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Abstract

The class-breadth conjecture for groups with prime-power order was formu-
lated by Leedham-Green, Neumann and Wiegold in 1969. We construct a new
counter-example to the conjecture: it has order 219 and is a quotient of a 4-
dimensional 2-uniserial space group. We translate the conjecture to p-uniserial
space groups, prove that these have finite cobreadth, and provide an explicit
upper bound. We develop an algorithm to decide the conjecture for p-uniserial
space groups, and use this to show that all 3-uniserial space groups of dimension
at most 54 satisfy the conjecture. We show that over every finite field there are
Lie algebras which fail the corresponding conjecture.

1 Introduction

Leedham-Green, Neumann and Wiegold formulated the class-breadth conjecture in
1969 [12] as part of a study of the relationship between the breadth and the nilpotency
class of p-groups. Recall that the breadth b(G) of a p-group G describes the size pb(G) of
the largest conjugacy class of G. They conjectured that, for a p-group G, the nilpotency
class c(G) is at most b(G) + 1. They proved that c(G) ≤ p

p−1
b(G) + 1; more recently,

Cartwright [3] proved that c ≤ 5
3
b(G) + 1.

The conjecture has been established under various conditions. For example it holds
for groups with maximal class, when b(G) ≤ 4, when b(G) ≤ p + 1, for metabelian
groups, and for groups not covered by certain 2-step centralisers; see [7] for appropriate
references. Further it holds for the groups with order dividing 512.

In the 1970s Leedham-Green pioneered the use of coclass as a primary invariant
in the theory of p-groups. Recall that the coclass cc(G) of a group G with order pn

is n − c(G). An account of the spectacular progress in this direction is given in the
recent book by Leedham-Green and McKay [11]. Similarly, we define the cobreadth
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cb(G) of a group G with order pn as n − b(G). The class-breadth conjecture can now
be formulated as cb(G) ≤ cc(G) + 1.

An early success for the coclass approach was its use in the construction of counter-
examples to the conjecture. Felsch, Neubüser and Plesken [7] prove that, for each
positive integer k, there is a 2-group G with cc(G) + k < cb(G). These groups were
constructed as quotients of 2-uniserial space groups (see Section 2 for a definition). The
smallest has order 234, coclass 5 and cobreadth 7, and is a quotient of a 2-uniserial space
group with dimension 8. Its construction is described by Felsch [5]; the verification that
it is a counterexample relied heavily on the conjugacy class algorithm of Felsch and
Neubüser [6], which is also used in our computations.

In this paper we discuss the class-breadth conjecture translated to p-uniserial space
groups. The coclass of a p-uniserial space group S with lower central series S =
γ1(S) > γ2(S) > . . . is defined by cc(S) = limi→∞ cc(S/γi(S)). By analogy, we define
the cobreadth of S by cb(S) = limi→∞ cb(S/γi(S)). In Section 2 we recall that S has
finite coclass, prove that S has finite cobreadth and obtain an explicit upper bound.
Hence we can formulate the class-breadth conjecture explicitly for a p-uniserial space
group S: namely cb(S) ≤ cc(S) + 1. If S is a counter-example, then, for large enough
i, it follows that cb(S/γi(S)) = cb(S) > cc(S) + 1 = cc(S/γi(S)) + 1, and so we obtain
an infinite family of counter-examples to the original conjecture. Lower bounds for i
can be obtained from the proof of Coclass Theorem A [11, Section 6.4].

Combining our explicit upper bound with the algorithm in [4], we obtain an effective
algorithm for constructing all p-uniserial space groups in a given dimension which might
be counter-examples to the conjecture. It is described in Section 3. We implemented
this algorithm in GAP [9]. It and Magma [1] were used extensively in our investigations.

As an application of our algorithm, we revisited the class-breadth conjecture for
the prime 2. We show that there is exactly one counter-example to the conjecture
among the 4-dimensional space groups; it has a quotient of order 219, coclass 4 and
cobreadth 6. We have found 64 counter-examples among space groups in dimension 8.
More detail is given in Section 4.

We investigated whether a similar approach might yield an odd order counter-
example. We have found none. In Section 5 we prove that all 3-uniserial space groups
with dimension at most 54 satisfy the class-breadth conjecture.

Leedham-Green et al. [12] also studied the corresponding question for Lie algebras.
In particular they exhibited a nilpotent Lie algebra of dimension 8 over GF(2) which
has coclass 1 and cobreadth 3. In Section 6, we exploit recent work [2] on Lie algebras
with coclass 1 to exhibit, for every finite field F , a nilpotent Lie algebra L over F with
cb(L) > cc(L) + 1.

2 Uniserial space groups

We first recall some basic concepts related to p-uniserial space groups. More precise
formulations and references for these statements can be found in [11, Chapters 4, 10].
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A space group S is an extension of a free abelian group T by a finite group P acting
faithfully on T . The group T is the translation subgroup and P is the point group of S.
If T has rank m, then S is a space group of dimension m. Since P acts faithfully on
T , it follows that P embeds in the general linear group GL(m, Z).

We say that S is p-uniserial if its point group P is a p-group and the series defined
by T0 := T and Ti+1 := [Ti, S] for i ∈ N satisfies [Ti : Ti+1] = p for all i.

The s-fold wreath product W (s, p) of cyclic groups with order p has an integral
representation in dimension m = ps−1(p−1). The standard W (s, p)-lattice is Zm which
we denote by M . Let M0 := M and Mi+1 := [Mi, W (s, p)]; the series M0 > M1 > . . .
satisfies [Mi : Mi+1] = p. Every p-subgroup of GL(m, Z) is conjugate in GL(m, Q) to a
subgroup of W (s, p). A subgroup P of W (s, p) is p-uniserial if Mi+1 = [Mi, P ] for all
i ∈ N. Clearly a space group is p-uniserial if and only if its point group is p-uniserial.

The actions of W (s, p) on M0, . . . ,Mm−1 yield a complete, but redundant, set of
representatives for the GL(m, Z)-classes of maximal p-subgroups in GL(m, Z).

2.1 The coclass of a space group

We first recall the well-known result that a p-uniserial space group has finite coclass.

Lemma 2.1 Let S be a p-uniserial space group with point group P . Then the quotients
S/γj(S) for j > c(P ) form a series of finite p-groups with the same coclass.

Proof: Let T be the translation subgroup of S and let P have order pn and nilpotency
class k − 1. Then γk(S) ≤ T and thus γk(S) = Ti for some i. As S acts uniserially on
T , it follows that γk+j(S) = Ti+j for all j. Hence the finite quotients S/γj(S) for j ≥ k
form a series of p-groups with coclass n + i− k + 1. •

Leedham-Green, McKay and Plesken (see [11, 10.5.12] for details) proved that

s ≤ cc(S) ≤ logp |P |

for a p-uniserial space group S with dimension ps−1(p − 1) and point group P . This
upper bound is sharp: for every p-uniserial point group P , the split extension M o P
with its standard lattice M = Zm is a p-uniserial space group of coclass precisely
logp |P |. The lower bound, also sharp for some p-uniserial point groups P , is much
more difficult to obtain. The algorithm of [4] can be used to determine the smallest
coclass of a p-uniserial space group with given point group.

2.2 The cobreadth of a space group

The cobreadths of the S/γi(S) form a non-decreasing sequence of integers (see, for
example, [14]). We prove a lemma which allows us to bound the cobreadths of these
quotients.

If G is a group with order pn and g ∈ G has a conjugacy class of size pb, then the
cobreadth of g is cb(g) := n− b. Thus cb(G) = min{cb(g) | g ∈ G}.
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Lemma 2.2 Let g be an element of a p-uniserial space group S. Let CS/T (gT ) have
order pr. Let g ∈ GL(m, Z) denote the action of g on T . If 1 − g has x elementary
divisors p and y elementary divisors 0, then

cb(gT pl

) ≤ x + ly + r for every l ∈ N.

Proof: Let q = pl. Since the irreducible integral representations of a cyclic p-group
are trivial or p-uniserial, the elementary divisors of 1 − g are 1, p or 0. Let U be the
matrix for 1 − g and let D = AUB be the Smith normal form of U . If tU ∈ T k then
tA−1D ∈ T k for all k ∈ N and t ∈ T , and conversely. Hence the intersection of the
centraliser of gT q with T/T q has order px+ly if l > 0 (otherwise this is only an upper
bound). Therefore cb(gT q) ≤ x + ly + r. •

Lemma 2.2 can now be applied to obtain an upper bound for the cobreadth of S.
Following [11] we let d0, . . . , ds−1 be the natural generating set for the wreath product
W (s, p) and define c0 = d0 · · · ds−1. Then c0 is an element with order ps in W (s, p). For

1 ≤ i ≤ s− 1 we define ci = cpi

0 and Wi(s, p) = CW (s,p)(ci). For example, in W (3, 2),

d0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , d1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , d2 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Hence

I − c0 =


1 0 −1 0
0 1 0 −1
0 −1 1 0
1 0 0 1

 , I − c2
0 =


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 ,

and these matrices have elementary divisors 1, 1, 1, 2 and 1, 1, 2, 2, respectively.

Theorem 2.3 Let S be a p-uniserial space group of dimension ps−1(p− 1) with point
group P . If ci ∈ P for some i, then

cb(S) ≤ (s− i + 1)pi + pi−1 + pi−2 + . . . + p + 1.

Proof: It is straight-forward to write down the matrices 1 − ci and determine that
they have (p−1)ps−1−pi elementary divisors 1 and pi elementary divisors p. It follows
from Lemma 2.2 that cb(S) ≤ pi + |Wi(s, p)|.

As observed in [4], Wi(s, p) is the permutational wreath product of a cyclic group
of order ps−i with W (i, p). Thus |Wi(s, p)| = |W (i, p)|(ps−i)pi

and hence

logp |Wi(s, p)| = pi−1 + pi−2 + . . . + p + 1 + (s− i)pi.

The result follows. •

For all S, it is easy to deduce that cs−1 ∈ P [4, Theorem 19]. Hence we obtain the
following.

Corollary 2.4 A p-uniserial space group has finite cobreadth.
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2.3 Covered space groups

Let S be a p-uniserial space group with point group P and translation subgroup T .
The centralisers Ci = CS(Ti/Ti+2) are the two-step centralisers of S. We say that S
is covered if S = ∪i∈NCi. Similarly, the two-step centralisers of W (s, p) are defined
as C∗i = CW (s,p)(Mi/Mi+2). A p-uniserial subgroup P of W (s, p) is covered if P =
∪i∈N0(P ∩ C∗i ) or, equivalently, P ⊆ ∪i∈N0C

∗
i . A p-uniserial space group is covered if

and only if its point group is covered.

Lemma 2.5 If a p-uniserial space group S is not covered, then S satisfies the class-
breadth conjecture.

Proof: If S is not covered, then S/γj(S) is not covered for all j. Lemma 3.1 of [12]
implies that S/γj(S) satisfies the conjecture. •

Covered p-uniserial space groups occur first in dimension 4 for p = 2 and in dimen-
sion 54 for p = 3 because W (s, p) has exactly s two-step centralisers and a p-uniserial
point group needs at least p + 1 two-step centralisers to cover it (see Section 4.2 of
[11]).

3 An algorithm to decide the conjecture

Underpinning our algorithm is that of [4]. For odd p that algorithm enumerates or
constructs, without repetition, all uniserial p-adic space groups in dimension m having
coclass at most r for given positive integers m, r. This is equivalent to constructing
integral p-uniserial space groups. For the prime 2 it constructs all 2-uniserial integral
space groups, but the resulting list of groups may contain duplicates.

If P is a p-uniserial subgroup in W (s, p) and q := ps/|Z(P )|, then the actions of P
on M0, . . . ,Mq−1 describe a complete set of GL(m, Z)-representatives for the GL(m, Q)-
class of P . Every space group S with point group conjugate to P can be obtained as
an extension of Mi by P for some i ∈ {0, . . . , q − 1}.

Lemma 3.1 Let S be an extension of a lattice Mi by a p-uniserial subgroup P of
W (s, p) for some i ∈ N and let R = {g ∈ P | det(1− g) 6= 0}. Then

cb(S) ≤ min
g∈R

(logp(det(1− g)) + logp(CP (g))).

Proof: This follows from Lemma 2.2. The set R is non-empty because it contains a
conjugate of cs−1. Since det(1− g) 6= 0, the elementary divisors of 1− g are 1 or p and
so det(1− g) = px where 1− g has exactly x elementary divisors p. •

The bound obtained in Lemma 3.1 is independent of the lattice Mi since conjugacy
in GL(m, Q) does not change the determinant. It can be computed directly from P
without constructing any extensions.
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We next outline an effective algorithm which determines, for given prime p, dimen-
sion m := ps−1(p−1), and bound j, all p-uniserial space groups S in dimension m such
that S/γj(S) is a counter-example to the class-breadth conjecture.

(1) Determine up to conjugacy in GL(m, Q) the p-uniserial covered point groups in
W (s, p).

(2) For every such point group P :

(a) Use Lemma 3.1 to determine an upper bound u for the cobreadths of the
associated space groups.

(b) For each lattice M0, . . . ,Mq−1 with q = ps/|Z(P )| do:

(i) Construct all extensions S of Mi by P of coclass at most u− 2.

(ii) Decide which extensions S satisfy cb(S/γj(S)) > cc(S/γj(S)) + 1.

The list produced by this algorithm may contain duplicates for p = 2.
In Step (1), we compute W (s, p) and its two-step centralisers, and then construct, up

to conjugacy in GL(m, Q), all subgroups of W (s, p) which are contained in the union
of the two-step centralisers. Part (i) of Step (2b) is reduced to a finite cohomology
computation as outlined in [4, Theorem 30]. It is important to determine only the
space groups of coclass at most u−2 as this significantly reduces the number of groups
constructed. Part (ii) uses standard algorithms for p-groups.

4 Groups with 2-power order

We investigated in more detail covered 2-uniserial space groups. These have dimension
at least 4.

4.1 Dimension 4

There is just one covered 2-uniserial point group P with dimension 4. It has order 64.
As shown in [8], there are 8 covered 2-uniserial space groups with dimension 4. Exactly
one of these is a counter-example to the class-breadth conjecture.

Lemma 4.1 The class 15 quotient of G = 〈a, b | a4, b4, [b, a, a], [b2, a]2〉 has order 219,
coclass 4 and cobreadth 6.

It can be checked that G is a 2-uniserial space group. Among the descendants (see
[13]) of the class 5 quotient of G, there are 40 groups with order 219, coclass 4 and
cobreadth 6.

This raises a natural question, posed by the referee. The coclass of the descendants
of a settled p-group [11, Definition 5.4.1] is fixed. Let G = S/γj(S); do descendants of
order dividing |G| of settled factor groups of G have cobreadth at most cb(G)? If so,
then it may provide a method to prove that these counter-examples are the smallest.
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4.2 Dimension 8

We used our algorithm to construct a complete list of covered 2-uniserial space groups
in dimension 8, and among these found 64 pairwise non-isomorphic covered 2-uniserial
space groups S such that S/T 16 is a counter-example to the class-breadth conjecture.
We summarise our results for the 64 space groups in Table 1.

Number Coclass Cobreadth
4 5 7

18 5 8
24 6 8
9 6 9
9 6 10

Table 1: Cobreadth and coclass for some space groups of dimension 8

In some cases verification of the cobreadth for a quotient Q = S/γk(S) is a routine
computation: we simply compute the conjugacy classes of Q and read off the size of
the largest one. In other cases, this approach is not feasible: there are cases where
the smallest counter-example Q has order 243. In such cases, we computed the conju-
gacy classes in a quotient with order at most 228; we determined class representatives
in that quotient with “small” centralisers; finally, we verified that the corresponding
centralisers in Q are large enough.

The smallest counter-example we have found with dimension 8 has order 229, coclass
6 and cobreadth 8. It is the class 23 quotient of the (space) group

〈a, b | (a−1b)4, b8, [b, a, b], (b3a−2b−1a2)2, b−2a−2b3a−2b−2a2ba2〉 .

The space group in [5] has coclass 5 and cobreadth 8.
Polycyclic presentations for the 64 space groups are available in GAP format at

www.tu-bs.de/~beick/sp.html, as are functions to study them.

5 Groups with 3-power order

Covered 3-uniserial space groups first occur at dimension 54. There are 188 covered
point groups for space groups with dimension 54 up to conjugacy under GL(54, Q);
each has centre of order 3 and so has 27 different lattices. Their orders range from 332

to 338. The enumeration algorithm of [4] establishes that there are 2395542 covered
3-uniserial space groups with dimension 54.

We used Theorem 30 of [4] to show that these space groups have coclass at least
12.

Every covered point group contains a conjugate of the element c1 of W (4, 3) defined
in Section 2.2. A straight-forward application of Theorem 2.3 shows that the cobreadth
of each space group with dimension 54 is at most 13. Thus we obtain the following.
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Theorem 5.1 The covered 54-dimensional 3-uniserial space groups satisfy the class-
breadth conjecture.

Hence, as we observed in Section 1, so do all sufficiently large quotients of these.
We applied Lemma 2.2 to obtain a sharper upper bound for the cobreadth of each

space group S with dimension 54. A random search demonstrated that each covered
point group P has an element g whose related matrix 1 − g has Smith normal form
with three elementary divisors 3 and no elementary divisors 0 and the others 1. The
centraliser of g in P has order 35. Hence the cobreadth of S is at most 5 + 3 = 8.

The computations showing that the coclass of each space group is at least 12 and
that its cobreadth is at most 8 took about 48 hours using GAP on a Pentium IV
machine.

We also considered the covered point groups of the wreath products W (5, 3) and
W (6, 3). The corresponding space groups have dimension 162 and 486. Since the
number of covered 3-uniserial space groups is too large to process individually, we
considered instead a small sample. None is a counter-example.

6 Lie algebras

Leedham-Green et al. [12, 5.1 (i)] prove that every nilpotent Lie algebra over an infinite
field satisfies the corresponding conjecture. We describe, for every finite field, Lie
algebras with coclass 1 and cobreadth at least 3.

In [2] a process, inflation, is described which constructs many Lie algebras with
coclass 1 over fields with positive characteristic p. In particular Proposition 6.2 of
[2] describes for the finite field GF(q) (graded) nilpotent Lie algebras with dimension
2pq + 2 and coclass 1 which are covered by their 2-step centralisers. These algebras
have cobreadth at least 3 as we outline in the next paragraph. There are (q − 2)! such
algebras.

Let L be one of these algebras and [L, L] its commutator subalgebra. Since the
algebra is covered by its 2-step centralisers, the centralisers of all elements of L \ [L, L]
have dimensions at least 3. Further, every element in [L, L] is centralised by the last
two (non-trivial) homogeneous components of L and so has centraliser with dimension
at least 3.

Over GF(3) the construction gives one algebra L with dimension 56. It is not
difficult to find an example with smaller dimension. Take the class 36, dimension 37,
quotient Q of L. The covering algebra [10] of Q has dimension 39. One of its dimension
38 quotients is covered by 2-step centralisers. In fact this is the smallest dimension in
which covered Lie algebras over GF(3) with coclass 1 occur.

Lemma 6.1 The class 37 quotient of

〈a, b | [b, a, b], [b, a, a, a, b], [b, 6a], [b, 5a, b, 2a, b, 3a], [b, 5a, (b, 2a, )4, a + b],

[b, 5a, (b, 2a, )10, a− b]〉 .
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has dimension 38, coclass 1 and cobreadth 3.

(Here [x, 2a] = [x, a, a] and so on, and the exponents indicate the number of repetitions
of the pattern.)

Moreover, given positive k, one can find examples with cobreadth at least k + 2.
It suffices to have each subspace of the first homogeneous component L1 occurring at
least k times as a 2-step centraliser and the first k 2-step centralisers equal. We omit
the details.
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