆ [W (c− i)], indexing W (i) rows of Bc−i,i, such that

(5.5) [e(c−i)
sl

, e
(i)
t ] ∈ H(c) for l ∈ [W (i)] and t ∈ [l,W (i)].

We then set B̃c−i,i := ((Bc−i,i)st)s∈S, t∈[W (i)].

Step 5: To find such a subset S of [W (c− i)], we distinguish three cases.
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Case (i): i > (c − i)/2. Every pair (e
(c−i)
s , e

(i)
t ) ∈ H(c−i) × H(i) has the property that

[e
(c−i)
s , e

(i)
t ] ∈ H(c). Indeed, since i < c/2, we deduce that i < c − i, so e

(i)
t < e

(c−i)
s . If

e
(c−i)
s = [u1, u2] for some u1, u2 ∈ H then wt(u2) ≤ (c−i)/2 < i by (5.2), so u2 < e

(i)
t , and

hence [e
(c−i)
s , e

(i)
t ] ∈ H(c). Thus every W (i)-element subset S of [W (c− i)] satisfies (5.5).

Case (ii): i < (c− i)/2. Let t ∈ [W (i)]. Since i < c− 2i, clearly e
(c−i)
s := [g(c−2i), e

(i)
t ] ∈

H(c−i); so, if v ≥ t then [e
(c−i)
s , e

(i)
v ] ∈ H(c). Therefore the set S of indices of the W (i)

elements [g(c−2i), e
(i)
t ], for t ∈ [W (i)], satisfies (5.5).

Case (iii): i = (c− i)/2. Let t ∈ [W (i)]. If t < W (i) then we set e
(2i)
s := [e

(i)
W (i), e

(i)
t ] ∈

H(2i) and observe that [e
(2i)
s , e

(i)
v ] ∈ H(c) for all v ≥ t. If t = W (i) then [g(2i), e

(i)
W (i)] ∈

H(c). The set of indices of the W (i) elements g(2i) and [e
(i)
W (i), e

(i)
t ], for t ∈ [W (i) − 1],

satisfies (5.5).

This concludes the proof of Theorem 2.5.

5.3. Taketa bounds for Fr,c(Fq). The Taketa problem asks for a bound to the derived
length dl(G) of a finite solvable group G in terms of the number of its character degrees;
see, for example, [22]. It is known that dl(G) is bounded by a linear function in | cd(G)|.
Isaacs conjectured that the bound for p-groups is logarithmic. It cannot be better than
logarithmic, as the family (Un(Fq)) shows: dl(Un(Fq)) = dlog2(n)e, but | cd(Un(Fq))| ∼
n2/4; cf. [16].

Our results exhibit double-logarithmic Taketa bounds for the groups Fr,c(Fq), a fam-
ily of groups of unbounded derived length. Indeed, dl(Fr,c(Fq)) = dlog2(c)e, whereas

n(r, c) ∼ rbc/2c. Thus dl(Fr,c(Fq)) ≤ c1 log log(| cd(Fr,c(Fq))|) + c2 for suitable constants
c1, c2.

We also observe that there is a logarithmic bound to the derived length of the groups
Fr,c(Fq) in terms of their numbers of class sizes. In fact, | cs(Fr,c(Fq))| = c + 1 (unless
both r and c are very small), so dl(Fr,c(Fq)) ≤ c3 log(| cs(Fr,c(Fq))|). The (logq of the)

class sizes of the groups Un(Fq) form an interval of length
(
n−1

2

)
(cf. [29]), also yielding

a logarithmic bound for this family.

5.4. Numbers of characters. Theorem 2.5 describes the support of the character
vectors ch(Fr,c(Fq)), showing that the numbers chif (Fr,c(Fq)), for i ∈ [n(r, c)]0, are
nonzero. We make one observation on the order of magnitude of the number of characters
of maximal degree qn(r,c). Define

N(r, c) :=

c∑
i=1

Wr(i)− 2n(r, c).

Lemma 5.6. Let (r, c) 6= (2, 3), p > c and q = pf . Then

lim
q→∞

chn(r,c)f (Fr,c(Fq))
qN(r,c)

= 1.

Proof. The Lang-Weil estimate (cf. [24]) for the number of rational points on varieties

over finite fields implies that chn(r,c)f (Fr,c(Fq)) ∼ qr−2n(r,c)|Fr,c(Fq)′| = qN(r,c). �

By Theorem 2.5, the smallest degree of a nonlinear character of Fr,c(Fq) is q = pf .

We now count the number of characters of Fr,c(Fq) having degree q = pf , so generalizing
[19, Theorem 7].
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Proposition 5.7. Let r ≥ 2, p > c > 2 and q = pf . Then

chf (Fr,c(Fq)) =
qr−2(qr − 1)(q(r−1)(c−1)+1 + q(r−1)(c−1) − qr − 1)

q2 − 1
.

Proof. Let B(Y) be the commutator matrix with respect to a Hall basis for fr,c(Fq), and

recall the definition (5.3) of the matrices Bi,j . For y ∈ Fbq we define

u(y) := max{i ∈ [2, c] : there exists j ∈ [i− 1] such that Bj,i−j(y) 6= 0}.

For s ∈ [2, c], we now compute the quantity ns := #{y ∈ Fbq : u(y) = s, rk(B(y)) = 2}.
This suffices, as chf (Fr,c(Fq)) = qr−2νf (Fr,c(Fq)) = qr−2

∑c
s=2 ns.

For s = 2, Proposition 2.4 for k = 1 implies that n2 = (qr − 1)(qr−1 − 1)/(q2 − 1).
For s > 2, we claim that

(5.6) ns =
q(r−1)(s−2)(qr − 1)(qr−1 − 1)

(q − 1)
.

First note that if u(y) = s and rk(B(y)) = 2, then rk(B1,s−1(y)) = 1 and Bi,s−i(y) = 0
for i ∈ [2, s − 2]; see, for example, [28, Theorem 1]. In fact, after a suitable change of
basis for fr,c(Fq), we may assume that B(y) has zero entries everywhere except the first
row and column. We claim that

#{y ∈ FW (s)
q : rk(B1,s−1(y)) = 1, Bi,s−i(y) = 0 for i ∈ [2, s− 2]} =

(qr − 1)(qr−1 − 1)

(q − 1)
.

Indeed, there are qr−1 ways to fill in a row of B1,s−1(Y) so that all other rows are
zero. To see this, assume without loss of generality that this is the first row, and note

that exactly r − 1 of the Lie products of the form [e
(s−1)
i , e1], where e

(s−1)
i is a basic

commutator of weight s − 1, are basic, namely the ones of the form [ei,s−2 e1] where

i ∈ [2, r]. All other Lie products of the form [e
(s−1)
i , e1] are linear combinations of other

basic commutators of weight s. The variables associated to these occur in some other
row of B1,s−1(Y), or in some Bi,s−i(Y) for i ≥ 2, and so have the value zero. Up to
nonzero scalars, there are thus (qr−1 − 1)/(q− 1) ways to fill a row without obtaining a
zero row. Every row of B1,s−1(Y) is a linear multiple of such a nonzero row, and only
one of the qr possibilities yields the zero matrix. This establishes the claim.

We also claim that, for each y ∈ FW (s)
q such that rk(B1,s−1(y)) = 1 and Bi,s−i(y) = 0

for i ∈ [2, s− 2], there are q(r−1)(s−2) ways to choose y′ ∈ Fbq such that rk(B(y′,y)) = 1.
Indeed, again without loss we may assume that B1,s−1(y) is supported only on its first
row. By the arguments in the previous paragraph, each of the matrices B1,i(Y), for
i ∈ [s − 2], has exactly r − 1 variables corresponding to basic commutators in its first
row. All other entries in the first row are linear combinations of variables corresponding
to basic commutators occurring in other rows. This establishes the claim, and so (5.6).

Summing over s = 2, . . . , c establishes the result. �

5.5. Results on Fr,c(Fq) for specific values of r and c. We start with a lemma
generalizing the opening remarks of [19, Section 3], thus dealing with the exceptional
parameter values in Theorem 2.5.

Proposition 5.8. Let p ≥ 5 and let q = pf .

ch(F2,3(Fq)) = (q2, q3 − 1)f .
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Proof. We note that W2(1) = 2, W2(2) = 1 and W2(3) = 2. With respect to the Hall

basis {e(1)
1 , e

(1)
2 , g(2), [g(2), e

(1)
1 ], [g(2), e

(1)
2 ]}< for f2,3(Fq) the commutator matrix

B(Y) =

 −Y1 −Y2

Y1 −Y3

Y2 Y3

 .

The claim follows immediately from Theorem B. �

Proposition 5.9. Let p ≥ 5 and let q = pf .

ch(F3,3(Fq)) = (q3, q(q3 − 1)(q3 + q2 + 1), q(q3 − 1)(q5 + q4 − 1), q4(q − 1)(q3 − q − 1))f .

Proof. Set F = F3,3(Fq). We note that W3(1) = 3,W3(2) = 3 and W3(3) = 8. With
respect to a Hall basis for f3,3(Fq), the commutator matrix B(Y) is

−Y1 −Y2 −Y4 −Y5 −Y6

Y1 −Y3 −Y7 −Y8 −Y9

Y2 Y3 Y6 + Y8 −Y10 −Y11

Y4 Y7 −Y6 − Y8

Y5 Y8 Y10

Y6 Y9 Y11


=

(
B11(Y(2)) B12(Y(3))

B21(Y(3))

)
.

It suffices to prove our claim for ch2f (F ). Indeed, n(3, 3) = 3, the claim for ch0(F ) is
trivial, and that for chf (F ) follows from Proposition 5.7. Furthermore, the class number

k(F ) =
∑3

i=0 q
3−2iνif (F ) is q9 − 2q8 − q6 − q5 by Theorem 2.6.

We claim that there are q(q3−1)(q5 +q4−1) vectors y ∈ F11
q such that rk(B(y)) = 4.

For such y we distinguish whether rk(B12(y)) = 1 or rk(B12(y)) = 2. In the former case,
by (5.4) in the proof of Proposition 5.7, there are (q + 1)(q3 − 1) vectors (y4, . . . , y11) ∈
F8
q yielding rk(B12(y4, . . . , y11)) = 1, and for each of these there are q3 − q2 vectors

(y1, y2, y3) ∈ F3
q such that rk(B(y1, . . . , y11)) = 4. Thus

#{y ∈ F11
q : rk(B(y)) = 4, rk(B12(y)) = 1} = q2(q2 − 1)(q3 − 1).

On the other hand, the set N := {y ∈ F8
q : rk(B12(y)) = 2} has cardinality q(q3 −

1)(q3 + q2 − 1); cf. [2]. As every vector in N gives rise to q3 matrices B(y) of rank 4,

#{y ∈ F11
q : rk(B(y)) = 4, rk(B12(y)) = 2} = q4(q3 − 1)(q3 + q2 − 1)

and thus

ν2f (F ) = q2(q2 − 1)(q3 − 1) + q4(q3 − 1)(q3 + q2 − 1) = q2(q3 − 1)(q5 + q4 − 1),

which yields the claimed quantity for ch2f (F ) = q3−4ν2f (F ). �

We obtain the following generalization of [19, Lemma 14].

Proposition 5.10. Let p ≥ 5 and let q = pf .

ch(F2,4(Fq)) = (q2, q4 + q3 − q2 − 1, q4 − q2 − q + 1)f .

Proof. Note that n(2, 4) = 2. The formula for chf (F2,4(Fq)) is given by Proposition 5.7
and the class number k(F2,4(Fq)) is given by Theorem 2.6. �

Proposition 5.11. Let p ≥ 7 and let q = pf . The nonzero values of chi(F2,5(Fq)) are
given as follows.
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i chi(F2,5(Fq))
0 q2

f (q − 1)(q4 + 2q3 + 2q2 + q + 1)

2f (q − 1)(q7 + 2q6 + 3q5 + 2q4 + q3 − q − 1)

3f q2(q2 − 1)(q4 − q − 1)

Proof. Set F = F2,5(Fq), and note that n(2, 5) = 3. The statement about ch0(F ) is
trivial; the claim about chf (F ) is a special case of Proposition 5.7. By Theorem 2.6,
k(F ) = 2q8 + q7 − q5 − q4, so it suffices to compute, for instance, ch3f (F ).

We now describe a Hall basis for f2,5(Fq). We choose Lie generators x and y, where
y < x, and omit Lie brackets in left-normed Lie products, so, for example, [[x, y], x] is
represented by xyx. It is easily verified that the following elements form a Hall basis.

j Basis elements of weight j

1 y, x

2 xy

3 xyy, xyx

4 xyyy, xyyx, xyxx

5 xyyyx, xyyxx, xyxxx, xyyyy, (xyx)(xy), (xyy)(xy)

With respect to this basis, the commutator matrix

B(Y) =



−Y1 −Y2 −Y4 −Y5 −Y10 −Y11 − Y7 −Y12 − Y8

Y1 −Y3 −Y5 −Y6 −Y7 −Y8 −Y9

Y2 Y3 −Y11 −Y12

Y4 Y5 Y11

Y5 Y6 Y12

Y10 Y7

Y11 + Y7 Y8

Y12 + Y8 Y9


.

It suffices to prove that ν3f (F ) = q6(q2 − 1)(q4 − q− 1). If y ∈ F12
q and rk(B(y)) = 6

then (y11, y12) 6= {0}. Fix (y11, y12) ∈ F2
q \ {0}. It is easily checked that

#{y = (y7, . . . , y10) ∈ F4
q : rk(B14(y)) = 1} = q(q + 1).

Given y = (y7, . . . , y10) ∈ F4
q with rk(B14(y)) = 1, there are q5(q − 1) ways to choose

(y1, . . . , y6) ∈ F6
q such that rk(B(y1, . . . , y12)) = 6. Similarly,

#{y = (y7, . . . , y10) ∈ F4
q : rk(B14(y)) = 2} = q4 − q(q + 1).

Given y = (y7, . . . , y10) ∈ F4
q with rk(B14(y)) = 2, there are q6 ways to choose

(y1, . . . , y6) ∈ F6
q such that rk(B(y1, . . . , y12)) = 6. Thus

ν3f (F ) = (q2 − 1)
(
q5(q − 1) · q(q + 1) + q6 · (q4 − (q2 + q))

)
= q6(q2 − 1)(q4 − q − 1)

as claimed. �

Remark 5.12. We note that ch3f (F2,5(Fq)) is given by a polynomial in q and its expansion
in v := q − 1 has both positive and negative coefficients. Indeed

ch3f (F2,5(Fq)) = v(v + 2)(v + 1)2(v4 + 4v3 + 6q2 + 3v − 1).

We observe this phenomenon only for the family of groups F2,5(Fq), for p ≥ 7; in all
other families we considered the corresponding coefficients are nonnegative.
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thank I. M. Isaacs, L. G. Kovács and Avinoam Mann for helpful discussions.

References

[1] N. Avni, B. Klopsch, U. Onn, and C. Voll, Representation zeta functions of compact p-adic Lie
groups and arithmetic groups, Duke Math. J. 162 (2013), no. 1, 111–197.

[2] E. A. Bender, On Buckhiester’s enumeration of n × n matrices, J. Combinatorial Theory Ser. A
17 (1974), 273–274.

[3] N. Boston and I. M. Isaacs, Class numbers of p-groups of a given order, J. Algebra 279 (2004),
no. 2, 810–819.

[4] M. Boyarchenko, Representations of unipotent groups over local fields and Gutkin’s conjecture, Math.
Res. Lett. 18 (2011), no. 3, 539–557.

[5] M. Boyarchenko and M. Sabitova, The orbit method for profinite groups and a p-adic analogue of
Brown’s theorem, Israel J. Math. 165 (2008), 67–91.

[6] L. Carlitz and J. H. Hodges, Distribution of bordered symmetric, skew and hermitian matrices in a
finite field, J. Reine Angew. Math. 195 (1955), 192–201.

[7] J. Cossey and T. Hawkes, Sets of p-powers as conjugacy class sizes, Proc. Amer. Math. Soc. 128
(2000), no. 1, 49–51.

[8] A. Evseev, Reduction for characters of finite algebra groups, J. Algebra 325 (2011), 321–351.
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[30] A. Vera-López and J. M. Arregi, Conjugacy classes in unitriangular matrices, Linear Algebra Appl.
370 (2003), 85–124.

[31] C. Voll, Zeta functions of nilpotent groups—singular Pfaffians, Essays in geometric group theory,
Ramanujan Math. Soc. Lect. Notes Ser., vol. 9, Ramanujan Math. Soc., Mysore, 2009, pp. 145–159.

E. A. O’Brien, Department of Mathematics, University of Auckland, Auckland, New
Zealand

E-mail address: obrien@math.auckland.ac.nz

C. Voll, School of Mathematics, University of Southampton, University Road, Sou-
thampton SO17 1BJ, United Kingdom

Current address: Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld,
Germany

E-mail address: C.Voll.98@cantab.net


