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ABSTRACT. We describe a black-box Las Vegas algorithm to construct standard generators for classical
groups defined over finite fields. We assume that the field has size at least 4 and that oracles to solve
certain problems are available. Subject to these assumptions, the algorithm runs in polynomial time. A
practical implementation of our algorithm is distributed with the computer algebra system MAGMA.

1. Introduction

In [19, 26] we developed constructive recognition algorithms for the classical groups in their natural
representation. These are well-analysed and efficient, both theoretically and in practice; our imple-
mentations are distributed with the computer algebra system MAGMA [9]. A core idea is to construct
centralisers of involutions, and use these to construct, as subgroups of the input group, classical groups
of smaller rank, so facilitating recursion. We now develop these ideas to obtain such algorithms for
classical groups given as black-box groups.

Let G̃ ≤ GLd(q) be a classical group in its natural representation, and let G = 〈X〉 be isomorphic to
a central quotient of G̃, where X is a given generating set. A constructive recognition algorithm for G
constructs a surjective homomorphism from G̃ to G, and for any given g ∈ G constructs an element
of its inverse image in G̃. We realise such an algorithm in two stages. For each classical group G̃, we
define a specific ordered set of standard generators S̃. The first task is to construct, as words in X ,
an ordered subset S of G that is the image of S̃ under a surjective homomorphism from G̃ to G. The
second task is to solve the constructive membership problem for G with respect to S: namely, express
g ∈ G as a word in S, and so as a word in X; we also solve the constructive membership for G̃ with
respect to S̃. Now the surjective homomorphism ϕ : G̃ → G that maps S̃ to S is constructive: g̃ ∈ G̃
is written as a word w(S̃) in S̃, and its image ϕ(g̃) is w(S). Similarly, we compute a preimage in G̃ of
g ∈ G under ϕ. In summary, we provide an algorithm to solve the first of these tasks; we discuss the
second in Section 1.3.

Babai and Szemerédi [6] introduced the concept of a black-box group: group elements are represented
by bit strings of uniform length, where more than one bit string may represent the same element. Three
oracles are provided to supply the group-theoretic functions of multiplication, inversion, and checking
for equality with the identity element. A black-box algorithm is one that uses only these oracles. A
common assumption is that other oracles are available to perform certain tasks.

For an overview of the Matrix Group Recognition Project, to which this work contributes, see [37].
Much of the background and preliminaries needed for this paper are summarised in [19, 26, 37].

1.1. The groups and their standard copies. Throughout, GLd(q) is the group of invertible d×d
matrices over the field GF(q). The groups under discussion are SLd(q), Spd(q), SUd(q), Ω±d (q), and
Ωd(q). We assume that q ≥ 4, and d ≥ 3 for the orthogonal groups. All of the groups are perfect, and
with the exception of Ω+

4 (q), all are quasisimple.

The definition of these groups, except for the first, depends on the choice of a bilinear or quadratic
form. Groups defined by two forms of the same type are conjugate in the corresponding general linear
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group; the standard copy of a classical group is its unique conjugate which preserves a chosen standard
form. Our standard forms and copies are described in detail in [19, 26]. The standard generators of
a classical group G̃ satisfy a specific standard presentation. The latter is used to define standard
generators for a (black-box) group G isomorphic to a central quotient of G̃: namely, a generating set
of G satisfying this presentation.

We write SXd(q) for a conjugate of one of the above groups in the natural representation; we call SL,
SU, Sp, Ω, and Ω± the type of the group.

Definition 1.1. The standard generators S(d, q,SX) of SXd(q) are given in [19, Table 1] and [26,
Tables 1 & 2], depending on whether q is even or odd.

The definition of the standard generators of SXd(q) implies a fixed choice of primitive element for the
underlying field. Observe that S(d, q, SX) has cardinality at most 8 and, with the exception of one
element, the cycle of SXd(q), all standard generators lie in naturally embedded subgroups SX4(q) of
SXd(q). This observation is crucial since we construct S(d, q, SX) by a recursion to classical groups
of smaller degree.

1.2. Main results. Let G = 〈X〉 be isomorphic to a central quotient of SXd(q). We present and
analyse a black-box Las Vegas algorithm that takes as input X , and the parameters (d, q, SX) of G,
and outputs standard generators of G as words in X . All words are given as straight-line programs
(SLPs) [42, p. 10] which may be regarded as efficiently stored group words in X .

The complexity of a black-box algorithm is measured in terms of the number of calls to the standard
oracles for the black-box G. Let µ be an upper bound on the time required for each group operation.

Our algorithm assumes the existence of the following.

• An oracle O to compute the order of a given g ∈ G.

• An oracle Π to compute a given power of g ∈ G.

• An oracle ξ to construct a (nearly) uniformly distributed random element of G as an SLP in X .

• An oracle χ to recognise constructively (a central quotient of) SL2(q).

We abuse notation by identifying the oracle with its cost. We ignore the cost of standard integer
operations such as computing the greatest common divisor of two integers.

Our main result is the following theorem; it is proved in Sections 4–6. In Section 7 we discuss the
complexity and the cost of realising the oracles.

Theorem 1.2. LetG = 〈X〉 be a black-box group isomorphic to a central quotient of SXd(q). Assume
the availability of the oracles specified above. If q ≥ 4, then there is a black-box Las Vegas polynomial-
time algorithm which constructs, as SLPs in X , standard generators for G. The time required by the
algorithm is O(d log d(µ+ ξ +O + Π) + d((χ+ µ) log2 q + ξ log q log log q)).

With minor modifications, which we identify in Section 4, the algorithm works well for q = 3; our
algorithm does not apply to q = 2.

1.3. Rewriting. A black-box algorithm, with complexity O(d2q) group operations, to write an
element of G as an SLP in the standard generators was developed by Ambrose et al. [1]; recently,
Schneider extended this result to cover missing cases. We know of no polynomial-time algorithm to
perform this task.

The implementation of our algorithm accepts as input either a permutation or linear representation of
SXd(q). If the input is an absolutely irreducible representation in defining characteristic, then we use
the polynomial-time algorithm of Costi [18] to perform the rewriting task. Using standard algorithms
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for modules, we reduce arbitrary matrix representations in defining characteristic to this case. Recall,
from [31], that a faithful linear or projective representation of a finite group of Lie type in cross
characteristic has degree which is polynomial in q. Hence, all other input representations have size
O(q); so, in these cases, the extension to [1] runs in time polynomial in the size of the input.

1.4. Related work. Kantor & Seress [24] developed the first black-box constructive recognition
algorithms for classical groups. The complexity of these algorithms involves a factor of q. By assuming
the availability of the oracle χ, Brooksbank and Kantor [11–14] present algorithms with complexity
polynomial in d, log q, and the number of calls to χ.

These algorithms construct Steinberg generators for the group, so the generating set returned has size
O(d2 log q) and requires significant storage. In practical applications, when we use the methods of
COMPOSITIONTREE [7], we work with groups having classical groups as homomorphic images and
construct kernels to these homomorphisms; now a small fixed number of standard generators is useful.

Table 1 lists the principal contributors to the stated complexity of each the algorithms of [11–14] and
also the comparable costs of our algorithm. In Section 7 we discuss the cost of these oracles, and our
additional two, O and Π.

Algorithm ξ χ µ

SL [11] d2 log q d3 log d log q d4 log d log3 q

SU [12] d2 log d d2 log d log q −
Ωε [13] d2 log d log q d2 log d log2 q d3 log2 d

Sp [14] d+ log q 1 d2 log2 q

Ours d(log d+ log q) d log2 q d(log d+ log2 q)

TABLE 1. Coefficients of oracles in the complexity of the algorithms

2. Structure of the general algorithm

Our black-box algorithm follows the general approach of our algorithms for the natural representation
described in [19, 26]. Let G = 〈X〉 be isomorphic to a central quotient of a classical group SXd(q).
We use a recursion to construct standard generators SG of G as SLPs in X . The base cases of this
recursion are discussed in Section 3.1; in the following, suppose that G is not a base case.

For odd q, find, by random search, an element of even order that powers to an involution g ∈ G
which corresponds to an element in G̃ with −1- and 1-eigenspaces of dimension m ∈ [d/3, 2d/3] and
d−m, respectively. In the centraliser of g in G, construct two commuting subgroups H,K ≤ G with
H ∼= SXm(q) and K ∼= SXd−m(q). Using recursion, construct the standard generators SH and SK
of H and K, respectively. With the exception of the cycle of G, all standard generators of G lie in
SH ∪ SK . The cycle of G is constructed by gluing the cycles in SH and SK .

For even q, find, by random search, an element that powers to g ∈ G which is the image of an
element in G̃ with 1-eigenspace of dimension in [2d/3, 5d/6], acting irreducibly on a complement. By
taking g and a random conjugate h of g in G, construct H = 〈g, h〉 ≤ G isomorphic to SXm(q) with
m ∈ [d/3, 2d/3]. Using recursion, construct the standard generators SH ofH and a specific involution
i ∈ H . In CG(i), find K ≤ G which is isomorphic to SXd−m(q) and commutes element-wise with H .
By recursion, construct the standard generators SK of K, and, finally, glue the cycles in SH and SK .

To ensure that the algorithm is Las Vegas in the natural representation is easy: modulo a (known) base
change, the standard generators returned are identical to those listed in [19, Table 1] and [26, Tables 1
& 2]. To establish this for the black-box algorithm is more challenging. That groups of Lie type have
short presentations was first established by Guralnick et al. [22]; explicit short presentations, on our
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standard generators, for the classical groups appear in [27]. By evaluating the standard presentation of
SXd(q) in the output of our algorithm, SG, we verify the correctness of our result.

The main challenge in developing the black-box algorithm was to devise a strategy for gluing the
cycles. Other difficulties arise in the construction of the two smaller subgroups for the recursion.

The remainder of the paper is as follows. In Section 3, we recall some preliminary results. In Sections
4 and 5, we describe the construction of the two smaller subgroups H and K for odd and even q,
respectively. In Section 6, we discuss how to glue the cycles of H and K; this completes the construc-
tion of the standard generators of G. The complexity of our algorithm is discussed in Section 7. We
comment on our implementation in Section 8.

3. Preliminaries

3.1. Base cases. If G is isomorphic to a (central quotient of a) classical group of small rank, then
we treat it as a base case.

Definition 3.1. The base cases for even q are SLd(q) with d ≤ 5; SUd(q) with d ≤ 7; Spd(q) with
d ≤ 6; Ω+

d (q) with d ≤ 8; and Ω−d (q) with d ≤ 10. The base cases for odd q are SLd(q), SUd(q), and
Spd(q) with d ≤ 4; Ωd(q) with d ≤ 5; Ω±d (q) with d ≤ 6; and Ω7(q) and Ω±8 (q) with q ≡ 3 mod 4.

The next theorem follows from [11–14, 16, 30].

Theorem 3.2. Let G be isomorphic to a central quotient of a base case group SXd(q). There is a
black-box Las Vegas algorithm that constructively recognisesG. Subject to the existence of the relevant
oracles identified in Section 1.2, the algorithm runs in time O((χ+ µ) log2 q + ξ log q log log q).

In practice, we sometimes employ algorithms other than those cited above to deal with base cases.

3.2. Automorphism groups of classical groups. The following facts are well-known, see [40, p.
192 & Proposition 13.11] and [21, Sec. 2.2, 2.5, 2.7].

Remark 3.3. a) The universal versions of the finite classical groups are SLd(q), SUd(q), Sp2n(q),
Spin±2n(q), and Spin2n+1(q). If H is one of these, then H/Z(H) is the adjoint version. If H/Z(H)
is simple, then Aut(H) ∼= Aut(H/Z(H)); every automorphism of H can be written as a product of a
graph, field, diagonal, and inner automorphism.
b) Let H = SLd(q). Then H/Z(H) is simple, the diagonal automorphisms of H are induced by
conjugation with diagonal matrices in GLd(q), and field automorphisms are induced by the usual
Frobenius action on matrix entries. If d = 2, then there is no graph automorphism; if d > 2, then the
graph automorphism is the inverse-transpose.
c) Let H = SUd(q) and d ≥ 3. Then H/Z(H) is simple, the diagonal automorphisms are induced
by conjugation with diagonal matrices in GUd(q), and there are no graph automorphisms. Field auto-
morphisms act on matrix entries. Recall that SU2(q) ∼= SL2(q).
d) Let H = Spd(q) and d ≥ 4. Then H/Z(H) is simple and field automorphisms act on matrix
entries. If q is even, then H has no diagonal automorphisms; H has a non-trivial graph automorphism
(of order 2) only if d = 4. If q is odd, then the diagonal automorphisms are induced by conjugation
with elements of the conformal group, and H has no graph automorphism.
e) Let H = Ω+

d (q) with q even and d ≥ 6. Then H is simple, field automorphisms act on matrix
entries, and there are no diagonal automorphisms. If d ≥ 6 and d 6= 8, then |Out(H)| = 2e where
q = 2e; there is a graph automorphism of order 2, induced by conjugation by a certain permutation
matrix, see [33, p. 194]. If d = 8, then |Out(H)| = 6e where q = 2e; there are graph automorphisms
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of order 2 and 3. If d = 4, then Ω+
4 (q) = SL2(q) × SL2(q). The graph automorphism swaps the two

factors, and for each SL2(q) there are field automorphisms; thus, |Out(Ω+
4 (q))| = 2e2.

f) Let H = Ω−d (q) with q even and d ≥ 4. Then H is simple and there are no graph or diagonal
automorphisms. Field automorphisms are induced by the usual action on matrix entries followed by
conjugation by some matrix in GLd(q); thus, |Out(H)| = 2e where q = 2e.
g) LetH = Ωd(q) with both d and q odd. ThenH is simple, field automorphisms act on matrix entries,
there is no graph automorphism, and |Out(H)| = 2e where q = pe; there is a diagonal automorphism
of order 2.
h) Let H = Ω±d (q) with d ≥ 4 even and q odd. If H 6= Ω+

4 (q), then K = H/Z(H) = PΩ±d (q) is
simple, and we can identify Aut(H) with Aut(K). The automorphisms of K are as for Ω±d (q) with
q even, with two exceptions. There are diagonal automorphisms, and there is no graph automorphism
of order 3. The automorphisms of Ω+

4 (q) = SL2(q) ◦ SL2(q) are as for even q, with the exception that
diagonal automorphisms exist.

For an integer m let 1m be the m×m identity matrix.

Lemma 3.4. Let G = SXd(q) and let H ∼= SXm(q) with m even such that

H =
(

SXm(q) 0
0 1d−m

)
≤ G.

Suppose that either G and H have the same type, or q is even and H has type Ω+ and G is orthogonal
or symplectic. With some exceptions for H ∼= Ω+

4 (q), and H ∼= Sp4(q) and H ∼= Ω+
8 (q) with q even,

every automorphism of H lifts to an automorphism of G.

PROOF. This follows from Remark 3.3; note that α ∈ Aut(H) does not lift if its decomposition into
an inner, diagonal, field, and graph automorphism contains a graph automorphism of Sp4(q), a graph
automorphism of Ω+

8 (q) of order 3, or a field automorphism of Ω+
4 (q) which acts differently on the

two SL2(q) factors. �

3.3. Involution centralisers. If G is a central quotient of SXd(q), then the centraliser CG(i) of
an involution i ∈ G can be constructed using an algorithm of Bray [10]. If g ∈ G, then [i, g] either
has odd order 2k+ 1, in which case g[i, g]k commutes with i, or has even order 2k, in which case both
[i, g]k and [i, g−1]k commute with i. If g is random among the elements of G for which [i, g] has odd
order, then g[i, g]k is random in CG(i), see [39, Theorem 11]. That such Bray generators, g[i, g]k, of
CG(i) can be constructed follows from the next theorem established in [28, 39].

Theorem 3.5. There is a constant c > 0 such that if i ∈ G is an involution and G is a central quotient
of SXd(q), then the proportion of g ∈ G with [i, g] of odd order is bounded below by c/d.

To construct a Bray generator, we apply the order and power oracles to a random element.

3.4. Zsigmondy primes. Recall that if q is a prime-power and l > 0, then a (q, l)-Zsigmondy
prime r is one that divides ql − 1 but not qi − 1 for i < l. Such primes exist, except for (q, l) = (2, 6)
and (q, l) = (q, 2) with q a Mersenne prime. If an order oracle for G ∼= SXd(q) is available, then
repeated computations of the form gcd(qi − 1, |g|) yield all l and r such that r is a (q, l)-Zsigmondy
prime dividing |g|. If a (q, l)-Zsigmondy prime divides |g|, then g is a ppd(q, l) element.

Every semisimple element in G = SXd(q) lies in a maximal torus; the structure of these tori is known,
see for example [36, Sec. 3]. If G is linear or unitary, then its maximal tori are isomorphic to

[(qe1 − (−1)ε)× . . .× (qek − (−1)ε)]/(q − (−1)ε),

where (e1, . . . , ek) is a partition of d, each qe ± 1 denotes a cyclic group of that order, and ε = 1
(or −1) if G is linear (or unitary). If G = Sp2n(q) or G = Ω2n+1(q), then the maximal tori are



6 DIETRICH, LEEDHAM-GREEN, O’BRIEN

(qe1 + 1)× . . .× (qek + 1)× (qf1 − 1)× . . .× (qfj − 1) where (e+1 , . . . , e
+
k , f

−
1 , . . . , f

−
j ) is a signed

partition of n. The maximal tori for Ω±2n(q) are the same, with k even for Ω+, and k odd for Ω−.
Observe that if C is cyclic of order n and p is a prime dividing n, then at least 1− 1/p of all elements
in C have order divisible by p. Hence, if T is a maximal torus containing a direct factor qe − 1 with
e > 1 and (q, e)-Zsigmondy primes exist, then the proportion of ppd(q, e) elements in T is at least
2/3; a similar observation holds for qe + 1 and ppd(q, 2e) elements.

We now summarise easy but important consequences of properties of ppd(q, e) elements as discussed
in [35]; to obtain the stated proportions, using [36], we count the number of tori (up to conjugacy) with
suitable direct factors.

Remark 3.6. a) A subgroup H of SLd(q) is irreducible if H contains a ppd(q, d) element, or if it
contains two elements g1 and g2 such that each gj is a ppd(q, ej) and ppd(q, d − ej) element, where
ej ≤ d − ej , and ej does not divide d − ej , and {e1, d − e1} 6= {e2, d − e2}. The analogous result
holds for other classical groups. The proportion of such elements in SXd(q) is O(1/d).
b) A subgroup of an orthogonal or symplectic SXd(q) with d = 2n does not preserve a quadratic
form of + type if it contains a ppd(q, d) element; it does not preserve a quadratic form of − type if
it contains a ppd(q, d − 2) element of order not dividing (qn−1 + 1)(q − 1). The proportion of such
elements in SXd(q) is O(1/d).
c) A subgroup of SLd(q) does not preserve a bilinear form if it contains a ppd(q, e) element with odd
e > d/2; it does not preserve a sesquilinear form if it contains a ppd(q, e) element with even e > d/2.
The proportion of such elements in SLd(q) is O(1/d).

4. Two smaller subgroups in odd characteristic

As outlined in Section 2, our algorithm for constructive recognition in the natural representation [26]
carries over readily to a black-box algorithm, with the exception of gluing the cycles. We describe
gluing in Section 6; here we comment on the construction of the subgroups used for the recursion.

Let G be isomorphic to a central quotient of G̃ = SXd(q) with q > 3 odd. If i ∈ G̃ is an involution
with ±1-eigenspaces E±, then

CG̃(i) = (GX(E+)× GX(E−)) ∩ G̃,

where GX(E±) is the general linear, general unitary, symplectic, or orthogonal group acting on E±.
If j is the image of i in G, then CG(j) is the image in G of CG̃(i), unless GX(E+) ∼= GX(E−),
and the images of i and −i in G are equal, in which case CG(j) is the image of CG̃(i) extended
by the image of a 2-cycle that interchanges E+ and E−. In [26], we call i a strong involution if
d/3 < dim(E−) ≤ 2d/3. Here we allow d/3 ≤ dim(E−) ≤ 2d/3 so that i is a strong involution if
and only if −i is; this has negligible side effects. An involution in G is strong if it is the image of a
strong involution in G̃.

If i ∈ G is a strong involution, then CG(i)′′, the second derived subgroup of CG(i), is isomorphic to
a central quotient of SXe(q) × SXd−e(q) with d/3 ≤ e ≤ 2d/3. We now describe how to construct
these direct factors as subgroups of CG(i).

Theorem 4.1. Let G = 〈X〉 be a central quotient of SXd(q) for d ≥ 6 and odd q > 3. There exists
a black-box Las Vegas algorithm to construct a strong involution i ∈ G, and to find generating sets
for A1 and A2, where the generalised Fitting subgroup F ∗(CG(i)) = CG(i)′′ is a central quotient of
SXe(q) × SXd−e(q), and A1 and A2 are the images of SXe(q) and SXd−e(q). The algorithm also
returns the names of these two classical groups. If G is orthogonal of + type, then i is chosen such
that A1 and A2 have + type. The algorithm runs in time O(d log d(µ+ ξ +O + Π)).
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PROOF. The restriction on d ensures that F ∗(CG(i)) is a central quotient of the direct product of two
perfect groups.

We prove the theorem by exhibiting an algorithm which has the claimed complexity. Suppose first that
G is isomorphic to a central quotient of SLd(q).

(1) By a random search, find g ∈ G of even order; set i = g|g|/2 and S = {g}.
(2) Construct three Bray generators of CG(i) and place them in S.
(3) Construct random elements of 〈S〉, looking for two elements that power to elements a1 and a2
satisfying the following two conditions: first, each aj is a ppd(q, ej) element and e1 + e2 = d; second,
if bj is a random 〈S〉-conjugate of aj , then 〈a1, b1〉 and 〈a2, b2〉 commute. If e1 /∈ [d/3, 2d/3], then
i is not a strong involution and we return to Step (1). If after O(d) trials no such elements are found,
then repeat Step (2) and then (3).
(4) Set T1 = {a1, b1} and T2 = {a2, b2}, and, to ease exposition, suppose Tj ≤ Aj . For g ∈ CG(i)
we check membership in A1 and A2 by checking commutativity with 〈T2〉 and 〈T1〉, respectively. We
decompose g ∈ 〈S〉 as g = g1g2g3g4 where each gj is a power of g of largest possible order such that
|g1|, |g2|, |g3| are pairwise coprime and none divides q − 1, and g1 ∈ A1, g2 ∈ A2, g3 /∈ A1 ∪A2, and
|g4| divides q − 1. Taking random g ∈ 〈S〉 and adding its component gj to Tj for j = 1, 2, we seek
witnesses (as in [35]) to establish that 〈Tj〉 = Aj . If this fails, then repeat Steps (2)–(4), and continue.
The presence of these witnesses, which are returned by the procedure, proves that the algorithm has
terminated correctly.

We now supply further details for these steps, and assess the complexity of the algorithm.

(1′) By [29], a strong involution i ∈ G is found after O(log d) repetitions of Step (1); thus, we expect
to return to this step O(log d) times at a cost of O(log d(ξ +O + Π)).
(2′) A sample of O(d) random elements yields a Bray generator. It is proved in [34, Corollary 1.2]
that the probability that 3 random elements of a finite almost simple group K, conditional on them
generating K/F ∗(K), generate K is greater than 139/150. As observed in [38, Theorem 4.1], the
probability that k + 1 random elements of a finite abelian k-generator group generate the group is
greater than 1/2.72. Since CG(i) is an extension of a central quotient of SLe(q) × SLd−e(q) by a
cyclic group (or by a dihedral group when d = 2e and i = −i), the probability that 〈S〉 = CG(i),
with S as in Step (2), is bounded away from 0 by an absolute positive constant. In particular, the
probability that S generates a group containing F ∗(CG(i)) is very high (observe S contains g as
well as the Bray generators). The expected number of returns to Step (2) is O(log d), at the cost of
O(d log d(ξ + µ+O + Π)).
(3′) Using the notation of the theorem, we may assume that e1 = e, so e2 = d− e. Recall, from [35,
Theorem 5.7], that the probability that an element of SLf (q) is a ppd(k, q) element is approximately
1/k where f/2 < k ≤ f . Thus the proportion of elements of F ∗(CG(i)) that power to a candidate for
a1 is approximately 1/e1, or (1/e1)(1−1/e1) if e2 ≥ e1, and similarly for a2. If we find aj , bj ∈ CG(i)
with the stated properties, then we can suppose 〈aj , bj〉 ≤ Aj ; the probability of this being false is
exponentially small. The total cost of Step (3) is as in Step (2); the factor of log d arises as we may
have to return to this step for O(log d) involutions.
(4′) Elements of Tj have order coprime to q − 1, thus lie in a central quotient of SLej (q). We first
seek witnesses to show that Gj = 〈Tj〉 is not a central quotient of a classical group that preserves a
form. If ej is even, then we rule out the possibility that Gj is an image of a symplectic or orthogonal
group by finding a ppd(q, k) element for some odd k greater than ej/2; similarly, if q is a square, then
we rule out the possibility that Gj is the image of the unitary group by finding a ppd(q, k) element
for some even k > ej/2. We are now in a position in which we can, in principle, apply the algorithm
of [35]. That algorithm applies to a subgroup K of SLn(q), in its natural representation, where K is
known to act irreducibly, and to preserve no non-zero form. The algorithm seeks witnesses to prove
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K = SLn(q) by virtue of their orders. The witnesses are constructed by a random process, and the
algorithm uses only ppd information. Here we have a central quotient of SLej (q) rather than the group
itself, but this does not harm the validity of the algorithm.

The remaining issue is that the elements that we place in the generating sets Tj do not approximate
to a random distribution. However the probability that gj , as in (4), is a ppd(q, k) element approximates
closely to the probability that a random element of Aj is a ppd(q, k) element. For smaller values of k,
the probability is slightly reduced because the chances that an element ofCG(i) will map to an element
of order a multiple of a given (q, k)-Zsigmondy prime in both components is slightly increased. Since
the algorithm in [35] seeks ppd(q, k) elements for large values of k, this is not a problem. It needs
O(log log d) random elements to find the required witnesses, so Step (4) is asymptotically faster than
Steps (2) and (3). Once these witnesses have been found (and witnesses for one factor all commute
with the witnesses of the other), then we have proved that the algorithm has run correctly: based on
element orders, the groups generated by these witnesses are not isomorphic to central quotients of
proper subgroups of SLej (q), thus, they must be central quotients of SLej (q).

Now suppose that G is a central quotient of Ω+
2n(q). New difficulties arise. Firstly, A1 or A2 may be

an image of Ω+
4 (q); secondly, we must reject the involution i if its centraliser is a central quotient of

two orthogonal groups of − type; finally, we cannot choose the elements a1 and a2 to act irreducibly
on the respective direct factors because such elements do not exist. The impact of the first is limited to
a minor change in the associated statistics. The others we address by seeking elements with one of the
following sets of properties.

(a) There exist even integers e1 and e2 with e1 + e2 = 2n, and integers u1 6= v1 and u2 6= v2, and
elements a1, a2, b1, and b2 are found such that aj has order the product of a (q, uj)-Zsigmondy prime
and a (q, ej − uj)-Zsigmondy prime, and bj has order the product of a (q, vj)-Zsigmondy prime and
a (q, ej − vj)-Zsigmondy prime, and a1 and b1 both commute with a2 and b2, cf. Remark 3.6. These
elements are sought by powering up random elements of 〈S〉. Again it is almost certain that a1 and b1
correspond to elements of one factor, and that a2 and b2 correspond to elements of the other. Also, a1
and b1, together, serve as irreducibility witnesses (as did a1 alone in the special linear case), and also
as witnesses to the fact that they generate a subgroup of Ω+

e1(q), as opposed to Ω−e1(q); similarly for a2
and b2. Thus the algorithm proceeds as before.
(b) Elements are found that power to ppd(q, ej) elements aj , j = 1, 2, where e1 + e2 = 2n, and
a1 commutes with a2 and a random conjugate of a2. Now a1 and a2 are witnesses that F ∗(CG(i))
is a central factor of the direct product of two groups of type Ω−, and the involution i is rejected.
As pointed out in [26, Lemma 2.2], we fall into the Ω− case if and only if both q ≡ 3 mod 4 and
ej ≡ 2 mod 4.

The proportion of elements of Ω+
e1(q) satisfying the order condition imposed in (a) is O(log d/d).

However, if, in the notation of (a), either u1 or e1 − u1 is small, then the probability that a random
element of Ω+

e2(q) has order a multiple of this prime tends (slowly) to 1 as e2 tends to infinity. But
consider large d: if we just count the cases that arise when e1/3 ≤ v1 ≤ 2e1/3, then the proportion
of elements of Ω+

e1(q) of the appropriate order remains O(log d/d), and, because e1 and e2 are of
comparable size, the probability that a random element of Ω+

e2(q) has order a multiple of one of the
relevant primes is bounded away from zero by an absolute positive constant. The requisite proportions
are given, to more accuracy than required here, in [26, Section 8].

The other groups are dealt with in the same style. �

The algorithm of Theorem 4.1 may be trivially extended to deal with smaller values of d, provided that
i is chosen so that F ∗(CG(i)) is a central quotient of the direct product of two perfect groups.
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In practice, the steps in this algorithm can run faster by applying various simple devices, such as using
conjugation to generate new elements of the Tj . Theoretically, the most expensive step of the algorithm
is (2): we must test O(d) random elements to obtain a Bray generator of the involution.

Recall [5, Corollary 4.2]: if p is a prime and G is a finite simple classical group acting naturally on a
projective space of dimension d− 1, then the proportion of p-regular elements in G is at least 1/2d.

Remark 4.2. In the gluing process, we deal with the following situation: the involution i ∈ G is
not strong and, using the previous notation, A1 and A2 are quotients of SXe(q) and SXd−e(q) with
e ≤ 6. In contrast to the above discussion, this time e is known, and we only want to construct A1. We
proceed as follows. The first step is to use a modification of Theorem 4.1 to construct B ≤ A2 with
CA2(B) ≤ Z(A2), for example,B = A2. Since e ≤ 6 is small, elements inB can in general be readily
constructed by taking random Bray generators of CG(i) to the power exp(SXe(q)), cf. [5, Corollary
4.2]. Observe that h ∈ CG(i), of order not dividing |Z(A2)|, lies in A1 if and only if [h, b] = 1 for
every generator b of B. Using this, we find a non-central h ∈ A1, and construct A1 as the normal
closure of h in CG(i) by applying the algorithm of [42, Theorem 2.3.9]; we use Remark 3.6 and [35]
to verify the correctness of our computation.

Remark 4.3. The case q = 3 requires special care, here and in gluing (see Section 6). The principal
reason is that one of the factors Aj may be soluble. In all other important respects, the algorithm is
identical with that for larger odd q, and displays similar performance.

5. Two smaller subgroups in even characteristic

Throughout this section, let q 6= 2 be even and let G = 〈X〉. To simplify exposition, we assume that
G is isomorphic to SXd(q), and not to an arbitrary central quotient. We also assume that G is not a
base case. Let ϕ : G → G̃ be an (unknown) isomorphism to the standard copy G̃ of SXd(q), with
underlying field F. The aim of this section is to construct, as SLPs in X , generators for commuting
subgroups H ∼= SXm(q) and K ∼= SXd−m(q) of G, where, in general, m ∈ [d/3, 2d/3].

5.1. Constructing the first subgroup. In [19, Sec. 5], we devised an algorithm to construct H̃ ≤
G̃ with H̃ ∼= SXm(q). In general, m ∈ [d/3, 2d/3] is even, and H̃ has the same type as G̃; if G̃ is
symplectic or orthogonal, then m is divisible by 4 and H̃ has type Ω+.

We briefly recall this construction. By a random search, find g ∈ G̃ that powers to h ∈ G̃ which has
a 1-eigenspace of dimension e ∈ [2d/3, 5d/6] and acts irreducibly on a complement. A construction
of O(1) random elements of G̃ suffices to find u so that H̃ = 〈h, hu〉 ∼= SXm(q) with m = 2(d− e);
more precisely, modulo a base change,

H̃ =
(

SXm(q) 0
0 1d−m

)
≤ G̃.

Motivated by that approach, we now develop a black-box algorithm to construct H ≤ G with H ∼=
SXm(q) and ϕ(H) = H̃ as above. We seek g ∈ G whose order is divisible by two Zsigmondy primes,
say p and r satisfying (Z1) and (Z2) below, which witness that the image of g|g|/p in G̃, firstly, acts
irreducibly on a subspace of dimension i ∈ [d/6, d/3] and, secondly, acts trivially on a complement to
this space.

If G ∼= Ω−d (q), then we seek H ∼= Ω+
m(q) with m ∈ {d−4, d−6} divisible by 4. While our algorithm

is capable of constructing subgroups of other ranks, this restriction arises from gluing; we explain this
in more detail in Remark 6.1.

We start with an easy observation.

Lemma 5.1. Let h ∈ GLd(q) have an e-dimensional 1-eigenspace. If h is a ppd(q, d − e) element,
then h acts irreducibly on a complement to its 1-eigenspace.
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We now describe the construction of H in detail for SL. Let ϕ : G → G̃ = SLd(q). By a random
search, find g ∈ G such that

(Z1) |g| is divisible by a (q, i)-Zsigmondy prime p with i ∈ [d/6, d/3];

(Z2) |g| is divisible by a (q, e)-Zsigmondy prime r with i - 2e and e+ 2i > d.

We can also assume that g has odd order; otherwise, replace g by gc where c is the smallest 2-power
satisfying c ≥ 2d− 2; now g is semisimple and lies in some maximal torus of G.

Lemma 5.2. If g ∈ G ∼= SLd(q) satisfies (Z1) and (Z2), then the image of h = g|g|/p in G̃ has a
1-eigenspace of dimension d− i ∈ [2d/3, 5d/6] and acts irreducibly on a complement.

PROOF. Suppose that g lies in a maximal torus S = (qk − 1)× S∗ and k is divisible by both e and i.
Since e > d/3, we know that k ∈ {e, 2e}; now i | k yields a contradiction to i - 2e. Thus, g must lie
in a maximal torus T = (qj − 1)× (qf − 1)× T ∗ with i | j and e | f ; as shown above, i - f and, by
assumption, p - |T ∗|. Since e+ 2i > d, it follows that j = i, hence g ∈ T = (qi− 1)× (qf − 1)× T ∗
and p - |(qf − 1)×T ∗|. Thus, the image of h = g|g|/p in G̃ has a 1-eigenspace of dimension d− i and
acts irreducibly on the i-dimensional space associated with qi − 1, see Lemma 5.1. �

Suppose we have found g ∈ G satisfying (Z1) and (Z2), and set h = g|g|/p. As outlined in [19],
it follows from [41] that the construction of O(1) random elements of G suffices to find u such that
H = 〈h, hu〉 ∼= SLm(q), where m = 2i ∈ [d/3, 2d/3]. We could use [4] to verify that H ∼= SLm(q).
More efficiently, we proceed as follows. First, we use Remark 3.6 and consider a sample of O(d)
random elements in H until we find witnesses that H does not preserve a bilinear or sesquilinear
form, and it acts irreducibly on an m-dimensional space. Then we apply [35] as in Theorem 4.1 and
seek witnesses that H is isomorphic to SLm(q). If we cannot find these witnesses, then we construct
another H; only O(1) repetitions are required.

The strategy for unitary, symplectic, and orthogonal types is similar. One change is due to the different
structure of maximal tori, which requires an adjustment of the Zsigmondy prime divisors we seek; for
small d, this requires specialised techniques. A second is that the isomorphism type of H ∼= SXm(q)
is not uniquely determined if G is orthogonal or symplectic; both Ω+

m(q) and Ω−m(q) are possible. We
use Remark 3.6 to detect one or the other. If we confirmH ∼= Ω−m(q), then we constructively recognise
H and replaceH byH? ≤ H withH? ∼= Ω+

m−4(q); having constructively recognisedH , we can write
down generators for H?. (Alternatively, we could construct a new group until H ∼= Ω+

m(q).)

We now analyse the complexity of the resulting algorithm.

Lemma 5.3. There is a black-box Las Vegas algorithm which takes as inputG ∼= SXd(q), which is not
a base case, and constructsH ≤ G withH ∼= SXm(q), admittingK ≤ CG(H) withK ∼= SXd−m(q);
in general, m ∈ [d/3, 2d/3] is even. If G is linear or unitary, then so is H . In all other cases, H is of
type Ω+ and m is divisible by 4. If G has type Ω−, then m ∈ {d− 4, d− 6} is divisible by 4. The time
required is O(d(ξ +O) + Π + µ).

PROOF. The correctness of the algorithm is established in [19, Sec. 5]; it remains to show that the
construction of O(1) random elements in G is sufficient to find g ∈ G satisfying (Z1) and (Z2) above.
(If G has type Ω−, then we show that O(d) random elements suffice.) We give the proof in detail for
SL and Ω−; the remaining cases are dealt with analogously. In the following, we assume that d is large
enough so that all required Zsigmondy primes exist and intervals are non-empty. We use Remark 3.6
and [35] as in Theorem 4.1 to verify that the output of this algorithm, H , satisfies H ∼= SXm(q); this
verification dominates the overall complexity.

First, suppose G ∼= SLd(q) = G̃. Let Ĝ be a simply connected reductive algebraic group such that
ĜF = G̃ for some Frobenius morphism F . Call g ∈ G̃ admissible if some power of g has odd order
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and satisfies (Z1) and (Z2) above. Let A(G̃) be the set of all admissible g ∈ G. By the multiplicative
Jordan decomposition, every g ∈ G̃ can be written uniquely as g = su where s ∈ G̃ is semisimple,
u ∈ G̃ is unipotent, and su = us. Since g = su ∈ A(G̃) if and only if s ∈ A(G̃), and A(G̃) is
invariant under conjugation, we can apply [36, Theorem 1.3] to estimate the proportion |A(G̃)|/|G̃|.
For convenience, we recall this result here.

Let F be the underlying field of G̃. Let T0 ≤ G̃ be an F -stable maximal torus with Weyl group W .
The G̃-conjugacy classes of F -stable maximal tori in G̃ are in one-to-one correspondence with the F -
conjugacy classes of W . For an F -conjugacy class C in W , denote by TC ≤ Ĝ a representative of the
corresponding G̃-conjugacy class of maximal tori, and let TFC = TC ∩ G̃. It is proved in [36, Theorem
1.3] that

|A(G̃)|
|G̃|

=
∑

C

|C|
|W |
·
|TFC ∩A(G̃)|
|TFC |

where C runs over all F -conjugacy classes of W . Our strategy is to restrict to special classes C which
allow us to determine lower bounds for |C|/|W | and |TFC ∩A(G̃)|/|TFC |, thus providing a lower bound
for |A(G̃)|/|G̃|.
If the type is SL, then W = Sd, the symmetric group of degree d, and the F -classes of W are
the conjugacy classes of W , so parametrised by partitions of d. Let C be a conjugacy class of Sd
corresponding to a partition (i, e, . . .) where i ∈ [d/6, d/3] and e > d/3 with e + 2i > d and i - 2e;
call such a class admissible. Note that TFC = (qi−1)×(qe−1)×T ∗. Let p and r be (q, i)-Zsigmondy
and (q, e)-Zsigmondy primes, respectively. The proportion of elements in TFC with order divisible by
pr is at least 1/4, thus, |TFC ∩A(G̃)|/|TFC | ≥ 1/4 for each such class C. In conclusion,

|A(G̃)|
|G̃|

≥ 1

4d!

∑
C
|C|,

where C runs over all admissible classes.

Let l = dd/6e and u = bd/3c. It remains to estimate the numberN(d) of elements of Sd in admissible
classes, that is, elements of cycle type (i, e, . . .) with i ∈ [l, u], e+ 2i > d, and i - 2e. For this, we run
over i ∈ [l, u] and e ∈ [d− 2i+ 1, d− i], and count how many elements of cycle type (i, e, . . .) exist.
First, we show that there is no over-counting. Since e > d/3 ≥ i and e+ 2i > d,

(#) d− e− i ∈ [0, . . . , i− 1],

and e is the unique largest entry in the cycle decomposition. Now suppose we encounter cycle types
(i, e, j, . . .) and (j, e, i, . . .) with i, j ∈ [l, u], e ∈ [d−2i+1, d−i]∩[d−2j+1, d−j], and i+j+e ≤ d.
The latter, together with (#), implies j ≤ d− i− e ≤ i− 1, hence j < i. By symmetry, we get i < j,
a contradiction. Thus, there is no over-counting.

We next determine the number Ñ(d) of elements of cycle type (i, e, . . .) with i ∈ [l, u] and e ∈
[d− 2i+ 1, d− i] as

Ñ(d) =
∑u

i=l

∑d−i

e=d−2i+1

(
d

i

)(
d− i
e

)
(i− 1)!(e− 1)!(d− e− i)!

= d!
∑u

i=l

∑d−i

e=d−2i+1

1

ie
.

For each i, there are at most three 2e ∈ [2d− 4i+ 2, . . . , 2d− 2i] with i | 2e, hence ignoring the three
largest summands in

∑d−i
e=d−2i+1

1
ie yields a lower bound for N(d); in summary,

N(d) ≥ d!
∑u

i=l

1

i

∑d−i

e=d−2i+4

1

e
.
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There is an absolute constant z1 > 0 such that for large enough d and all i ∈ [d/6, d/3],∑d−i

e=d−2i+4

1

e
≥

∫ d−i

d−2i+4

1

x
dx = log

(
d− i

d− 2i+ 4

)
> z1.

Thus, there is an absolute constant z2 > 0 with

N(d) ≥ d! z1
∑u

i=l

1

i
≥ d! z1 log(u/l) ≥ d! z2.

Since N(d) =
∑

C |C|, where C runs over all admissible classes, there is an absolute constant z3 > 0

with |A(G̃)|/|G̃| ≥ 1
4d!N(d) ≥ z3, which proves the claim for SL. The types Sp, SU, and Ω+ are

dealt with analogously.

Now consider G ∼= Ω−d (q) = G̃ and write d̃ = d/2. Suppose d̃ is odd, define c = (d̃ − 3)/2,
and suppose d is large enough such that c/2 > 6. We want to find g ∈ G which, in the natural
representation, acts irreducibly on a space of dimension d̃ − 3 and as the identity on a complement.
For this, we seek g ∈ Gwith order divisible by a (q, 2c)-Zsigmondy prime p and by a (q, e)-Zsigmondy
prime r with e ∈ [c/2 + 4, c + 3] \ {c, 2c/3}. Note that e - 2c; thus, if g is such an element, then it
must lie in a maximal torus of G isomorphic to T = (qc + 1)× (qf ± 1)×T ∗ such that r | qf ± 1 and
e | 2f . Since d̃ − c − f < c, the power h = g|g|/p must lie in the direct factor qc + 1; hence, in the
natural representation, h acts irreducibly on a space of dimension 2c = d̃− 3 and as the identity on a
complement.

The Weyl groupW of Ω−d (q) has order 2d̃−1d̃! and the F -conjugacy classes ofW correspond to signed
partitions (b−1 , . . . , b

−
i , c

+
1 , . . . , c

+
j ) of d̃ where i is odd. The associated maximal torus is

TFC
∼= (qb

−
1 + 1)× . . .× (qb

−
i + 1)× (qc

+
1 − 1)× . . .× (qc

+
j − 1).

If there exist z elements in Sd̃ of cycle type (a1, . . . , ak), then 2d̃−kz elements of W correspond to
each (a−1 , . . . , a

−
i , a

+
i+1, . . . , a

+
k ) with i odd.

As before, let c = (d̃− 3)/2 and e ∈ [c/2 + 4, c+ 3] \ {c, 2c/3}. Let Ce be the union of all F -classes
corresponding to signed partitions (c+, e−, . . .). Note that d̃−c−e < c/2 and there are d̃!/ce elements
in Sd̃ of cycle type (c, e, . . .); we claim that there are 2d̃−3d̃!/ce elements inW corresponding to signed
partitions (c+, e−, . . .), that is, |Ce| = 2d̃−3d!/ce.

To prove the claim, let λ = (u1, . . . , ut) be a partition of d̃ − c − e. Define π(λ) = u1 . . . ut and
ζ(λ) = n!, where n is the number of ui = 1. Using this notation, Sd̃ contains d̃!/ceζ(λ)π(λ) elements
corresponding to the partition (c, e, u1, . . . , ut). Each such partition gives rise to 2t−1 signed partitions
(c+, e−, uε11 , . . . , u

εt
t ) with an even number of εi = +, and, as shown above, for each such signed

partition there exist 2d̃−2−td̃!/ceζ(λ)π(λ) elements in W . Thus, each partition (c, e, u1, . . . , ut) ` d̃
yields 2d̃−3d̃!/ceζ(λ)π(λ) elements in W corresponding to signed partitions (c+, e−, uε11 , . . . , u

εt
t ),

where λ = (u1, . . . , ut). Clearly, |Ce| is the sum of these numbers, running over all partitions λ `
d̃− c− e, thus

|Ce| =
2d̃−3d̃!

ce

∑
λ`d̃−e−c

1

ζ(λ)π(λ)
=

2d̃−3d̃!

ce
;

the last equation follows since m! = |Sm| =
∑

λ`mm!/ζ(λ)π(λ) for every integer m ≥ 1.

Recall that |TFC ∩ A(G̃)|/|TFC | ≥ 1/4 for each F -class C ∈ Ce. In conclusion, there is an absolute
constant z > 0 such that

|A(G̃)|
|G̃|

≥ 1

2d̃+1d̃!

∑c+1

e=dc/2e+3
|Ce| ≥

1

16

∑c+1

e=dc/2e+3

1

ce
> z/d;
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recall that e ∈ [c/2 + 2, c + 3] \ {c, 2c/3}, so we estimate the sum over all such e by running with e
from dc/2e+ 2 to c+ 1. The case of even d̃ is dealt with analogously. �

5.2. Constructing the second subgroup. Let G = 〈X〉 be isomorphic to SXd(q) and let H ≤
G be constructed as in Lemma 5.3. We now describe the construction of K ≤ G such that K ∼=
SXd−m(q) and H commutes with K. The approach is to constructively recognise H , explicitly write
down a suitable involution i ∈ H , and then to find K in CG(i). As a first step, we comment on the
structure of CG(i).

5.2.1. Involution centralisers. The corank of an involution i ∈ G̃ is the rank of the matrix i− 1d.
The next theorem describes the structure of involution centralisers in G̃; it is a modification of [19,
Theorem 6.1], and was proved by Aschbacher & Seitz [2].

Theorem 5.4. Let i ∈ G̃ be an involution of corank r ≤ d/2. There exists c ∈ GLd(F) such that

ic =

(
1r 0 1r
0 1d−2r 0
0 0 1r

)
and the elements of CG̃c(ic) have upper block triangular form with diagonal blocks a, b, a, of degrees
r, d− 2r, and r, respectively. Consider the homomorphism

ψ : CG̃c(i
c)→ GLr(F)×GLd−2r(F),

(
a ? ?
0 b ?
0 0 a

)
7→ (a, b).

(i) If G̃ is linear or unitary, then the image of ψ contains A × B with A = SXr(q) and B =

SXd−2r(q), both of the same type as G̃.

(ii) If G̃ is symplectic, then the image of ψ is A×B with B = Spd−2r(q) and

A = Spr(q) or A =
(

1 ?
0 Spr−1(q)

)
or A =

(
1 ? ?
0 Spr−2(q) ?
0 0 1

)
.

(iii) If G̃ is orthogonal, then the image of ψ is A × B with A as in (ii). If A = Spr(q), then B′ =

SXd−2r(q) has the same type as G̃; if A 6= Spr(q), then B = Spd−2r(q).

The standard form of i is ic; note that, in general, ic is not in the standard copy G̃. If i ∈ G̃ is
an involution of specific corank r ∈ {2, . . . , d/2}, then its image under every automorphism of G̃
has the same corank. (We remark that this actually holds for all SXd(q), including base cases, with
the exceptions of Sp4(q) and Ω+

8 (q): these have graph automorphisms which change the corank of
involutions.) This allows us to define the corank of an involution i ∈ G via ϕ : G→ G̃.

Let i ∈ G̃ be an involution of corank r < d/2 in standard form; let ψ and A be as in Theorem 5.4. If
G̃ is linear or unitary, then C ≤ CG̃(i) is sufficient if ψ(C) ≥ SXr(q)×SXd−2r(q). If G̃ is symplectic
or orthogonal, then C ≤ CG̃(i) is sufficient if ψ(C) contains SXd−2r(q) and the projection to the
irreducible diagonal block of A contains Spr(q), Spr−1(q), and Spr−2(q), respectively. If i ∈ G is an
involution, then a sufficient subgroup of CG(i) is defined via the isomorphism ϕ : G → G̃ followed
by a conjugation.

Theorem 5.5. Let i be an involution in G = 〈X〉 ∼= SXd(q). There is a black-box Monte Carlo
algorithm which constructs, as SLPs in X , a generating set for a sufficient subgroup of CG(i); it runs
in time O(d(µ+ ξ +O + Π)).

PROOF. It suffices to consider O(d) random elements to construct a Bray generator of CG(i). As
explained in the proof of [19, Theorem 6.4], a constant number of Bray generators suffices to generate
a sufficient subgroup. �
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5.2.2. The second subgroup. Let G = 〈X〉 be isomorphic to SXd(q) and let H ≤ G be con-
structed as in Lemma 5.3, hence H is isomorphic to SLm(q), SUm(q), or Ω+

m(q). By construction,
there exists an isomorphism ϕ : G→ G̃ to the standard copy of SXd(q) such that

H̃ = ϕ(H) =
(

SXm(q) 0
0 1d−m

)
.

We now describe the construction of K ≤ G with K ∼= SXd−m(q) of the same type as G such that

K̃ = ϕ(K) =
(

1m 0
0 SXd−m(q)

)
.

By recursion, we construct standard generators SH of H . Note that S̃H = ϕ(SH) is an automorphic
image of the standard generators S(m, q,SX) embedded in H̃ , say α(S̃H) = S(m, q,SX) with α ∈
Aut(H̃). If H̃ is linear or unitary, then so is G̃, hence α lifts to an automorphism of G̃, see Remark
3.3. If H̃ is orthogonal, then α lifts to an automorphism of G̃ ∈ {Spd(q),Ω

±
d (q)}, with possible

exceptions for H̃ ∼= Ω+
m(q) with m ∈ {4, 8}, see Lemma 3.4. We comment on this case in Remark

5.8; for now, suppose that H 6∼= Ω+
m(q) with m ∈ {4, 8}. Under these assumptions, ϕ can be modified

by an automorphism of SXd(q) so that we can assume that S̃H = S(m, q,SX).

We use SH to construct i, f ∈ H such that there exists a base change matrix c ∈ GLd(F) with

ϕ(i)c =

(
1r 1r 0
0 1r 0
0 0 1d−m

)
, ϕ(f)c =

(
u 0 0
0 u 0
0 0 1d−m

)
, and ϕ(CH(i))c =

(
A ? 0
0 A 0
0 0 1d−m

)
where r = m/2, A ∼= SXr(q) acts irreducibly, and u ∈ SXr(q) is fixed-point free of odd order.
We then apply the next proposition to construct the required subgroup K ≤ CG(i). To visualise the
situation, we now assume that ϕ is chosen such that ϕ(i) has standard form, and

ϕ(f) =
(
u 0 ?
0 1d−m 0
0 0 u

)
,

and

ϕ(CG(i))′ = CG̃(ϕ(i))′ =

(
A ? ?
0 SXd−m(q) ?
0 0 A

)
;

as in Theorem 5.4, denote by ψ the projection CG̃(ϕ(i))′ → A× SXd−m(q).

Proposition 5.6. There is a black-box Las Vegas algorithm which, using the above notation, constructs
from i and f a subgroup K ≤ CG(i) with K ∼= SXd−m(q) and

K̃ = ϕ(K) =

(
1r 0 0
0 SXd−m(q) 0
0 0 1r

)
.

The algorithm runs in time O(d(µ+ ξ +O + Π)).

PROOF. Suppose first that G is not of type Ω−; hence m ∈ [d/3, 2d/3], and therefore m and d −m
are approximately equal. Using Theorem 5.5, we find a sufficient subgroup C ≤ CG(i), and then
construct K as a subgroup of C. Applying a simple modification of Theorem 4.1, we obtain K1 ≤ C
with

ϕ(K1) =

(
1r ? ?
0 SXd−m(q) ?
0 0 1r

)
.

We stress that, by construction of i, the types and degrees of SXd−m(q) and A ∼= SXr(q) are known;
thus, modulo a normal 2-subgroup ofCG(i), Theorem 4.1 is essentially applied to SXr(q)×SXd−m(q).

If h ∈ K1 is random and ϕ(h) has diagonal blocks 1r, b, 1r, then, as seen in the proof of [19, Lem.
7.1], the element k = (fh(ffh)(|f |−1)/2)2 lies in K and ϕ(k) has diagonal blocks 1r, b

2, 1r. It is
proved in [23] that an O(1) random search in a perfect classical group suffices to find a generating set
M such that {x2 | x ∈M} generates the group; thus, collecting O(1) elements k of this type suffices
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to generate K ≤ C with ϕ(K) = K̃. We use Remark 3.6 and [35] to verify that K ∼= SXd−m(q); the
rank d−m is known by construction, and K has the same type as G.

We proceed analogously if G has type Ω−; see Remark 5.7 for more details on the construction of a
subgroup of small degree. �

Remark 5.7. In the gluing process, we also use the following modification of Proposition 5.6. Let
i, f ∈ G be as above, so

ϕ(i) =

(
1r 0 0
0 1d−2r 0
0 0 1r

)
, ϕ(f) =

(
u 0 ∗
0 1d−2r 0
0 0 u

)
, and ϕ(CG(i))′ =

(
A ? ?
0 SXd−2r(q) ?
0 0 A

)
,

but, this time, d − 2r ≤ 10, and A ≤ SXr(q) is as in Theorem 5.4(iii), containing a subgroup
Spr′(q) with r′ ∈ {r, r − 1, r − 2}. The degree r is known, and we want to construct K ≤ G
with ϕ(K) = diag(1r, SXd−2r(q), 1r); note that we also know r′ by investigating Zsigmondy prime
divisors of random elements in CG(i). We now proceed as in Remark 4.2. The first step is to use a
modification of Theorem 4.1 to construct B ≤ CG(i) such that ϕ(B) has diagonal blocks B̂, 1d−2r, B̂
with B̂ ≤ A and CA(B̂) = 1, for example, B̂ = Spr′(q) or Ω±r′(q). Since d − 2r ≤ 10 is small,
elements in B can be readily constructed by taking random Bray generators of CG(i) to the power
exp(SXd−2r(q)). Let K1 ≤ CG(i) be as in the proof of Proposition 5.6. Observe that h ∈ CG(i), of
order not dividing |Z(A)|, lies in K1 if and only if [h, b] is a 2-element for every generator b of B.
Having found such an h, we construct K1 as the normal closure of h in CG(i). Finally, the subgroup
K ≤ K1 we seek is constructed as before.

Remark 5.8. We comment on the two exceptional cases Ω+
4 (q) and Ω+

8 (q).

a) Let H ∼= Ω+
4 (q) = SL2(q) × SL2(q). Using the above notation, α(S̃H) = S(4, q,Ω+) for some

α ∈ Aut(H̃). If α does not lift to an automorphism of G̃ = SXd(q), then, modulo automorphisms
of H̃ that lift to G̃, it must be a field automorphism of H , acting differently on the two direct fac-
tors SL2(q) of H . In other words, the semisimple elements δ, y ∈ S(4, q,Ω+) are defined with
respect to two different primitive elements of the underlying field GF(q) which are equal modulo
applying a Frobenius automorphism. This has no impact on the above construction, and we obtain
K ∼= SXd−m(q) as before. However, such δ, y ∈ SXd(q) cannot be used as the semisimple standard
generators of SXd(q); instead we must replace y by a suitable power yp

j
for some j ∈ {0, . . . , e− 1}

where q = pe. We correct this when gluing the standard generators. For simplicity, in the remainder
of this paper, we suppose that if H ∼= Ω+

4 (q), then S̃H = S(4, q,Ω+). This remark also holds for odd
q and H ∼= Ω+

4 (q) = SL2(q) ◦ SL2(q).

b) Let H ∼= Ω+
8 (q). Using the above notation, α(S̃H) = S(8, q,Ω+) for some α ∈ Aut(H̃). If α

does not lift to an automorphism of G̃ = SXd(q), then, modulo automorphisms of H̃ that lift to G̃, it
must be a graph automorphism γ of H having order 3. Such a graph automorphism may change the
corank of an involution, and the above construction to obtain K ∼= SXd−8(q) will fail. We remedy
the situation as follows. Having constructively recognised H , we can compute images under γ. Let
i0 = i ∈ H be the involution we have constructed for Proposition 5.6, and define ij = γj(i) for
j = 1, 2. In the natural representation, exactly one of i0, i1, i2 has corank 4 and the other two have
corank 2. The centraliser of each involution of corank 2 contains a subgroup Ω+

d−4(q), which is not
the case for a centraliser of an involution of corank 4. Thus, in the centralisers of these involutions, we
look for an element that witnesses a subgroup Ω+

d−4(q), for example, a ppd(q, d− 6) element. We will
find such witnesses with O(d) trials for the two involutions of corank 2. If the remaining involution is
i1 or i2, then we apply γ or γ2 to the standard generators that we found for H . Using this strategy, we
can assume that S̃H = S(8, q,Ω+). For simplicity, in the remainder of this paper, we suppose that if
H ∼= Ω+

8 (q), then S̃H = S(8, q,Ω+).
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6. Gluing the cycles

Let G = 〈X〉 be isomorphic to SXd(q) with q even or odd. Using the algorithms of the previous
sections, we have constructed commuting subgroups H ∼= SXm(q) and K ∼= SXd−m(q) of G, such
that there exists an isomorphism ϕ : G→ G̃ to the standard copy of SXd(q) with

H̃ = ϕ(H) =
(

SXm(q) 0
0 1d−m

)
and K̃ = ϕ(K) =

(
1m 0
0 SXd−m

)
.

The isomorphism ϕ is unknown, but we use it to visualise the situation. By recursion, we have con-
structed standard generators SH and SK for H and K, respectively. Recall that SH ∪ SK contains
standard generators SG of G, with the exception of the cycle vG. In this section, we describe how to
glue the cycles vH and vK of H and K, respectively, to obtain a suitable cycle vG; this will complete
the construction of the standard generators of G. For odd q, our approach follows that of [26]; for even
q, we use a strategy different to that of [19], see Remark 6.1.

As outlined in Section 5.2.2, we can suppose that ϕmaps SH onto the standard generators S(m, q,SX)

of SXm(q) embedded in H̃ , that is, S̃H = ϕ(SH) = S(m, q,SX); note that Remark 5.8a) also applies
to odd q. Now consider S̃K = ϕ(SK) ⊆ K̃, which is an automorphic image of the standard generators
S = S(d − m, q,SX) of SXd−m(q), say S̃K = β(S) with β ∈ Aut(K̃). By Remark 3.3, we
decompose β = βg ◦βf ◦βd ◦βi into a graph, field, diagonal, and inner automorphism, respectively. In
all cases, βi and βd lift to automorphisms of G̃ which fix S̃H element-wise; therefore, we can suppose
the following:

(i) ϕ(SH) ⊆ H̃ are the standard generators S(m, q,SX) of SXm(q) embedded in H̃ ,

(ii) ϕ(SK) ⊆ K̃ are the standard generators S(d−m, q,SX) of SXd−m(q) embedded in K̃, or the
image of these under field and graph automorphisms of K̃.

If K is not isomorphic to Sp4(q) or Ω+
8 (q) with q even, then we can also assume that (i) and (ii) hold

with the roles of H and K interchanged. Note that if q is even, d −m = 4, and K ∼= Sp4(q) (which
arises in our algorithms only for d ∈ {8, 12, 16}), then the graph automorphism of K does not lift to
an automorphism of G̃ = Spd(q); similarly for Ω+

8 (q). We comment on this in Section 6.3.

In Section 6.1, we describe the general strategy for gluing in SLd(q) in both even and odd character-
istic. In Section 6.2, we describe gluing in G ∼= SUd(q) with d odd and q even; this exemplifies the
algorithm used for other types.

6.1. General strategy. Let G̃ = SLd(q), H̃ = SLm(q), and K̃ = SLd−m(q). Suppose d = 2n is
even and choose a (necessarily hyperbolic) basis {e1, f1, . . . , en, fn} of the natural G̃-module such that
(i) and (ii) hold. Write m = 2z. Recall that ω is a fixed primitive element of GF(q). By assumption,
the cycles vH ∈ SH and vK ∈ SK satisfy

ϕ(vH) = (e1, e2, . . . , ez)(f1, f2, . . . , fz) and ϕ(vK) = (ez+1, ez+2, . . . , en)(fz+1, fz+2, . . . , fn);

here (e1, e2, . . . , ez) is the permutation mapping e1 → e2 → . . . → ez → e1, and similarly for the
other cycles. By (ii), this also holds if ϕ(SK) is an image of S(d −m, q,SL) under field or inverse-
transpose automorphisms.

Observe vG = vKgvH is a cycle in G where g ∈ G is mapped to ϕ(g) = (ez, ez+1)(fz, fz+1) ∈ G̃;
indeed

ϕ(vK)ϕ(g)ϕ(vH) = (e1, e2, . . . , en)(f1, f2, . . . , fn).

It remains to construct g ∈ G; in fact, we are only able to construct g ∈ G such that ϕ(g) maps ez and
fz to cez+1 and cfz+1, respectively, for some unknown non-zero scalar c; such a glue element suffices.
We find a suitable glue element in the centraliser CG(i) of a certain involution. This requires a case
distinction.
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For odd q, we use SH and SK to construct A,B ≤ G with ϕ(A) = diag(1m−2,SL2(q), 1d−m) and
ϕ(B) = diag(1m, SL2(q), 1d−m−2); let SA and SB be standard generators of A and B, respectively.
The glue element g can now be found in CG(i) where i ∈ A × B is an involution with ϕ(i) =
diag(1m−2,−14, 1d−m−2). Using Theorem 4.1 and the algorithm of Remark 4.2, we extract from
CG(i) the subgroup K ≤ G with

ϕ(K) = diag(1m−2,SL4(q), 1d−m−2);

note that g ∈ K. We constructively recognise K and obtain an isomorphism ψ : K → SL4(q). Using
ψ(A), ψ(B) ≤ SL4(q), we can find a base change matrix w ∈ SL4(q) such that ψ(SA)w and ψ(SB)w

are the standard generators of SL2(q), but ψ(SB)w may be twisted by field or graph automorphisms.
Having constructively recognised K, we can find g ∈ K such that ψ(g)w is the permutation matrix
defined by (1, 3)(2, 4). Thus, by construction, there is a scalar c such that ϕ(g) maps ez and fz either
to cez+1 and cfz+1, or to cfz+1 and cez+1, depending on whether inverse-transpose is involved in (ii)
or not. In both cases, vG = vKgvH is a cycle of G: in the first case, choose

{e1, f1, . . . , ez, fz, cez+1, cfz+1, . . . , cen, cfn}

as a hyperbolic basis of G̃, so

ϕ(vK)ϕ(g)ϕ(vH) = (e1, e2, . . . , ez, cez+1, . . . , cen)(f1, f2, . . . , ez, cfz+1, . . . , cfn)

is a cycle of G̃. In the second case, choose

{e1, f1, . . . , ez, fz, cfz+1, cez+1, . . . , cfn, cen}

as a hyperbolic basis of G̃, so

ϕ(vK)ϕ(g)ϕ(vH) = (e1, e2, . . . , ez, cfz+1, . . . , cfn)(f1, f2, . . . , ez, cez+1, . . . , cen)

is a cycle of G̃.

For even q, the situation is more complicated. We use SH and SK to construct A,B ≤ G as
for odd q. We also construct iH ∈ H and iK ∈ K with ϕ(iH) = diag(s, . . . , s, 1d−m+2) and
ϕ(iK) = diag(1m+2, s, . . . , s) where s = ( 1 1

0 1 ); it is possible that ϕ(iK) is the inverse-transpose
of this element, but, as for odd q, this has no impact. Now i = iHiK is an involution of corank
r = d/2− 2 and, modulo a base change,

ϕ(CG(i)′) =

(
SLr(q) ? ?

0 SL4(q) ?
0 0 SLr(q)

)
.

Using Theorem 4.1 and Remark 5.7, we construct N ≤ CG(i) corresponding to the middle block
SL4(q) of ϕ(CG(i)); thus N ∼= SL4(q), and N contains A, B, and the glue element g. We now
proceed as for odd q, construct the glue g ∈ G, and vG = vKgvH ; this completes the construction of
SG. Note that our construction of i requires that m is even; similarly, for symplectic and orthogonal
groups, we require that m is divisible by 4.

Remark 6.1. For even q and in the natural representation, we find the glue g in the centraliser of an
involution i of corank 2, see [19]. More precisely, we construct g in(

SL2(q) 0 ?
0 1d−4

0 0 SL2(q)

)
≤
(

SL2(q) ? ?
0 SLd−4(q) ?
0 0 SL2(q)

)
= CG(i)′.

We stress that g /∈ diag(SL2(q), 1d−4,SL2(q)): to find g, we must inspect the top right block of
matrices in CG(i). This approach does not work in the black-box situation: we cannot see this top
right block, and we cannot align bases and write down the required glue element. As a consequence,
as outlined above, for a black-box group we must find the glue element in a clean middle block of an
involution centraliser, where we can align bases and write down the element we seek. Recall that the
construction of the middle block of an involution centraliser CG(i) requires an element f compatible
with i: namely, they interact as required by Proposition 5.6 (and Remark 5.7). For G ∼= Ω−d (q), such
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compatible i and f do not exist for some values of d, so the glue element cannot be constructed in
a middle block of an involution centraliser. To avoid this problem, we construct the first subgroup,
H ∼= Ω+

m(q), with large rank m ∈ {d− 4, d− 6} divisible by 4. The second subgroup K ∼= Ω−d−m(q)

now has small rank, and we find the glue in Ω−d−m+4(q) where d −m + 4 ≤ 10, see Section 6.3 for
more details. This explains why, for Ω−, we must construct a first subgroup H of large rank.

6.2. A detailed example: SUd(q) with q even. We describe gluing in G ∼= SUd(q) with q even
and d = 2n+ 1 odd. Let G̃ = SUd(q) have hyperbolic basis {e1, f1, . . . , en, fn, w}, and assume that
(i) and (ii) hold. We now construct standard generators of G from SH and SK by gluing the cycles
of H ∼= SUm(q) and K ∼= SUd−m(q). Denote by F = GF(q2) the underlying field of SUd(q) with
primitive element ω; let δ = ωq+1 and write m = 2z. By assumption, the cycles vH ∈ SH and
vK ∈ SK satisfy

ϕ(vH) = (e1, e2, . . . , ez)(f1, f2, . . . , fz) and
ϕ(vK) = (ez+1, ez+2, . . . , en)(fz+1, fz+2, . . . , fn, w).

To construct the cycle forG, we compute vKgvH where g ∈ Gwith ϕ(g) = (ez, ez+1)(fz, fz+1) ∈ G̃.

We use SH ∪ SK to construct iH , fH , sH , tH , δH ∈ H with

ϕ(iH) = diag(( 1 1
0 1 ) , . . . , ( 1 1

0 1 ) , 12, 1d−m) ∈ H̃,

ϕ(fH) = diag(δ, δ−1, . . . , δ, δ−1, 12, 1d−m) ∈ H̃,

ϕ(sH) = diag(1m−2, ( 0 1
1 0 ) , 1d−m) ∈ H̃,

ϕ(tH) = diag(1m−2, ( 1 1
0 1 ) , 1d−m) ∈ H̃,

ϕ(δH) = diag(1m−2, δ, δ
−1, 1d−m) ∈ H̃,

and iK , fK , sK , tK , δK ∈ K such that

ϕ(iK) = diag(1m, 12, ( 1 1
0 1 ) , . . . , ( 1 1

0 1 ) , 1) ∈ K̃,

ϕ(fK) = diag(1m, 12, δ, δ
−1, . . . , δ, δ−1, 1) ∈ K̃,

ϕ(sK) = diag(1m, ( 0 1
1 0 ) , 1d−m−2) ∈ K̃,

ϕ(tK) = diag(1m, ( 1 1
0 1 ) , 1d−m−2) ∈ K̃,

ϕ(δK) = diag(1m, δ, δ
−1, 1d−m−2) ∈ K̃,

or they are images of these under field automorphisms, cf. (ii) above; note that SUd(q) has no graph
automorphism. Let

ι = iHiK and f = fHfK ,

so ϕ(ι) is an involution of corank r = n − 2 in GLd(F), and there exists a permutation matrix
b ∈ GLd(F) such that ϕ(ι)b has standard form and ϕ(f)b remains a diagonal matrix; for simplicity,
suppose that b = 1 in the following. Thus,

C̃ =

(
SUr(q) ∗ ∗

0 SU5(q) ∗
0 0 SUr(q)

)
≤ CG̃(ϕ(ι));

the underlying basis of C̃ is

{e1, e2, . . . , ez−1, ez+2, . . . , en, ez, fz, ez+1, fz+1, w, f1, f2, . . . , fz−1, fz+2, . . . , fn}.
We use f and the algorithm of Remark 5.7 to construct L ≤ CG(ι) with

L̃ = ϕ(L) =

(
1r 0 0
0 SX5(q) 0
0 0 1r

)
≤ C̃,

which contains the image ϕ(g) of the glue g ∈ G we seek.
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Let N be the standard copy of SU5(q). Using a base case algorithm, we construct an isomorphism

ψ : L→ N.

Let s1, t1, δ1 ∈ N and s2, t2, δ2 ∈ N be the images under ψ of sH , tH , δH ∈ H ∩L and sK , tK , δK ∈
K ∩ L, respectively. If i ∈ {1, 2}, then {si, ti, δi} ⊆ N generates a subgroup isomorphic to SL2(q);
we now define a basis {v1, . . . , v5} by choosing and constructing v2 ∈ im (t1 − 14) \ {0}, v1 = v2s1,
v4 ∈ im (t2 − 14) \ {0}, v3 = v4s2, and v5 ∈ (Eig(s1t1, 1) ∩ Eig(s2t2, 1)) \ {0}.

Lemma 6.2. If b is the base change matrix to the basis {v1, . . . , v5}, then there exist j1, j2 ∈ N with

sb1 = diag(( 0 1
1 0 ) , 13), tb1 = diag(( 1 1

0 1 ) , 13), δb1 = diag(δj1 , δ−j1 , 13)

and
sb2 = diag(12, ( 0 1

1 0 ) , 1), tb2 = diag(12, ( 1 1
0 1 ) , 1), δb2 = diag(12, δ

j2 , δ−j2 , 1).

There exist c, c′ ∈ F such that {v1, . . . , v5} corresponds to {ez, fz, cez+1, cfz+1, c
′w}.

PROOF. Denote by s̄i, t̄i, δ̄i the matrices displayed in the lemma. By definition, L̃ has block diagonal
form diag(1r,SU5(q), 1r); let π : L̃→ SU5(q) be the projection onto the middle block. By construc-
tion, α = π ◦ ϕ ◦ ψ−1 is an isomorphism SU5(q) → SU5(q) which maps si, ti, and δi to s̄i, t̄i,
and (δ̄i)

−ji , respectively. Let κ be an inner automorphism, adjusting the hermitian form, such that
α′ = α ◦ κ−1 is an automorphism of SU5(q). Then α′ maps κ(si), κ(ti), and κ(δi) to s̄i, t̄i, and
(δ̄i)
−ji , respectively.

By Remark 3.3, we can decompose α′ = αf ◦ αd ◦ αi. Hence, β = αd ◦ αi ◦ κ satisfies

diag(SL2(q), 13) = 〈s̄1, t̄1, δ̄1〉 = α′ ◦ κ(〈s1, t1, δ1〉) = β(〈s1, t1, δ1〉) and
diag(12,SL2(q), 11) = 〈s̄2, t̄2, δ̄2〉 = α′ ◦ κ(〈s2, t2, δ2〉) = β(〈s2, t2, δ2〉).

The outer automorphism group of SL2(q) ∼= SU2(q) is the group of field automorphisms; thus, modulo
field automorphisms, each automorphic image of the standard generators of SU2(q) is conjugate in
SU2(q) to S(2, q,SU). In summary, there exists an isomorphism γ, realised as conjugation by the
base change matrix b defined in the lemma, such that γ(si) = s̄i, γ(ti) = t̄i, and γ(δi) = δ̄i for
i ∈ {1, 2}. �

We now show how to construct the cycle of G, and thereby complete the construction of standard
generators of G. Let N = SU5(q) and let b and sbi , t

b
i , δ

b
i ∈ N b be as in Lemma 6.2. The hermitian

form preserved by N b is
diag(( 0 1

1 0 ) , ( 0 x
x 0 ) , y)

for some x, y ∈ GF(q2). It follows from [43, Theorem 7.1(iii)] that x ∈ GF(q), so the algorithm
of [20] is used to find s ∈ GF(q2) with sq+1 = x−1. Write t = s−1, so

h =

(
0 0 s 0 0
0 0 0 s 0
t 0 0 0 0
0 t 0 0 0
0 0 0 0 1

)
∈ N b,

and we construct g ∈ G with ψ(g) = hb
−1 ∈ N . Clearly, ϕ(g) maps ez and fz to cez+1 and cfz+1 for

some c ∈ F, and v = vKgvH is a cycle for G.

Since d is odd, some subset S1 of the standard generators of G lies in H and some subset S2 of the
standard generators lies inK. However, in G̃, our constructed cycle ϕ(v) is not necessarily compatible
with the underlying hyperbolic bases for ϕ(S1) and ϕ(S2). The solution is to redefine S1 as the image
of a suitable subset of SK under conjugation by v−m/2. For this, we require that the conditions (i)
and (ii) are formulated with H and K interchanged, so that ϕ(SK) = S(d−m, q,SU). This strategy
requires d−m ≥ 5; in particular, d = 7 must be treated separately.
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6.3. Gluing in orthogonal and symplectic groups. If q is odd, then we glue as outlined in Sec-
tion 6.1; we deal with forms as described in Section 6.2.

For even q, the situation is more complicated. If G ∼= SXd(q) is symplectic or orthogonal, then, by
construction, K ∼= SXd−m(q) has the same type as G, and H ∼= Ω+

m(q) with m divisible by 4. We
use the same approach to construct standard generators for G from those of H and K. If G has type
different to Ω+, then the non-cycle standard generators of G are those in K, and not in H . In this case,
we require that (i) and (ii) hold with the roles of H and K interchanged. This poses some problems if
K is isomorphic to Sp4(q) or Ω+

8 (q); we comment on this below.

If G is symplectic, then we glue the cycles in Sp6(q) ≤ G, extracted from an involution centraliser.
In a variation of Lemma 6.2, we use Ω+

4 (q) ≤ H ∩ Sp6(q) and SL2(q) ≤ K ∩ Sp6(q) to choose a
basis which allows us to construct the glue element. If H ∼= Ω+

m(q) and K ∼= Sp4(q), which implies
d ∈ {8, 12, 16}, then the standard generators SK of K may correspond to the automorphic image of
S(4, q,Sp) under a graph automorphism of K. In this case, we cannot assume that (i) and (ii) hold
with the roles of H and K interchanged, and we cannot use SK as a subset of the standard generators
of G. We detect and correct this as in Remark 5.8b).

If G is orthogonal, then we glue the cycles in a subgroup Ω±k (q) of the same type as G, or in Spk(q),
cf. Theorem 5.4(iii). Here we describe the case Ω±k (q); the other is similar (and can be avoided in
practice). If G ∼= Ω+

d (q) with d ≡ 2 mod 4, then we glue the cycles in a subgroup Ω+
6 (q) ≤ G; we

choose a suitable basis using Ω+
4 (q) ≤ H and D ≤ K with D ∼= 〈diag(ω, ω−1)〉. If d ≡ 0 mod 4,

then we glue in Ω+
8 (q) ≤ G, and we use Ω+

4 (q) ≤ H and Ω+
4 (q) ≤ K to align the basis. Working in

this Ω+
8 (q), or if K ∼= Ω+

8 (q), we face the same problem as in case Sp with K ∼= Sp4(q); we deal with
it in the same manner. If K ∼= Ω+

4 (q), then we may need to adjust the semisimple elements of SK , see
Remark 5.8. If G ∼= Ω−d (q), then m ∈ {d− 4, d− 6} and m is divisible by 4. We glue in Ω−k (q) ≤ G
with k ∈ {8, 10}; we adjust the basis using K and Ω+

4 (q) ≤ H . Some standard generators of G lie in
H , and some lie in K, thus we proceed as for SU in odd degree, see Section 6.2.

6.4. The cost. We now summarise the cost of the algorithm to glue the cycles. Observe that we
must construct the centraliser of an involution; the algorithm also requires one base case call.

Lemma 6.3. Given H,K ≤ G, SH ⊆ H , and SK ⊆ K, the algorithm to construct standard genera-
tors SG of G has complexity O(d(µ+ ξ +O + Π) + B) where B = (χ+ µ) log2 q + ξ log q log log q
reflects the cost of recognising a single base case.

7. Complexity of the algorithm

We now summarise the complexity of the algorithm. Suppose the input group G has parameters
(d, q,SX). By recursion, we apply our main algorithm 2i times to degree d/2i for i ∈ {0, 1, . . . , j}
with j ≈ log d. In degree r, the time to construct two smaller subgroups is O(r(µ+ ξ +O+ Π)) and
the time for gluing is O(r(µ + ξ +O + Π) + B). Summing this up and adding the cost for the O(d)
base cases gives the complexity stated in Theorem 1.2.

While we present black-box algorithms, their primary application is to recognise absolutely irreducible
classical groups in representations (other than the natural representation) in the defining characteristic.
Our dual approach introduces complications with the complexity analysis.

One problem arises because efficient algorithms which solve certain problems for matrices or permu-
tations are not available for black-box groups. We address this issue by introducing oracles for these
various algorithms. The reader may assign to these oracles whatever timing estimates are appropriate
to the context of interest.
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Consider the order oracle O. Since |G| divides |GLd(q)|, the order of an element of G may be com-
puted, in the black-box context, in time O(µd4 log2 q), given a prime factorisation of |GLd(q)|. But,
given this factorisation, the order of an element of GLd(q) may be computed with O(d3 log d +
d2 log d log log d log q) field operations; see [26, Lemma 2.7]. Furthermore, if G is a matrix group
in defining characteristic, it usually suffices to compute the pseudo-order of an element: this can be
computed in the cited time without knowing the factorisation.

Next consider the power oracle Π. Using fast exponentiation, the complexity for Π is O(µd log q); but
the algorithm in [26, Lemma 10.1] allows us to compute large powers of g ∈ GLd(q) withO(d3 log d+
d2 log d log log d log q) field operations.

Now consider the cost of χ, the oracle to recognise a central quotient of SL2(q). The algorithm of [25]
produces inverse isomorphisms between a black-box copy of SL2(2

e) and the natural copy in time that
is polynomial in e. Such an algorithm appears in [8] for q ≡ 1 mod 4; it is polynomial in log q and the
square of the characteristic of GF(q). But the only known way of producing such an isomorphism with
complexity that is polynomial in log q when the characteristic is not bounded is the algorithm of [16],
which applies when the group is given as a matrix representation in the defining characteristic, and
assumes a discrete logarithm oracle for GF(q). If the representation is not in defining characteristic,
then the complexity involves q (but remains polynomial in the size of the input).

Babai [3] presented a Monte Carlo algorithm to construct in polynomial time independent nearly uni-
formly distributed random elements of a finite group. An alternative is the product replacement algo-
rithm of Celler et al. [15].

A difficulty of another kind arises because our algorithm is recursive. We recurse to two classical
groups, each of rank roughly half that of the parent group. In the matrix group case, these groups act
faithfully (modulo a central subgroup) on a section of the given module that may also be about half
the dimension of the given module, but will often be much smaller. This means that almost all the
oracles, including µ, will now be replaced, in these recursive calls, by oracles that run much faster. A
consequence is that the time spent in the recursive calls will, at the worst, multiply the complexity of
the algorithm by a constant (depending on how much faster these oracles run in smaller cases).

It is difficult to produce a complexity analysis that allows for these complications. We content our-
selves with giving the complexity of the main algorithm in three components as above, each being
given in terms of oracles that may be used in the input group, and with no reference to the fact that
they might be replaced, in subgroups, by faster oracles. The cost of the recursion is provably insignif-
icant if the input is a matrix group in any characteristic, or a permutation group, when the oracles are
replaced by faster oracles that apply in the recursive calls.

When the algorithms are applied to (absolutely irreducible) representations of classical groups in the
defining characteristic, the complexity should be interpreted as a function of three variables, the di-
mension d of the natural representation of the group, the dimension n of the given representation, and
the size q of the field. In this context, the complexity of our algorithms, for fixed q, is O(d log dn3) if
we assume that we can construct a random element of a group, given by a generating set of bounded
size, with a bounded number of group multiplications. While evidence suggests that the algorithm
of [15] achieves this, the provable performance is much worse.

8. Realisation and performance

Our implementation in MAGMA accepts as input a permutation or linear representation of SXd(q). We
use our implementations of [10, 14–16, 30]. We use Schneider’s implementations of (the extension to)
the algorithm of [1], and also of [18], to write an element of a classical group as an SLP in its standard
generators. If G ≤ GLn(F) is an absolutely irreducible representation of SXd(q), with n ≤ d2, and
F and GF(q) have the same characteristic, then Corr’s implementation of the Las Vegas algorithms
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of [17, 32] is used to construct the projective action of G on GF(q)d; then G can be constructively
recognised by our algorithms of [19, 26]. To all individual base cases, we apply (our implementations
of) specially designed base-case algorithms or COMPOSITIONTREE [7]. We observe that the latter
also readily constructs standard generators for many representations of moderate dimension of SXd(2)
for d ≤ 20.

In practice, black-box groups arise as permutation groups or linear groups. Once we construct the
subgroup H (or K), we restrict to act on a faithful representation of a central quotient of H (or K)
by taking its action on an irreducible section of the given module. All constructive recognition is
performed on this faithful representation.

Table 2 displays runtimes of our MAGMA implementation to construct standard generators. All times
are in rounded seconds and averaged over 5 runs; the computations were carried out using MAGMA
V2.20-3 on a computer with a 2.9 GHz processor. As input we used SXd(q) in both its natural and
exterior square representations. We apply the algorithm described in this paper to these, ignoring the
nature of the input representation.

Our implementation is the first that can construct standard generators for all classical groups in arbi-
trary matrix representations over all finite fields. It can readily be applied to representations of degree
up to about 300. We observe that the runtime is often dominated by evaluations of SLPs.

Natural representation Exterior square

group / q 25 28 34 36 25 28 34 36

SL14(q) 27 34 44 48 55 106 420 679

SL20(q) 49 64 83 93 413 581 637 946
SU14(q) 4 7 7 15 116 283 534 807
SU20(q) 12 26 15 37 711 977 678 1304
Sp14(q) 6 7 24 37 69 164 146 507
Sp20(q) 21 35 41 57 830 1208 1122 1560
Ω+

14(q) 5 6 97 168 76 411 366 826
Ω+

20(q) 16 26 163 230 297 893 456 995
Ω−

14(q) 7 13 115 124 306 656 564 734
Ω−

20(q) 16 24 208 220 657 879 750 1098
Ω13(q) – – 108 140 – – 160 707
Ω19(q) – – 203 228 – – 792 1103

TABLE 2. Runtimes for constructing standard generators
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[3] László Babai. Local expansion of vertex-transitive graphs and random generation in finite groups. Theory of Computing,
(Los Angeles, 1991), pp. 164–174. Association for Computing Machinery, New York, 1991.
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