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Abstract

We present an algorithm to construct the automorphism group of a
finite p-group. The method works down the lower exponent-p central
series of the group. The central difficulty in each inductive step is a
stabiliser computation; we introduce various approaches designed to

simplify this computation.
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1 Introduction

Given an arbitrary finite group, the computation of its automorphism group
is a very difficult task. Pioneer work in this area was carried out by Felsch
& Neubiiser ([8] and [9]), whose algorithm used the output of their subgroup
lattice program. In the early 1970s, Neubiiser developed a technique to deter-
mine the automorphism group by considering its action on unions of certain
conjugacy classes of the group; similar methods were used by Hulpke [14].
Cannon & Holt [5] present a new algorithm to answer this problem.

More efficient approaches are available to determine the automorphism
groups of groups satisfying certain properties. Following the work of Shoda
[27], Hulpke in 1997 implemented a practical method for finite abelian groups.
Wursthorn [31] adapted modular group algebra techniques to compute the
automorphism group of a p-group. Smith [30] introduced an algorithm for
finite soluble groups; it has recently been further developed by Slattery.

The p-group generation algorithm of Newman [19] and O’Brien [21] can be
modified to compute the automorphism group of a finite p-group as outlined in
[24]. The algorithm proceeds by induction down the lower exponent-p central
series of a given p-group P; that is, it successively computes Aut(P;) for
the quotients P, = P/P;(P), where (P;(P)) is the descending sequence of
subgroups defined recursively by P;(P) = P and P;,1(P) = [P;(P), P|P;(P)?
for 4+ > 1. The exponent-p class of P is the length of its lower exponent-p
central series.

The initial step of the algorithm returns Aut(P,) = GL(d, p), where d is the
rank of the elementary abelian group P,. In the inductive step we determine
Aut(P;41) from Aut(P;). For this purpose we introduce an action of Aut(P)
on a certain elementary abelian p-group M (the p-multiplicator of P;). The
main computation of the inductive step is the determination of the stabiliser
in Aut(P;) of a subgroup U of M. If the stabiliser is obtained by constructing
the corresponding orbit of U, the length of this orbit is a practical limitation.
We recall the algorithm in its basic form in Section 3.

In this paper we introduce new features and refinements of the algorithm
which extend significantly its range of application. In summary, we seek either
to break up a single difficult stabiliser computation into smaller pieces or to

replace the acting group by a proper subgroup which contains the required



stabiliser. An overview of our refinements is given in Section 4.

We first exploit the structure of the automorphism group Aut(FP;). Since
M is an elementary abelian p-group, Aut(P;) acts on M as a subgroup of
the appropriate general linear group. Further, since Aut(P;) contains a known
normal p-subgroup, it has a useful “hybrid” structure. In Sections 5 and 6,
we introduce general-purpose techniques to simplify stabiliser computations
under the action of matrix groups and hybrid groups respectively.

We next exploit the subgroup structure of the given p-group P. In Section
7, we present an algorithm to construct subgroups of P which on theoretical
grounds are known to be characteristic. In Section 8, we discuss how to use
group-theoretic invariants of subgroups of P to obtain other characteristic
subgroups. We use these characteristic subgroups to replace the acting group
by a proper subgroup which contains the required stabiliser.

Some of our reductions incur significant overheads and so we wish to invoke
them only if an inductive step of the automorphism group algorithm would
otherwise be too difficult. Consequently, we introduce in Section 9 a method
to estimate a prior: the length of an orbit. This method also provides random
elements of the corresponding stabiliser.

The resulting refined algorithm is summarised in Section 10. It takes as
input a p-group P and a set C' of subgroups of P and returns a description
of the subgroup A of the automorphism group Aut(P) which stabilises each
element of C'. Thus, if C is empty or each subgroup of C is characteristic
in P, the algorithm returns Aut(P). The description is a generating set for
A specified by its action on P. We identify a normal p-subgroup of A where
A/N is a subgroup of the relevant linear group; we may also identify a soluble
subgroup S of A containing N.

We have implemented the algorithm in MAGMA [3]; a variation is available
as the AUTPGRP package [7], distributed with GAP [10]. In Section 11 we
discuss aspects of our implementation and comment on its performance. We
illustrate the algorithm in Section 12.

The ideas presented here have implications for other related tasks: comput-
ing the automorphism groups of finite (soluble) groups; generating (descrip-
tions of) p-groups [21]; and deciding isomorphism between p-groups [23].



2 Background

2.1 Polycyclic generating sequences and bases

Let G' be a soluble group with composition series
G=Cp>Cy>--->C,>Chy = 1.

Each factor C;/C;,; is cyclic of prime order p;. If we choose g; € C; \ Ciy1,
then we obtain a polycyclic generating sequence (gi,...,g,) of G. Each g € G
can be written uniquely as gi'...g5 for 0 < ¢ < p;. We call (e1,...,€,) the
exponent vector of g relative to (g1,...,¢g,). A polycyclic generating sequence
of G allows efficient computations with subgroups and can be used readily
to determine polycyclic generating sequences for factor groups of G. Such
descriptions underpin most efficient algorithms for exploring soluble groups.
See [29, Chapter 9] for more details. If G is a p-group, then we can use a
chief series for G as composition series. A corresponding polycyclic generating
sequence for GG is known as a base — a natural generalisation of the concept of
a basis of a vector space to a non-commutative situation. A base determines
a consistent power-commutator presentation for G whose defining relations
are of the form ¢ = gfﬁ’i’m) - gBlin) and (g4, gi] = ffl’j’jﬂ) <. gBlim) for
1<i<j<n where 3(3,5,k) € {0,...,p— 1}.

2.2 The p-covering group of a p-group

The p-covering group P* of a p-group P is the largest elementary abelian,
central Frattini extension of P. Thus, if ¢y : P* — P is the natural ho-
momorphism of the extension and M = ker(¢)), then M is an elementary
abelian p-group which is central in P* and M < ®(P*). The kernel M is the
p-multiplicator of P.

If P is a p-group described by a base, then using the method of [20], we can
efficiently compute a power-commutator presentation for P*. We also obtain
an explicit homomorphism ) : P* — P and a base for its kernel M.

We introduce a connection between terms of the lower exponent-p central

series and p-covering groups. For a proof see [21].

Theorem 2.1 Let P be a p-group, let P; = P/P;(P) have minimal generating
set gi,...,94, and let P’ be the p-covering group of P;. Consider the natural



epimorphisms ¢ : Pf — P and v : Py — F;. Let g; and g; be arbitrary
preimages of g; under ¢ and vy, respectively. Then € : P} — Piy1 g5 G5

defines an epimorphism.

Note that M < ®(P;) and thus P* = (¢7,...,g;) . If we have polycyclic

2

generating sequences for P and P,,;, we can compute U = ker(¢). By

construction U < M. Figure 1 illustrates these relationships.

Py e B B

— M| —— | Pi(Piya)

Figure 1: Relationship between factors and p-covering group

3 The basic algorithm

We now recall the basic algorithm to compute the automorphism group of a
p-group as described in [24]. For background and proofs, we refer to [21].

The input of the algorithm is a p-group P described by a base. We assume
that we can compute the exponent vector of an element relative to the given
base. Thus, for example, P can be a permutation group or described by a
power-commutator presentation. We describe an automorphism group by a
set, of generators and its order. In particular, the output of the algorithm
returns such a description for Aut(P).

The algorithm proceeds by induction down the lower exponent-p central
series of P. Since P, = P/Py(P) is elementary abelian, Aut(P,) = GL(d, p).
Now we assume by induction that we know Aut(F;) for some ¢ > 2 and we
seek a generating set of Aut(P;;1). Let P be the p-covering group of P; and
M the corresponding p-multiplicator.



Theorem 3.1 Fach automorphism « of P; extends to an automorphism o*
of P’ wia the natural homomorphism P’ — P;. Moreover, o leaves M
mwvaritant and o induces an automorphism ap; of M, which depends only on
Q.

We recall the explicit construction for the action on M. Let m € M.
Since M < ®(Pr), we can write m = w(g;,...,q;) for some word w in the
generating set g;,..., g5 of P* from Theorem 2.1. Let h; = (g;)¥® € P; and
choose a preimage h; in P under the natural epimorphism % : P} — P;.
We define m®™ = w(hi,..., h}).

From Theorem 2.1, we have an epimorphism e : P — F,;; with ker-
nel U < M. Using the action of Aut(P;) on M, we define the stabiliser
S = Stabauyr,)(U). Let T be the group of automorphisms of P;;; which

centralise P;1/P;(Piy1).
Theorem 3.2 Let v : Aut(Py1) — Aut(F;) be the natural homomorphism.
Then T = ker(v) and S = im(v). Hence Aut(P;;1) = TR, where R is an
arbitrary preimage of S under v.

It is straight-forward to construct M, U, and the action of Aut(F;) on M.
To determine Aut(P;;1), we must construct generators for each of S and 7.

The major work is in computing S; a generating set for 7' is readily obtained

as follows.

Lemma 3.3 Let P be a p-group with Pey1(P) =1 and ¢ > 2. Let gy,..., 94

and z1,...,x; be minimal generating sets for P and P.(P), respectively. De-
fine
Bi,j P —> P 9i i .
gk > gk for k # 1.

Then {B;; | 1 <i<dandl < j <1} is a base for the elementary abelian
p-group of automorphisms of P centralising P/P.(P).

The standard technique to compute generators for a stabiliser is to list the
orbit of the subspace and, concurrently with its construction, calculate Schreier
generators for the stabiliser. See for example [4, Chapter 13] for further details.
If the orbit is small, this approach is very efficient. However, we usually face
two problems: the orbit may be very large and the set of Schreier generators
for the stabiliser is highly redundant. In Section 12 we discuss some examples

which cannot be resolved using the basic algorithm.



4 Refinements to the algorithm

We now introduce a number of significant refinements to the basic algorithm.
All are designed to minimise the lengths of the orbits which we must construct.
We provide details of these refinements in the next four sections and summarise
the resulting refined algorithm in Section 10.

Most significantly, we exploit the hybrid structure of the automorphism
group. Observe, from Lemma 3.3, that the acting group G = Aut(P;) has
a normal p-subgroup N, namely the centraliser in G of V = P/Py(P), and
G/N is a subgroup of GL(V'). (In practice, we may be able to identify a larger
normal p-subgroup of Aut(F;).)

We can also refine further the structure of G by computing the preimage S
of the soluble radical of G/N. Hence, we use a series containing three distinct
parts in G:

G>S>NP>1

where S is soluble, NV is a p-group, and both are normal subgroups of G'.

We construct a canonical representative for the orbit of a subspace U of M
under N without explicitly constructing its orbit and simultaneously construct
the stabiliser of U in N. An important feature is that we can determine
whether or not two subspaces are in the same orbit under N by constructing
their canonical representatives.

We next ascend a composition series for S to determine the stabiliser of U
under S. Since S is soluble, we have an efficient algorithm to construct both
the orbit and stabiliser of U in S. Since both N and S are normal subgroups
of G, the orbit of U under each is a block for G. This simple observation
allows us to control the number of generators needed for the stabiliser of U
under GG. The hybrid structure of the automorphism group is retained during
each iteration of the algorithm, and the final description returned identifies
these components of the automorphism group.

The second important refinement arises from the observation that Aut(P)
acts naturally on P; and thus induces a subgroup, say B;, of Aut(P;). It
suffices for the remaining inductive steps to supply a subgroup A; of Aut(F;)
which contains B;. Obviously we wish to supply a group A; which contains B;
as a subgroup of small index. We construct such subgroups A; by considering

the characteristic subgroup structure of both P, and P. Thus the input at



the i-th inductive step may be a proper subgroup of Aut(P;).

Finally, we exploit the internal structure of the p-multiplicator M of P;.
Since M is elementary abelian, it is an Aut(F;)-module and we use its sub-
module structure to minimise the lengths of the orbits constructed.

5 Stabilisers in matrix groups

Let G < GL(n,q), where ¢ = p¢, and U < V a u-dimensional subspace of the
n-dimensional natural G-module V. We discuss how to determine Stabs(U).

Observe that if we construct Stabg(U) using the standard technique, then
we must determine and store the orbit UY. Each element of the orbit is a
u-dimensional subspace described by a canonical basis. The dual space U* of
U is an (n — u)-dimensional subspace of V. Hence, if u > n/2, it requires less
space to store the orbit of U*, even though we achieve no reduction in orbit
length.

5.1 Invariant subspaces

We consider a G-module compositionseries V =V, > Vo > --- >V, > V.1 =0
of V; that is, a series of G-invariant subspaces of V' such that V;/V;,; is
irreducible under the action of G. For 1 < 57 < ¢ < r + 1 we define
Uj = U+ Vi)nV;. Since U; 41 = U;j N Vi1 and Uiy = Uiy + Viey,

we obtain
StabG(U,-,j) S Stabg(Ui_l’j) and StabG(Ui,j) S Stabg(Uz’,j+1).

Lemma 5.1 Let G act on Q2 and let w,v € Q where Stabg(w) < Stabg(v).
Then Stabg(w) = Stabsiapg ) (w).

By Lemma, 5.1 we can divide the computation of Stabg(U) into a sequence
of stabiliser computations. We loop over the subspaces U, ; and stabilise each
subspace in turn using the following algorithm.

e Initialise H := G.
e Mark U;; for 1 <i:<r+1.
e while there is an unmarked subspace U, ;:
e Choose an unmarked subspace U;; where both U;;;1 and U;_;; are

marked.



e Construct the action of H on U;_;;/U; j11.
e Compute H := Stabg (U ;/Ui; j+1)-
e Mark Ui,j-

e end while;

Ury11=U

0=Vip1 = Ur+1,r+1
Figure 2: A lattice of subspaces of V'

At any stage in the algorithm, H is the subgroup of G which stabilises all
of the marked subspaces. This procedure will terminate with H = Stabg(U),
since Stabg(U) = Ni>;Stabg(U; ;). We compute Staby (U; ;) only if H already
stabilises both U; ;11 and U;_;; for two reasons. First, if H did not stabilise
Uijy1 or U1 , then we could find an intermediate subgroup between H
and Staby (U, ;) by computing the stabiliser of each of these two subspaces.
Secondly, we can reduce the action of H to the smaller space U;_; ;/U; jt+1, by
noting that Staby (Ui ;/Uij+1) = Stabu (Ui ;).

Our description does not prescribe a unique path to Stabg(U). It may
be most useful to choose a subspace U;; having smallest non-trivial orbit
among the eligible unmarked subspaces. We can estimate the orbit length of
a subspace using the method of Section 9. If, at any step of the iteration, the
orbit length of each of the unmarked subspaces is too large and H is a proper
subgroup of GG, we can recursively apply this approach to one of the factors
Ui—1,/Ui j+1, in the hope that this factor is reducible under the action of H.



5.2 The stabiliser under a p-group

Let G be a p-subgroup of GL(n,q) where ¢ = p®; thus G is unipotent.
Schwingel [25] presents an algorithm to construct a canonical representative U
of the G-orbit of a subspace U of the natural G-module V. At the same time,
the algorithm constructs a generating set for the stabiliser in G of U and an
element ¢ of G such that U? = U. The canonical representative is defined by
an order relation on the orbit of U under G. Hence, we can decide whether
two subspaces are in the same orbit under G by computing and comparing
their canonical representatives.

Since we are interested only in subgroups of GL(n,p), we outline the al-

gorithm only for the case p = q. We assume that we have a base (g1,---, gm)
for the acting group G'. Further, let V. =V, > Vo > --- > V.1 = 0 be
a maximal G-invariant flag in V. Then V has an ordered basis (e1,...,e,)

with e; € V; \ Viyq for 1 < i < n. The canonical form of a subspace is not

absolute, but depends on the chosen ordered basis.

Definition 5.2 Let X,Y C {1,...,n}. Then X <Y if one of the following

0CCUTS:
1. X#0 and Y =0.
2. The least element of X 1s less than the least element of Y .

3. If X and Y have the same least element k, then X \ {k} <Y \ {k}.

Hence, we obtain a total (or linear) ordering on the set of subsets of {1,...,n}.

Let v=3%",a;e; € V,and let Z,={i:1<4i<nanda =0}. We define
a partial ordering on V' as follows: if v,w € V then v < w if Z, < Z,,. The
canonical form of a vector v in its orbit under G is the unique least element of
its orbit under this ordering. (Although we have only defined a partial order
on V, this least element is unique because of the assumptions on G.)

Let U < V. Intersecting U with the V; gives a maximal flag in U once
duplicates have been removed. Clearly, Stabs(U) stabilises each subspace in
this flag. In particular, Stabg(U) stabilises the one-dimensional space U; in
this flag. We determine the canonical form and relevant stabiliser for U;, and

proceed by recursion.



Hence we reduce to the case where U has dimension 1. Let u be the
non-zero element of U; with leading coefficient 1. Since G is unipotent, u9
has leading coefficient 1 as well. Thus Stabg(U) stabilises v and finding a
canonical form for U reduces to finding a canonical form for w.

We now outline how to construct this canonical form for u. We define the
height of v € V' to be the integer j such that v € V; \ V,41, where the height
of the zero vector is taken to be n+1. Further, for ¢ € G we define the height
hy(g) with respect to v to be the height of v(g — 1).

If h,(g) =n+1 for every g in the given base (gi,...,9m) for G, then G
centralises u and we are finished. If not, let j be the minimum of these heights.
Let k£ be the largest integer between 1 and m such that h,(gx) = j; define
g = gr- Now for some integer [ where 0 <[ < p— 1, we have ud = Yo Qi€
with a; = 0; define u; = u9' . Remove ¢ from the base of G. For each z #g
in the base with h,, (z) = j, determine an integer [, where 0 < [, < p—1
such that h,, (zg's) > j; replace z by zg'=. It can now be proved that the
resulting sequence is a base for a subgroup G; of G which has the property
that hy, (z) > j for all x € G, and further the canonical form of u with
respect to G is the canonical form of u; with respect to G.

The cost (in field operations) of the resulting algorithm is dominated by

the cost of adjusting the base elements of G' of height j with respect to u.

1
2

O(n®log, q) for each j; hence the cost of the algorithm is O(n°log, ¢) for a

Since there are at most 3n(n — 1)log, ¢ elements in a base for G, the cost is

space of dimension one, and O(n”log, q) for an arbitrary U.

5.3 Local orbits

Let L be a subspace of U and let LY be the orbit of L under G. The local
orbit of L in U 'is L ={T € L | T < U}. (Similarly, if L is such that
U < L, we can define the local orbit of L by {T'€ L¢ |U <T}.)

We first compute H = Stabg(L) and next construct a subgroup K of G
that acts transitively on £. Now Stabg(U) < HK. Of course, to apply this
strategy successfully, we must find a subspace L of U having small local orbit.
A variation of this idea was used in [22].



6 Stabilisers in hybrid groups

We describe a general technique which uses normal subgroups of the acting
group to speed up an orbit-stabiliser computation. A similar approach was
introduced by Leedham-Green for finite soluble groups and exploited by Laue,
Neubiiser & Schoenwaelder [16]. Here we extend the idea to hybrid groups:

insoluble groups which have a normal soluble subgroup.

6.1 Normal subgroups and blocks

Let G be a group acting on a set {2 and let NV << G. Recall that the orbits of
N on Q are blocks for the action of G on Q; see, for example, [15, p. 147].
Hence G has an induced action on the set of orbits of N. Clearly, N acts
trivially on this set of orbits and the induced action of G is an action of G/N.

Let w € Q and let § = w" denote the orbit of w under N. Consider the set
stabiliser Stabg/n(6) in the induced action of G/N and let Ng € Stabg/n(6).
Then w9 = w® for some x € N and thus gz ! € Stabg(w). We denote by
g =g
following is proved in [16].

a lifting of ¢ from the set stabiliser to the point stabiliser. The

Lemma 6.1 Let G be a group acting on a set 2 and N <1 G. For w € (),
let § = w" and let {61,...,8,} be the orbit of § under the induced action of
G/N.

a) wé =04, U---Ud;.
b) Stabg(w)N/N = Stabg/n(6) and Staby(w) = Stabg(w)NN <1Stabg(w).

c) If Stabg/n(6) = (Ng1,...,Ngs), then Stabg(w) = (G1, .. ., §i)Staby (w).

Using Lemma 6.1, we divide the computation of w® and Stabg(w) into two
smaller orbit-stabiliser computations. First, we determine w” and Staby(w).
Then we compute the orbit and stabiliser of w"¥ under the induced action of
G/N. These two steps allow us to determine w® and a generating set for
Stabg(w).

If G has [ generators, then a set of Schreier generators for Stabg(w) has
cardinality |w®|(l—1)+1. If [; and I, are the numbers of generators for G/N

and N, respectively, then Lemma 6.1 provides a generating set for Stabg(w)



of size (|wC|/|w™|)(ly — 1) + |w™|(ly — 1) + 2, which is usually much smaller.
Further, this generating set exhibits a generating set for the normal subgroup
Staby(w) which can be used to iterate this approach. Finally, constructing
w? is usually more efficient using the action on sets, as described in Lemma

6.1a).

6.2 Hybrid groups having soluble normal subgroups

If the acting group G has a soluble normal subgroup S, we can apply the
“divide-and-conquer” strategy suggested by Lemma 6.1. Assume we know a

composition series for S, so
G>5251|>52>"'[>Sll>55+1=1

where [S; : Sit1] = pi, a prime, for 1 < i <. Let s; € S;\ Si+1 and consider
the polycyclic generating sequence (si,...,s;) of S. Since S;/S;;1 has prime

order, we obtain two cases.
o S;/Siy1 fixes w+ and Stabg, (w) = (8;)Stabs,,, (w).
e S;/Siy1 moves w9+ and Stabg,(w) = Stabg,,, (w).

Hence we can compute the orbit of w under S without visiting an element of
w? twice, and we also obtain a polycyclic generating sequence for Stabs(w).
The remaining inductive step from Stabs(w) to Stabg(w) is now performed

as suggested by Lemma 6.1.

7 Constructing characteristic subgroups

We introduce a method to construct subgroups of P which are known on
theoretical grounds to be characteristic. In summary, we construct images and
preimages of terms of the lower exponent-p central series under p-th power
and commutation maps, and close the resulting collection of characteristic
subgroups under these operations.

We are particularly interested in characteristic subgroups containing ®(P),
since these result in the most significant improvements for the automorphism

group algorithm.



Write V; for P; 1(P)/Pi(P) < P;, and call the image of a characteristic
subgroup of P in this quotient a characteristic subspace of V;. Our aim is
to determine characteristic subspaces without using the action of the relevant
automorphism group. If we know a list of characteristic subspaces of this kind,
we can restrict our attention to the subgroup of Aut(P;) that stabilises the
image in P; of each of the corresponding subgroups.

In particular, we can begin our calculation with the subgroup of GL(V})
that stabilises each known characteristic subspace of V;. To determine this
subgroup of GL(V}), we use an algorithm of Schwingel [25] to construct in
polynomial time the subgroup A of GL(d,p) which stabilises each element of
a set of subspaces of FZ. Hence the initial step of the automorphism group
algorithm returns A rather than GL(d,p).

Our construction technique for characteristic subgroups uses linear algebra,
and hence runs in polynomial time, given a bound to the number of characteris-
tic subspaces we are prepared to construct. In fact, we search for characteristic
subgroups @ satisfying P;,1(P) < @ < P;(P) for all 7, partly because they
are needed to construct characteristic subgroups containing ®(P), and partly
because they play a useful role in Section 8.

For each 7, let S; be a set of characteristic subspaces of V;. We initialise
S; to contain the two trivial subspaces of V;. Let m; be the map from V; to
Vi1 induced by p-th powering for p odd or ¢ > 1, and let ¢;; : V;® V; — Vi
be the map induced by commutation. For p = 2, we define m; as the squaring
map from Vi to Po(P)/P’. We now form the closure of S; as follows.

1. (a) If p=2 and U € S, add the inverse image in V5 of 7w (U) to Sy;
if p=2and U € Sy, add 77 (U) to S;, where U is the image of
U in Po(P)/P'.
(b) Otherwise, if U € S;, add m;(U) to S;;; and if i > 1, add ;4 (U)
to Si—l-

2. If U; € S; and Uj S Sj, then add Cz'j(Uz' X UJ) to SH—j-

3. fU; € 5, and Uy, € S;4j, then add to S; the subspace of V; consisting
of those vectors v € V; such that ¢;;(U; ® v) < U4,.



8 Fingerprinting

It may be that the characteristic subspaces constructed using the method of
Section 7 do not reduce the size of the orbits sufficiently. However, they allow
us to identify characteristic sections of P. We now seek to exploit them further.

Let Y < X be characteristic subgroups of P where X/Y is an elementary
abelian p-group. We consider the set of minimal subgroups of X/Y. We list
these subgroups and their preimages in P under the natural homomorphism
X — X/Y. Now we partition the set of minimal subgroups of X/Y into sub-
sets using properties of the preimages that must be Aut(P)-invariant. We call
this process fingerprinting the section X/Y in P. Equivalently, we can con-
sider maximal subgroups (or indeed all of the subgroups of an arbitrary fixed
order) of X/Y . Of course, we can also fingerprint a section of P; using prop-
erties that must be Aut(P;)-invariant. Here we have the following advantages.
If A is the subgroup of Aut(P;) which we have constructed in the previous
stage, then we can restrict our attention to just ome A-orbit and determine
invariants for elements of this orbit only. Further, if we know a subgroup H of
Aut(P;y1), it suffices to compute invariants for a set of representatives of the
H -orbits of subgroups only. Such an H could be obtained using the strategy
outlined in Section 9.

Fingerprinting yields new conditions on Aut(P); we discuss now how ex-

ploit these.

8.1 New characteristic subgroups

Let X/Y be an arbitrary Aut(P)-invariant elementary abelian section of P.
We fingerprint X /Y and so obtain a partition of the set of minimal subgroups
of X/Y . Each subset of the partition generates an Aut(P)-invariant subgroup
of X/Y and its preimage is characteristic in P. We can now use the charac-
teristic closure algorithm of Section 7 to generate images and preimages of the

corresponding characteristic space.

8.2 Partition stabiliser

Let A be the subgroup of the automorphism group of P, = P/P;(P) con-

structed by the automorphism group algorithm in the previous stage. Then A



acts on Pj(P)/Pj41(P) for 1 < j < i. We can use this action to identify an
A-invariant section X/Y in one of these factors. We fingerprint this section
and obtain a partition of the set of minimal subgroups of X/Y . The stabiliser
in A of this partition can now replace A.

To determine this stabiliser, we first calculate the permutation action B
of A on the set of minimal subgroups of X/Y, then compute the partition
stabiliser in the permutation group B, and, finally, compute the preimage of
the stabiliser under the natural homomorphism ¢ : A — B. It simplifies this
preimage computation if the kernel of v is readily determined. Hence, for

example, this approach is particularly effective if X/Y = P,.

8.3 Enforcing new “characteristic” subgroups

As before, let A be the constructed subgroup of the automorphism group of
P, = P/P;(P), and let X/Y be an A-invariant section of P,. We partition the
set of minimal subgroups of X/Y using properties of their preimages in P, .
Assume that we also know H < A which lifts to a subgroup of Aut(P;).
Clearly, every part in the partition is a union of H -orbits. Suppose that some
part consists of a single H-orbit and let L be the preimage in P of an element
of this H -orbit.

We now compute the subgroup S of Aut(P,;1) that stabilises L. We can
construct S by adding L to the set of characteristic subgroups used in Section
7 and then re-running the automorphism group algorithm up to this step. (By
adding L to the list of subgroups, we expect that this computation will be
more efficient than the initial computation.) Now it is easy to deduce that
Aut(Py,) = SH. If a € Aut(P;y,), then L* = LP for some 3 € H; thus

a - 7! stabilises L and so is contained in S.

8.4 Refining the result of fingerprinting

Fingerprinting is most useful if we obtain new characteristic subspaces of
Vi = P/Py(P), since we may then be able to reduce the stabiliser compu-
tation to a smaller subgroup of GL(d,p). The simplest method to obtain a
new characteristic space of V; is to find a part in a partition resulting from
fingerprinting a section of V; whose sum, or intersection, defines a proper non-

trivial subspace of V;. Hence, we want our partition to be as fine as possible.



Given an initial partition constructed as above, we seek to refine it by using
lattice-theoretic invariants. For example, if A and B are (not necessarily dis-
tinct) parts, we can define a fingerprint function on A as follows. For each
U € A, consider for each i the number gy (i) of subspaces W of B such that
U + W has dimension . If the functions gy are not constant on A, this gives
a refinement of 4 as a union of parts on which gy is constant (as a function of
U). There are many variations: taking intersections rather than sums; taking

triples of spaces rather than pairs, etc.

8.5 Stabilisers of lattices

Recall that the primary function of fingerprinting is to produce sets of sub-
groups of P, which are setwise invariant under the action of Aut(P). Con-
sequently, we consider briefly the general problem of finding the subgroup of
GL(V) that setwise stabilises a given set of subspaces of V. It is usually not
easy to find generators for this subgroup. However, given such a set, one can
try to refine it by using combinatorial properties, so as to find a simpler set S
of subspaces of V' with the property that any group normalising the original
set must also normalise S. Here “simpler” means “having a larger normaliser”,
ruling out the trivial cases when the normaliser is the whole of GL(V).

The hope is that one could recognise the normaliser M of S as being
one of the maximal subgroups of GL(V') given explicitly in Aschbacher’s [1]
classification of the maximal subgroups of GL(V). For example, if S is a
single subspace, or a set of subspaces of the same dimension whose direct sum
is V', then M is clearly of this form. In fact many of the maximal subgroups of
GL(V) defined explicitly by Aschbacher are normalisers of lattices of subspaces
of V.

This raises the question of whether a C9 maximal subgroup of GL(V') can
be the normaliser of a set S of subspaces of V. Guralnick & Shareshian [11]
prove that if so, either the lattice generated by S is the full subspace lattice
of V, or V has even dimension 2n for some n and the non-trivial elements
of S are subspaces of dimension n with the property that any two intersect
trivially. Further they prove that if S does not satisfy these conditions, then
the normaliser of S is a subgroup of a maximal subgroup M of GL(V) lying
in another Aschbacher category (not C9) and M is the normaliser of some
lattice of subspaces. The challenge then is to find such an M.



9 Estimating the orbit length

The refinements introduced may incur some overheads. Consequently, we wish
to invoke them only if the orbit is so large that we cannot readily compute and
store its elements. The “Birthday Paradox” permits us to estimate the orbit
length.

Assume we have a large population and seek to estimate its size. We select
an independent uniformly distributed random sample of the population, noting
how large a sample is needed to obtain L coincidences for some specified L.
Using the statistical model developed by Goodman [26, §4.3.1], we can then
estimate the expected size N of the population. If n is the size of the sample
selected, then N is n?/2L. Confidence intervals for N are asymptotically dis-
tributed as y-squared with 2L degrees of freedom. The coefficient of variation
of Nis 1/ VL and the model appears to have practical validity if L > 15.

Theorem 9.1 Let G act on a set 2 and let w € Q). Assume we construct n

elements of the orbit of w under G before obtaining L coincidences.
e The expected length N of the orbit is n*/2L.

e An approzimate 100(1 — o) % confidence interval for N is
2n?/(z(a/2) + VAL — 1)> < N < 2n?/(—2(a/2) + VAL — 1)?

where z(a/2) is the a/2 quantile on the standard (0,1) normal distri-

bution.

We construct random elements of the orbit of w under G by applying
random elements of G to w. Moreover, this process produces random elements
of the stabiliser of w: if w9 = w", then gh~! € Stabg(w). Hence it provides
the basis for a Monte-Carlo algorithm to construct the stabiliser.

10 The algorithm

We now outline our algorithm to compute the automorphism group of a p-
group P. We assume that the computation is difficult; in easier cases, various
steps of the algorithm can be simplified.



We present our algorithm as a recursive function, AutomorphismGroup (P, C),
where P is a p-group and C' is a set of subgroups of P. The function com-
putes the subgroup of Aut(P) which stabilises each element of C'. Thus, if C
is empty or each subgroup in C is characteristic in P, the output is Aut(P).
We initialise C' as described in Section 7. Assume P has a lower exponent-p

central series of length c.

AutomorphismGroup (P, C)

1. Determine A = NgecNauy(py)(SP2(P)/P2(P)) < Aut(P) = GL(d,p)
using the algorithm described in [25]. We also obtain N = O,(A) and a
base for N.

2. Determine (if possible) the preimage S in A of the soluble radical of
A/N and hence a composition series of S/N in order to exploit the

ideas of Section 6.
3. for 72 from 2 to ¢ do

(a) Compute P} and determine M and U. Calculate the induced

2

action of A on M in matrix form (Section 3).
(b) Determine Staby(U) and U (Section 5.2).
(c) Call the function BlockStabiliser (A, N,U,U) which we describe

below. It can return three results.
i. If the result is B = Stabs(U), continue as follows:
o Assign A= B and N = Staby(U).
e Lift A and N to groups of automorphisms of P;,; (Section
3).
e Extend the base for N by a base for T (Section 3).
ii. If the result is a set D of subgroups of P, then the stabiliser

computation is difficult, but we have found new characteristic
subgroups of P. We recursively call AutomorphismGroup (P, CUD).
iii. If the result is “fail”, then the stabiliser computation is too

hard and we return “fail”.

end for;



4. Return Aut(P) = A.

The central step of the algorithm is the function BlockStabiliser, which
seeks to determine the stabiliser of A acting on N-blocks of U. We use the

method of Section 5.2 to represent N-blocks by canonical forms.

BlockStabiliser (A, N,U,U)

e Use the method of Section 9 to estimate the orbit size of A/N acting on N-
canonical forms. If the expected size is small, then compute the stabiliser
of U using the composition series of S/N and the methods of Section 6.

e Otherwise, construct a composition series for the A-module M and apply
the methods of Section 5.1 to compute recursively stabilisers in the resulting
sections. If an orbit is too large to be constructed directly, then apply the
local subgroups strategy (Section 5.3) or fingerprinting (Section 8). Either
may succeed in constructing the stabiliser B; the latter may provide a new
set of characteristic subgroups.

o If neither strategy succeeds, we return “fail”.

We can readily modify the algorithm to construct the outer automorphism
group of P. In practice, the function returns a generating set for a supplement
to the inner automorphism group of P and a generating set for the inner
automorphism group. The generators are mappings acting on the underlying
p-group P; the description also exhibits the hybrid structure of Aut(P).

11 Implementation and performance

Our implementations of the algorithm in both GAP and MAGMA are publicly
available.

We use the MEATAXE [13] to compute a composition series for a G-module
as required in Section 5.1; it can readily construct such for spaces of very large
dimension in time polynomial in the dimension of the G-module.

Our choice of fingerprints in Section 8 depends on the order of the preimage
O in P of a subgroup of a characteristic section. Examples include the iso-
morphism type of O and the order of the commutator subgroup [P, O]. If O
is small, the former can be determined using the IDGROUP function of Besche
& Eick [2]. For larger preimages, we determine the ranks of the factors of their

lower p-central series.



For our application of the “Birthday Paradox”, we choose a = 0.05. Thus
z(a/2) = 1.96 and we obtain with 95% confidence that

where N is the size of the orbit and n is the number of elements of the orbit we
generate before obtaining at least 16 coincidences. Of course, we also bound
the number of elements we are willing to construct; the precise value chosen
depends on the size and nature of the orbit elements. We use the algorithm
of [6] to construct random elements of a group described by a generating set,
and so obtain random elements of the orbit.

On efficiency grounds, the soluble normal subgroup S computed in step
(2) should be as large as possible. If A is soluble, then we initialise S to be
A. Otherwise, if we can efficiently determine a permutation representation of
A/N, then we compute its soluble radical using the methods of either [17] or
[28] and we initialise S to be the preimage of this radical. If not, we initialise
S tobe N.

11.1 Comments on performance

A limiting factor for the basic algorithm in constructing the automorphism
group of a p-pgroup P of Frattini rank d is that it must construct the orbit
of a subspace under GL(d, p).

The most critical factor for the new algorithm is whether we can find a
“useful” overgroup A of the subgroup B of GL(d,p) induced by Aut(P). In
practice, the overgroup A should either be soluble or a p-group, or B should
have “small” index in A. Since we find such an overgroup by constructing
characteristic subgroups of P, our ability to detect these is critical. Hence, the
most difficult examples are those p-groups where we cannot find characteristic
subgroups. Characteristic subspaces and the associated subgroup of GL(d, q)
which fixes these can be obtained in time polynomial in d.

The determination of the stabiliser of a subspace under a unipotent sub-
group of GL(n, ¢) has complexity O(n"log, ). As we iterate the construction,
we expect that the time taken to construct the stabiliser of a subspace under
the normal p-subgroup will dominate. While this computation may in prac-

tice be expensive, its success is not limited by the length of the orbit, since we



construct only the canonical representative for an orbit. The work of Martin
[18] provides some theoretical justification for this expectation.

The partition stabiliser approach of Section 8.2 is highly effective, partic-
ularly so if no characteristic subspaces are found, but it is limited to those
cases where a permutation representation can be explicitly constructed for the

action of a subgroup of the automorphism group on a characteristic section.

12 Some applications

We now present some examples which are beyond the range of the basic algo-

rithm of Section 3.

12.1 An exponent-p class 2 example

Let P be the group of order 3! having the following power-commutator pre-

sentation where all defining relations with trivial right-hand sides are omitted.

{gla -y 013 \ [910,96] = 011, [910,97] = G12,
[92,91] = [94, 93] = [96,95] = [98,97] = [910, 99] = 913}

The lower exponent-p central series of P has length 2 and the factors
P1(P)/P2(P) and Py(P)/Ps(P) have ranks 10 and 3 respectively. We ap-
ply the algorithm of Section 10.

1. We find no characteristic subgroup in P. Hence A = GL(10,3) and N

is trivial.

2. Py is a group of order 3%. The p-multiplicator M is elementary abelian
of order 3% and has U as a subgroup of index 33. The action of A is
straight-forward to determine. We replace U by its dual.

3. There is one A-invariant submodule V' in M of dimension 45. However,
U <V and so the methods of Section 5.1 do not yield a reduction of the
orbit length. We restrict the computation to V' and so compute with

smaller matrices.

4. We generate 50000 elements of the orbit of U under A without obtaining

any coincidences and conclude that the orbit is “large”.



5. We fingerprint the minimal and maximal subgroups of Py(P3)/P:1(Ps),
obtaining two partitions of each. Following the strategy of Section 8.4,

we obtain six non-trivial characteristic spaces of P/Py(P).

6. The stabiliser A in GL(10,3) of each of these characteristic subspaces
has order 2'% - 3% .5.13. Its largest normal p-subgroup N has order
337,

7. We now use the algorithms of Sections 5.1, 5.2 and 6 to deduce that
the orbit of U under N has length 3!% and the orbit of canonical forms
under A/N has length 2% -3%-13, and to construct the stabiliser of U
under A.

8. Since the group 7" has 10 - 3 generators, the automorphism group of P

has order 2 .357 .5,

Our MAGMA V2.6 implementation on a Sun UltraSPARC Enterprise 4000
server determined this automorphism group in 2670 seconds. This example is
typical for groups of exponent-p class 2: it is usually difficult to find useful
characteristic subgroups, the p-multiplicator M has only one invariant sub-
group, and the normal subgroup N is trivial. Hence, fingerprinting is invoked

in most cases.

12.2 An exponent-p class 7 example

In a study of 3-transposition groups, Hall & Soicher [12] consider the two
groups H; having finite presentations

{a,b,c,d,e : a* b% %, d?% €% (ab)?, (ac)?, (ad)?, (ae)?,
be), (bd)*, (be)®, (cd)?, (ce)®, (de)?,
abe), (aPd)?, (acd)®, (b°d)*, (a®c)?, (abh)?,
a®b%)?, (a’e)?, (a“e)?, (a’e)?,

be)?, (be)?® (Cde)3 (6 )3’(b(ca) )2,
d®e)®, (@Ve)?, (0"e)?, (dPe)?, (a“De)?,
(da) 6)3,( ac)e)3’ (b )3’ (C ) (d (be) )
(Adbab) )3 (c(dab)g)3 (o(dbha)g)3 (g bed) o)

a(bdc)e)3, (ab(edce))ii’ (ab(ecde ) (ac(bed)2)3 Ti}

e}



where 7, = ¢ 'a®®” and r, = a'a®¥’(cde)?. Each has derived group
of index 2 and order 3?°. We constructed the automorphism group of each
derived group. Since the details of the computations are identical, we report
on that for P, the subgroup of index 2 in H;.

The lower exponent-p central series of P has length 6. In Table 1, for each
factor P; with i € {2,...,6}, we list the dimensions of the p-multiplicator
M and of the relevant allowable subgroup U, the order of Aut(P;), and the
length of the orbit of U under the action of Aut(F;).

i | P;|dim M | dim U |Aut(P)| | 0|

2| 3¢ 10 41 29.36.5.13 1

3|30 24 21 129-3%.5.13]2%.5

4|38 32 21 26.342.13| 3%

5| 3% 35 34 26.366.13 1

6 | 3% 38 34 26.370.13| 318
329 26_373_13

Table 1: The group of order 3%°

We find no characteristic subgroup and so A = GL(4,3). The inductive
steps for ¢+ = 2,3 are both easy, since the corresponding orbits are small.
We consider in more detail the inductive step from P, to Ps. The input

automorphism group Aut(P,) has order 2%-3*2.13 and has normal 3-subgroup
N of order 3%¢.

1. We compute a power-commutator presentation for P; which shows that
M has order 3%? and U is a subgroup of index 3.

2. We now use the algorithms of Sections 5.1, 5.2 and 6 to deduce that
the orbit of U under N has length 3?° and the orbit of canonical forms
under A/N has length 1, and to construct the stabiliser of U under A.

An alternative approach is to determine an Aut(P,)-composition series for
M . The resulting composition series has length 18 and the non-trivial orbits
have length 3%, 3%, 3% and 33.

In the inductive step from F; to P;, we again use the algorithm of Section
5.2. It took 52 seconds to determine Aut(P).



12.3 Wreath products

We consider the n-fold wreath product of C, for various values of p and n.
Since characteristic subgroups are easily found, the initial step of the algorithm
reduces the group acting from GL(n + 1,p) to a “computable” subgroup A.
This reduction and the refinement of Section 5.1 suffice. In Table 2, we record
the defining parameters p and n, the order of P, its exponent-p class ¢, and
the order of the subgroup A.

pln| [P[| c| |4
2/5] 28] 32 6
2] 7[22%5 [ 128 168
3/3] 390] 27| 48
5356|125 1280
72| ™| 491512

Table 2: Some wreath product examples
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