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Abstract

We show how automorphisms can be used to reduce significantly the resources
needed to enforce laws in p-groups. This increases the extent to which Burnside
groups with prime-power exponent can be studied in detail. For example, we de-
scribe how to construct power-conjugate presentations for the restricted Burnside
groups R(5, 4) and R(3, 5) which have orders 22728 and 52282 respectively. We also
describe how to determine the exponent of a p-group and report on relevant fea-
tures of the current implementation of an algorithm to compute power-conjugate
presentations.

1991 Mathematics Subject Classification (Amer. Math. Soc.): 20-04, 20D15, 20F05.

1 Introduction

The purpose of this paper is to describe some of the improvements made to the ANU
p-Quotient Program which have significantly extended its capacity to handle computa-
tions with Burnside groups beyond those described in the paper of Havas & Newman
(1980) and the monographs of Vaughan-Lee (1993) and Sims (1994).

Given the solution of the Restricted Burnside Problem by Zel’manov (1991), the
basic Burnside question becomes: what is the order of R(d, e), the largest finite d-
generator group of exponent e? The methods we use apply to the case when e is
a prime-power pm. This should be thought of as a test question; it is really more
important to compute, and make readily available for use, consistent power-conjugate
presentations (see Section 2) for these groups or at least significant quotients of them.
We will describe the main algorithmic advances which have been made recently (beyond
the accounts above). We use the resulting implementation to obtain:

• the order and a consistent power-conjugate presentation for the largest finite
5-generator group, R(5, 4), with exponent four which has order 22728;
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• a consistent power-conjugate presentation for the largest finite 3-generator group,
R(3, 5), with exponent five which has order 52282.

The main advance is the use of some of the automorphisms of the Burnside groups
to reduce the number of instances of the relevant power word which need to be calcu-
lated to ensure that the exponent law holds. Another important feature is the use of
consequences of the exponent law both to control the size of intermediate presentations
and reduce the computation time. Moreover one can use information gathered in the
process of computing these consistent power-conjugate presentations to make it easier
to regenerate them. This helps ameliorate the problem of making the presentations
available for others to use. The ANU p-Quotient Program also incorporates, and in
part improves on, ideas which have already been reported in the literature:

• the improvements to consistency enforcing and exponent enforcing suggested by
Vaughan-Lee (1984);

• the use of collection from the left (Leedham-Green & Soicher, 1990; Vaughan-Lee,
1990a).

In Section 2 we recall both important features of power-conjugate presentations
and the basic algorithm for computing such presentations. Much of this material is
discussed in Havas & Newman (1980), Sims (1994, Chapter 11) and Vaughan-Lee (1993,
Appendix B). In Section 3 we present an algorithm for determining the exponent of a p-
group. In Section 4 we discuss using automorphisms to help construct power-conjugate
presentations. In Section 5 we discuss using consequences of an exponent law to control
the size of intermediate presentations. We discuss aspects of the implementation in
Section 6. In Section 7 we report on the use of our implementation to construct
consistent power-conjugate presentations for R(3, 5) and R(5, 4), and illustrate how the
use of automorphisms permits us to reduce significantly the number of words whose
relevant powers need to be made trivial. In Section 8 we describe how information
obtained about the group can be used to allow cheap regeneration of the presentation.
All times reported in the paper are in (rounded) CPU seconds obtained on a Sparc
Server 10/51, having 128 MB RAM.

2 The basic algorithm

Finite groups of prime-power order may be described using presentations which are
commonly known as power-conjugate (or power-commutator) presentations. The gen-
erating set is a finite set {a1, . . . , an}. The defining relations are:

ap
i =

n∏
k=i+1

a
β(i,k)
k , 0 ≤ β(i, k) < p , 1 ≤ i ≤ n ,

aai
j = aj

n∏
k=j+1

a
β(i,j,k)
k , 0 ≤ β(i, j, k) < p , 1 ≤ i < j ≤ n .
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These presentations have proved to be of central importance in allowing effective com-
putation with p-groups; see Sims (1994, Chapter 9) for further discussion. Every group
of order pn has a power-conjugate presentation on n generators.

A critical feature of a power-conjugate presentation is that every element of the
presented group may be written as a normal word aα1

1 aα2
2 . . . aαn

n where each αi is an
integer and 0 ≤ αi < p. Moreover there are mechanical procedures for collecting an
arbitrary word in the generators to a normal word equivalent to it using the power-
conjugate presentation. If every element has a unique normal form, then the power-
conjugate presentation is consistent. Collection using a consistent power-conjugate
presentation provides a solution to the word problem.

A power-conjugate presentation for a finite p-group may be constructed using a
p-quotient algorithm. In theory, one can deal with groups described in various ways.
We consider finite presentations, possibly combined with exponent laws. The first such
algorithm was described by Macdonald (1974). Havas & Newman (1980) describe an
algorithm which provides the foundation for the one in common use today. Holt (1984)
provides an algorithm to compute such a presentation for a permutation group.

Our algorithm uses a variation of the lower central series known as the lower
exponent-p central series. This is the descending sequence of subgroups

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1. If Pc(G) = 1 and c is the smallest such
integer then G has exponent-p class c. A group with exponent-p class c is nilpotent
and has nilpotency class at most c. In this paper the class of a group refers to its
exponent-p class.

In its default mode, the algorithm takes as input a finite presentation {X |R}, a
prime p and a positive integer c, and yields a consistent power-conjugate presentation
for the largest class c p-quotient of the group defined by {X |R}. It works class by
class. That is, having computed a consistent power-conjugate presentation P for the
largest class k quotient P it goes on to compute one for the largest class k+1 quotient.
Let d be the generator number of P ; then P can be represented as F/R where F is a
free group of rank d. The largest class k + 1 quotient is a homomorphic image of the
p-covering group P ∗ = F/[R,F ]Rp of P . The steps of the algorithm are:

• add new generators (tails) to P – corresponding to a generating set for R/[R,F ]Rp;

• compute the other relations needed to define a power-conjugate presentation for
the p-covering group on this extended generating set (compute tails);

• make the resulting presentation consistent;

• impose the relations in R.

If the description of the group includes the condition that its exponent is pm, then one
has the additional step, which, in our context, is of central importance:
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• compute and factor out the subgroup of P ∗ generated by the pm-powers.

The final step of the algorithm eliminates the redundancies which arise among
the new generators from consistency, imposition of defining relations, and exponent
enforcement. Suppose that t new generators are added and that r independent relations
are found between them. Then a consistent power-conjugate presentation for the largest
class k +1 quotient has t− r more generators than one for the largest class k quotient.
Eliminating r of the added generators using the relations amounts to solving a system
of r linear equations in t unknowns over the field of p elements. This step will be
considered in more detail in Section 5.

The ANU p-Quotient Program provides access to our implementation of this al-
gorithm. Various strategies for collection exist; a general discussion can be found in
Sims (1994, §9.4). Inspired by the investigations of Leedham-Green & Soicher (1990),
Vaughan-Lee (1990a) developed and implemented an algorithm to carry out collection
from the left and also demonstrated that it performs significantly better for Burn-
side groups. His implementation is modelled on that developed by Havas & Nicholson
(1976). In 1991, he and O’Brien further refined the implementation of this algorithm.
In particular, they introduced tests to reduce the possibility of (integer) overflow and
polished other parts of the implementation. The program uses the consistency tests of
Wamsley (1974) as improved by Vaughan-Lee (1984).

Let G be a d-generator p-group of order pn. The consistent power-conjugate pre-
sentations constructed have additional structure so that, for example, {a1, . . . , ad} is
a generating set for G. For each ak in {ad+1, . . . , an}, there is at least one relation
whose right hand side is ak. (We store the relations as commutators rather than con-
jugates.) One of these relations is taken as the definition of ak. The power-conjugate
presentations also have a weight function associated with them: a generator is assigned
a weight corresponding to the stage at which it is added and this weight is extended
to all normal words in a natural way. More formally, a function, ω, is defined on the
generators of the power-conjugate presentation according to the following rules:

(i) ω(ai) = 1 for i = 1, . . . , d;

(ii) if the definition of ak is ap
i = ak, then ω(ak) = ω(ai) + 1;

(iii) if the definition of ak is [aj, ai] = ak, then ω(ak) = ω(aj) + ω(ai).

Note that ω(an) is the class of G.
In our implementation, the construction of the tails is carried out in two parts

to provide added flexibility. The first stage adds the appropriate new generators or
tails and takes little time. For example, in computing a consistent power-conjugate
presentation for R(5, 4) at class 11, adding the new generators for the 10 692 relations
[aj, ai] = . . . with i ≤ 5 which are not definitions takes less than 0.1 seconds. However,
the second stage where the rest of the tails, or the right hand sides of other relations
which are needed for collection, are computed is quite time consuming. In Section 5 we
state theorems which guarantee that some of these tails are trivial and hence need not
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be computed; in this way, we obtain significant time reductions. A detailed description
of the method of constructing tails can be found in Newman, Nickel & Niemeyer (1995).

3 Determining the exponent of a p-group

The study of Burnside groups requires a practical algorithm for verifying that exponent
laws hold or, alternatively, enforcing exponent laws. Essentially, the same methods can
be used to determine the exponent of a p-group.

As shown in Sims (1994, p. 563), the Higman Lemma provides a basis for a practical
algorithm. It states that a group of class c described by a power-conjugate presentation
has exponent pm if every normal word of weight at most c has order dividing pm.
Moreover, since the powers of an element of order pm have order dividing pm, it suffices
to consider normal words with leading coefficient 1.

For example, there is a finite presentation with 4 defining generators and a relation
set of 1016 fourth powers which defines a group with a largest class 10 quotient of order
2422. In this case we have to consider 376 727 normal words; if the fourth power of (the
element defined by) each of these is trivial, then the group has exponent four — and
is R(4, 4).

Vaughan-Lee (1984) reduced the number of necessary normal words using the fol-
lowing observations:

• since all the elements in a conjugacy class have the same order, it suffices to
consider one element in each conjugacy class;

• if the normal closure of a generator a having order p has class at most p− 1 and
certain weight conditions hold on u, then (ua)pm

= upm
and so ua need not be

considered.

The algorithm uses filters based on these ideas to reduce the list of normal words by
filtering out some conjugates and some which satisfy this normal closure condition. For
example, it uses the resulting filtered list of 143 134 words to verify that the above
presentation defines a group of exponent four. For R(5, 4), verification is still a serious
bottle-neck — there are 161 117 868 normal words in the putative power-conjugate
presentation and the program would compute the fourth power of 83 905 543 words.
We describe in Section 4 how the use of automorphisms allows us to get much more
practical lists of words to test. They consist of fewer words and a larger proportion of
words whose fourth powers are fast to calculate.

The general purpose algorithm for computing the exponent of a finite group first
determines representatives of the conjugacy classes and then takes the least common
multiple of their orders. The large number of conjugacy classes in p-groups frequently
poses problems for this algorithm.

We now describe how the p-quotient algorithm can be used to determine the ex-
ponent of a p-group. This method, not surprisingly, is much more efficient than the
general purpose approach. The basic idea is that the exponent of a p-group can be
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computed at the same time as a consistent power-conjugate presentation is being com-
puted. Suppose that P is the largest class k quotient of the given group, G, and Q is
the largest class k + 1 quotient. Suppose further that we have computed a consistent
power-conjugate presentation for Q and know that the exponent of P is e. Clearly the
exponent of Q is either e or pe. Thus it suffices to compute the e-th powers in Q for
the filtered list of normal words of the consistent power-conjugate presentation for Q.
If one of these is non-trivial, the exponent of Q is pe and we can stop calculating. If
they are all trivial, then, by the Higman Lemma and the Vaughan-Lee filters, Q has
exponent e. It would be useful to find even sharper criteria that work for p-groups in
general. Since the program can also compute automorphism groups, the ideas used in
the context of Burnside groups could be extended.

Since the exponent of a p-group of class at most p−1 is the maximum of the orders
of the defining generators, it is particularly easy to compute the exponent for p-groups
of class at most p− 1. For a proof of this result, see M. Hall (1959, Chapter 12). If the
class of the group is larger than p−1, we use the Higman Lemma and the Vaughan-Lee
filters to get a list of words whose pm-th powers suffice to determine the exponent of
the p-covering group, P ∗. These are applied to the relevant quotient Q of P ∗. Of
course, once one finds an element of order greater than the exponent of P , we know
the exponent of Q; otherwise Q and P have the same exponent. In summary:

1. Compute the maximum, e, of the orders of the defining generators of G.

2. If c is at most p− 1, return e as the exponent of G.

3. Otherwise, construct the largest p-quotient of G having class p− 1.

4. For each class k = p, . . . , c, first construct the largest class k quotient of the group
which satisfies the defining relations of G. Compute the e-th powers of the words
in the filtered list of normal words. If one of these is non-trivial, stop processing
this list and update e to have value pe. Return e as the exponent of the class k
quotient.

Versions of this algorithm are implemented in both GAP and Magma and perform
extremely well. For example, Magma takes 4 seconds to determine that the class
10 5-quotient of the free group on 2 generators, a group of order 5520, has exponent
510. Our algorithm also forms the basis of one to find the exponent of finite nilpotent
groups, since the exponent of each Sylow p-group can be found using this strategy.

4 Using automorphisms

All the elements in an automorphism class of a group have the same order, so to
determine or verify the exponent of a group it suffices to evaluate the order of one
element in each automorphism class. It may not be easy, or worthwhile in cost terms,
to determine the full automorphism group. However, as we report, it can pay to use
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a subgroup of automorphisms and consider (at least) one element from each class of
elements relative to this group of automorphisms.

The groups R(d, e) are relatively free (see Hanna Neumann, 1967, p. 19) so every
mapping from a minimal generating set into the group lifts to an endomorphism. Since
G = R(d, e) has G/P1(G) as an elementary abelian quotient of rank d, every element
of GL(d, p) lifts to an automorphism of G. We take a generating set of GL(d, p) and
consider the group of automorphisms which results from lifting this. With this group
acting, every class of elements of G which does not lie in P1(G) contains an element
of the form adu where u ∈ P1(G). Consider the list of normal words provided by
the Higman Lemma and the Vaughan-Lee filters. Take the sublist consisting of those
elements which have the form adu. It suffices to take this sublist because the pm-th
power subgroup of the p-covering group is the subgroup generated by the closure under
the automorphisms of the pm-th powers of the words in this sublist. Not only is this list
shorter but it consists of elements whose relevant powers are, on average, much faster
to calculate. At first sight, we could choose any one of {a1, . . . , ad} as the leading term;
however, the interaction of the various filters produces the shortest filtered list if we
choose ad.

In the case of the class 11 quotient of R(5, 4) this approach gives a list of 3 503 197
elements. It is possible to make the list significantly shorter by considering the classes
of elements that do not lie in P2(G) or later terms of the central series. In verifying
that the group presented by our putative presentation for R(3, 5) has exponent five,
we considered classes of elements that do not lie in P3(G). This reduces the length of
the list of normal words from 2 099 401 to 24 062.

5 Use of consequences

Another useful way of reducing the space and time requirements of computing power-
conjugate presentations for Burnside groups is to use some of the consequences of the
exponent law.

For the cases we considered, it is important to control the size of the intermediate
presentations generated when we compute tails of various weights. The elimination
process might require a lot of space especially towards the end of a calculation when
the number r of relations found is more than half the number t of new generators
added. A rough calculation suggests that it could need at least space for (t/2)2/p
words. Thus, in the class 12 step of the calculation for R(5, 4), where 10 692 new
generators are added and 10 652 independent relations are found, 50 MB additional
space might be needed for the elimination. Consequences of the exponent condition
can be used to give the system of equations a block structure which can be used to
reduce dramatically space requirements. We outline this below.

For example, in groups of prime exponent we have the (p − 1)-Engel congruence
that [y, (p−1)x] is a product of commutators of weight at least p+1 (see Vaughan-Lee,
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1993, 2.4.8). We also use the multilinear form of this identity: namely,∑
σ∈perm{1,...,p−1}

[y, x1σ, . . . , x(p−1)σ]

is a product of commutators of weight at least p + 1 with each of y, x1, . . . , xp−1 as an
entry. (This is implicit in the proof of 2.4.8.)

For instance, the class 11 quotient of R(3, 5) has order 51855; its 5-covering group has
order 55565 and the class 12 quotient has order 52133. We use instances of the 4-Engel
congruence, with y replaced by generators all having weight one of 5 through 8 and
x replaced by generators of weight 1, to generate a total of 657 redundancies among
the new generators; their automorphism closure yields 2061 additional redundancies.
The cost of generating the consequences is 70 seconds; calculating their closure takes
a further 160 seconds. The closure of a single instance each of the exponent law and
of consistency provides the remaining 714 redundancies.

For groups of exponent four we use four results:

(1) for d ≥ 3 the class of a d-generator group is at most 3d− 2 (Gupta & Newman,
1974; also see Vaughan-Lee, 1993, 6.4.1);

(2) every commutator of weight at least 6 in which an element occurs four times as
an entry is trivial (Vaughan-Lee, 1993, 6.3.20);

(3) the commutator [a, b, c, x, x, x] is a product of commutators with entries from
{a, b, c, x} each with at least two entries a, two b’s, two c’s and three x’s (strong
form of Vaughan-Lee, 1993, 6.3.8);

(4) for d ≥ 3 the (3d− 3)-th term of the lower central series has rank 2
(

d+1
3

)
+

(
d+1
2

)
(Vaughan-Lee, 1993, 6.5.2 and Lemma 6.5.4).

Result (1) ensures that we can stop the computation at the end of class 3d − 2.
Result (2) is used in two ways. First, it is used to impose a block structure on the
equation system. For example, the consistent power-conjugate presentation for the
class 11 quotient of R(5, 4) has 110 generators of weight 11 and 264 generators of
weight 10; so the tails step adds 550 new generators of weight 12 and 1210 generators
of weight 11. Among the new generators of weight 12 there are 200 which have an
entry occurring 4 times and 12 whose last 3 entries are the same — these are trivial
by result (3). In the context where sufficient automorphisms are included to induce
the full general linear group on the class 1 quotient, the automorphism closure of these
200 + 12 generators has dimension 490. Thus the equation system has a block of 490
equations in 550 unknowns. The new generators of weight 11 which have an entry
occurring 4 times or which have the same last 3 entries generate under closure 1145
additional relations. Continuing in this way provides further blocks for each weight.
The complete system can now be readily solved using these subsystems. Second, result
(2) is used in calculating tails. In the same example there are 335 610 tails to calculate
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at weight 12. Calculating these in the usual way takes 900 seconds. By (2) the [aj, ai]
with at least four entries the same are trivial. They are easy to recognise and filter
out; the remaining 86 892 are processed in 240 seconds.

Result (4) ensures that it suffices to verify the consistency and exponent of the
presentation for the class (3d − 4)-quotient. For d = 5 this reduces the number of
fourth powers to evaluate to 6 599 245 in a smaller class context; as reported in
Section 4, we use automorphisms to reduce the number of powers to 3 503 197.

6 The implementation

The implementation of the p-quotient algorithm described in Havas & Newman (1980)
was written in Fortran. (At that time, it was called the nilpotent quotient program.) A
part of this implementation was available in the computational algebra system, CAY-
LEY (see Cannon, 1984). A translation of this code to C was carried out by machine
in 1987. In 1991, O’Brien used some of this code as one component in developing a
new C implementation.

The resulting program is now known as the ANU p-Quotient Program. It contains
about 22 000 lines of (commented) code; about 8000 of these implement the p-quotient
algorithm. The program also offers access to implementations of the following:

• the p-group generation algorithm described in Newman (1977) and O’Brien (1990);

• an algorithm to decide isomorphism of p-groups described in O’Brien (1994);

• an algorithm to compute the automorphism group of a p-group described in
O’Brien (1995).

The program is menu-driven and provides two levels of control. The Basic Menu
is designed for routine use; the Advanced Menu provides high levels of control to an
experienced user. The program is available both as a stand-alone by anonymous FTP
from ftpmaths.anu.edu.au and:

• as a share package with GAP (see Schönert et al., 1994);

• as part of Magma (see Bosma & Cannon, 1994);

• as part of Quotpic (see Holt & Rees, 1993).

Many of the features of the program are accessible via these systems.
The Advanced Menu provides options for collecting words and evaluating commu-

tators in the defining and power-conjugate presentation generators. A user may also
supply automorphisms, which can be used in enforcing the exponent law. Matrices
which describe the action of these automorphisms on sections of the central series of
the group can be produced and used (in GAP or Magma, for example) to analyse
module structure. The exponent law option allows the user to construct:
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(1) the filtered list of normal words obtained by applying the Higman Lemma and
the Vaughan-Lee filters;

(2) the shorter list obtained by assuming the relevant general linear group is induced
on the class 1 quotient;

(3) lists obtained where each word has a specific user-supplied prefix and each addi-
tional letter in the word has a weight lying between user-supplied bounds.

An important practical feature in closing relations under the action of automor-
phisms is the order in which the consequences of an exponent law are processed. These
relations are stored in a queue whose entries are then closed under the action of the
induced automorphisms. We found that the time taken to close is reduced if we first
process all relations which have “short” length and process the longer relations only
when all short relations are processed. The difference in cost can be attributed to the
time taken to echelonise the longer relations. The queue factor of a relation is the
ratio of its length to the maximum number of generators (the number of tails added)
for that class. The program first processes those relations whose queue factor is less
than a selected value. We used queue factors ranging from 0.05 through 0.15 for the
computations reported here.

7 Computing presentations

Here we report on the use of the ANU p-Quotient Program in computing consistent
power-conjugate presentations for various Burnside groups.

7.1 Groups of exponent 5

A consistent power-conjugate presentation for R(2, 5), a group of order 534, can be
computed using the default implementation in 6 seconds. Sims (1994, §11.7) reports
in some detail on aspects of this computation.

Let W (3, 5) be the free 3-generator Lie algebra in the variety of Lie algebras de-
termined by 5x = 0 and the series of multilinear identities Kn = 0 introduced by
Vaughan-Lee (1985). Havas, Newman & Vaughan-Lee (1990) show that W (3, 5) has
dimension 2282 and class 17. Vaughan-Lee (1990b) used this result to prove that the
order of R(3, 5) is 52282. Let L(3, 5) be the 3-generator Lie ring associated with the
lower central series of R(3, 5), and let N(a, b, c) be the normal subgroup of R(3, 5) gen-
erated by commutators with multiweight (d, e, f) where d > a or e > b or f > c. He
constructed a consistent power-conjugate presentation for R(3, 5)/N(5, 6, 6), a group
of order 52180, and used this to deduce that L(3, 5) is equal to W (3, 5) and hence
established the order of R(3, 5).

In 1991, we computed for the first time a consistent power-conjugate presentation
for R(3, 5) itself using the ANU p-Quotient Program, where we supplied sufficient
automorphisms to induce the action of the general linear group GL(3, 5) on the class 1
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quotient. We found that computing the extensions of a generating set of automorphisms
to act on the group is the most expensive part of the computation. We investigated
the impact of two generating sets on the performance of the algorithm. The first was
the “standard” generating set:

α1 : a1 7−→ a2
1 , α2 : a1 7−→ a4

1a3 ,
a2 7−→ a2 a2 7−→ a4

1 ,
a3 7−→ a3 a3 7−→ a4

2 .

The second was the following:

α1 : a1 7−→ a1a2 , α2 : a1 7−→ a2 ,
a2 7−→ a2 a2 7−→ a3 ,
a3 7−→ a3 a3 7−→ a2

1 .

The time taken to compute extensions for the elements of the second set was about 40%
of the cost for the first. We considered a few other generating sets without obtaining
further improvement.

Task R(3, 5) R(5, 4)

Tails 10 592 3711

Automorphism extensions 24 290 1080

Elimination 2025 3908

Engel evaluation 1526 —

Closure 2132 636

Total 40 788 9348

Table 1: Times to construct power-conjugate presentations

In Table 1 we report the time taken to construct a power-conjugate presentation for
R(3, 5). When the presentation for the class 17 quotient was constructed, we verified
that it is consistent in 10 300 seconds. Finally, as reported in Section 4, we verified
that it has exponent five by evaluating 24 062 normal words in 196 000 seconds. The
maximum workspace used was about 150 MB.

7.2 Groups of exponent 4

Completely routine use of the ANU p-Quotient Program yields a consistent power-
conjugate presentation for R(4, 4) and a proof in 2470 seconds. The class 8 quotient
of this presentation can be shown to be consistent in 5 seconds and to have exponent
four in 28 seconds by evaluating 11 533 fourth powers.
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A consistent power-conjugate presentation for R(5, 4) was first computed by New-
man in 1989 using a special purpose version of the original Fortran implementation.
Features of the prime 2 were used to reduce the amount of space required. A consis-
tent power-conjugate presentation for R(5, 4) can now be readily computed using the
methods described here and in Table 1 we report timings for this task. It takes 3000
seconds to verify that the class 11 quotient is consistent. We verified that the group has
exponent four by evaluating 3 503 197 normal words in 37 000 seconds. The maximum
workspace used was about 40 MB.

Since Sanov (1940) has proved that all groups of exponent four are locally finite,
R(d, 4) is the largest d-generator group of exponent four (this is often denoted B(d, 4)).

8 Regenerating presentations

Once a consistent power-conjugate presentation for a group has been determined, one
can read off from the output files, including the presentation, produced in the process
information which makes regenerating the presentation cheaper (also noted in Newman,
1993).

For example, the process of generating R(4, 4) shows that 1016 fourth powers are
enough to define the group. Using these powers together with a set of 213 instances of
consistency yields a consistent power-conjugate presentation in 95 seconds. Imposing
those relations is much quicker than using list (1) or even list (2). In this case us-
ing automorphisms and consequences does not give significant further improvements.
However for R(5,4) they do play an important role, particularly in ensuring relatively
cheap solution of the underlying linear equation systems.

This approach also has the advantage for the groups considered in this paper that
one does not need to store the consistent power-conjugate presentation because it can
be regenerated reasonably quickly. For example, the data file for R(5, 4) is about 22
MB while a commented input file is about 14 KB. This makes transmission much easier,
and has the additional advantage that it is possible to see that only 4th powers and
their consequences were used to generate the presentation. This last point is important
because there is no way of recognising this from the presentation itself.
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