
Algorithms for matrix groups

E.A. O’Brien

Department of Mathematics, University of Auckland, Auckland, New Zealand

Email: obrien@math.auckland.ac.nz

Abstract

Existing algorithms have only limited ability to answer structural questions about
subgroups G of GL(d, F), where F is a finite field. We discuss new and promis-
ing algorithmic approaches, both theoretical and practical, which as a first step
construct a chief series for G.

1 Introduction

Research in Computational Group Theory has concentrated on four primary areas:
permutation groups, finitely-presented groups, soluble groups, and matrix groups.
It is now possible to study the structure of permutation groups having degrees up
to about ten million; Seress [97] describes in detail the relevant algorithms. We
can compute useful descriptions for quotients of finitely-presented groups; as one
example, O’Brien & Vaughan-Lee [90] computed a power-conjugate presentation
for the largest finite 2-generator group of exponent 7, showing that it has order
720416. Practical algorithms for the study of polycyclic groups are described in [59,
Chapter 8].

We contrast the success in these areas with the paucity of algorithms to investi-
gate the structure of matrix groups. Let G = 〈X〉 ≤ GL(d, F) where F = GF(q).
Natural questions of interest to group-theorists include: What is the order of G?
What are its composition factors? How many conjugacy classes of elements does
it have? Such questions about a subgroup of Sn, the symmetric group of degree n,
are answered both theoretically and practically using highly effective polynomial-
time algorithms. However, for linear groups these can be answered only in certain
limited contexts. As one indicator, it is difficult (using standard functions) to an-
swer such questions about GL(8, 7) using either of the major computational algebra
systems, GAP [46] and Magma [16].

A major topic of research over the past 15 years, the so-called “matrix recog-
nition” project, has sought to address these limitations by developing effective
well-understood algorithms for the study of such groups. A secondary goal is to
realise the performance of these algorithms in practice, via publicly available im-
plementations.

Thanks to Peter Brooksbank, Heiko Dietrich, Stephen Glasby, Derek Holt, Colva Roney-

Dougal and Ákos Seress for their comments and corrections to the paper. This work was partially

supported by the Marsden Fund of New Zealand via grant UOA721.

O’Brien: Algorithms for matrix groups 2

Two approaches dominate. The black-box approach, discussed in Section 4, aims
to construct a characteristic series C of subgroups for G which can be readily refined
to provide a chief series; the associated algorithms are independent of the given
representation. The geometric approach, discussed in Section 5, aims to exploit the
natural linear action of G on its underlying vector space to construct a composition
series for G; the associated algorithms exploit the linear representation of G. Both
approaches rely on the solution of certain key tasks for simple groups which we
discuss in Section 3; we survey their solutions in Sections 6–9. Presentations for
the groups of Lie type on certain standard generators are used to ensure correctness;
these are discussed in Section 10.

As we demonstrate in Section 11, the geometric approach is realised via a com-
position tree. In practice, the composition series produced from the geometric
approach is readily modified to produce a chief series of G exhibiting C. In Section
12 we consider briefly algorithms which exploit the chief series and its associated
Trivial Fitting paradigm to answer structural questions about G. While it is not
yet possible to make definitive statements about the outcome of this project, a
realistic and achievable goal is to provide algorithms to answer many questions for
linear groups of “small” degree, say up to degree 20 defined over moderate-sized
fields.

In this paper, we aim to supplement and update the related surveys [65], [72]
and [91]. Its length precludes comprehensiveness. For example, we consider neither
nilpotent nor solvable linear groups. Nor do we discuss the algorithms of Detinko
and Flannery and others to study finitely generated matrix groups defined over
infinite fields. The excellent survey [43] addresses both omissions.

2 Basic concepts

We commence with a review of basic concepts.

2.1 Complexity

If f and g are real-valued functions defined on the positive integers, then f(n) =
O(g(n)) means |f(n)| < C|g(n)| for some positive constant C and all sufficiently
large n.

One measure of performance is that an algorithm is polynomial in the size of the
input. If G = 〈X〉 ≤ GL(d, q), then the size of the input is |X|d2 log q, since each
of the d2 entries in a matrix requires log q bits.

2.2 Black-box groups

The concept of a black-box group was introduced in [6]. In this model, group ele-
ments are represented by bit-strings of uniform length; the only group operations
permissible are multiplication, inversion, and checking for equality with the iden-
tity element. Permutation groups and matrix groups defined over finite fields are
covered by this model.

O’Brien: Algorithms for matrix groups 3

Seress [97, p. 17] defines a black-box algorithm as one which does not use specific
features of the group representation, nor particulars of how group operations are
performed; it can only use the operations listed above. However, a common as-
sumption is that oracles are available to perform certain tasks – usually those not
known to be solvable in polynomial time.

One such is a discrete log oracle: for a given non-zero µ ∈ GF(q) and a fixed
primitive element ω of GF(q), it returns the unique integer k in the range 1 ≤ k < q
for which µ = ωk. The most efficient algorithms for this task run in sub-exponential
time (see [98, Chapter 4]).

If the elements of a black-box group G are represented by bit-strings of uniform
length n, then n is the encoding length of G and |G| ≤ 2n. If G is described by a
bounded list of generators, then the size of the input to a black-box algorithm is
O(n). If G also has Lie rank r and is defined over a field of size q, then |G| ≥ (q−1)r,
so both r and log q are O(n).

2.3 Algorithm types and random elements

Most algorithms for linear groups are randomised: they rely on random selections.
A Monte Carlo algorithm is a randomised algorithm that, with prescribed prob-
ability less than 1/2, may return an incorrect answer to a decision question. A
Las Vegas algorithm is one that never returns an incorrect answer, but may report
failure with probability less than some specified value ǫ ∈ (0, 1). At the cost of n
iterations, the probability of a correct answer can be increased to 1− ǫn. We refer
the reader to [5] for a discussion of these concepts.

Monte Carlo algorithms to construct the normal closure of a subgroup and the
derived group of a black-box group are described in [97, Chapter 2].

Many algorithms use random search in a group G ≤ GL(d, q) to find elements
having prescribed property P. Examples of P are having a characteristic polyno-
mial with a factor of degree greater than d/2, or order divisible by a prescribed
prime.

A common feature is that these algorithms depend on detailed analysis of the
proportion of elements of finite simple groups satisfying P. Assume we determine
a lower bound, say 1/k, for the proportion of elements in G satisfying P. To find
an element satisfying P by random search with probability of failure less than a
given ǫ ∈ (0, 1), we choose a sample of uniformly distributed random elements in
G of size at least ⌈loge(1/ǫ)⌉k.

Following [97, p. 24], an algorithm constructs an ǫ-uniformly distributed random
element x of a finite group G if (1−ǫ)/|G| < Prob(x = g) < (1+ǫ)/|G| for all g ∈ G;
if ǫ < 1/2, then the algorithm constructs nearly uniformly distributed random ele-
ments of G. Babai [4] presents a black-box Monte Carlo algorithm to construct such
elements in polynomial time. An alternative is the product replacement algorithm
of Celler et al. [34]. That this runs in polynomial time was established by Pak [92].
Its implementations in GAP and Magma are widely used. For a discussion of both
algorithms, see [97, pp. 26–30]. Another algorithm, proposed by Cooperman [39],
was analysed by Dixon [44].

O’Brien: Algorithms for matrix groups 4

2.4 Some basic operations

Consider the task of multiplying two d × d matrices. Its complexity is O(dω)
field operations, where ω = 3 if we employ the traditional algorithm. Strassen’s
divide-and-conquer algorithm [100] reduces ω to log2 7 but at a cost: namely, the
additional intricacy of an implementation and larger memory demands. Copper-
smith & Winograd’s result [40] that ω can be smaller than 2.376 remains of limited
practical significance.

We can compute large powers m of a matrix g in at most 2 ⌊log2 m⌋ multiplica-
tions by the standard doubling algorithm: gm = gm−1g if m is odd and gm = g(m/2)2

if m is even.

Lemma 2.1
(i) Multiplication and division operations for polynomials of degree d defined over

GF(q) can be performed deterministically in O(d log d log log d) field opera-
tions. Using a Las Vegas algorithm, such a polynomial can be factored into
its irreducible factors in O(d2 log d log log d log(qd)) field operations.

(ii) Using Las Vegas algorithms, both the characteristic and minimal polynomial
of g ∈ GL(d, q) can be computed in O(d3 log d) field operations.

For the cost of polynomial operations, see [101, §8.3, §9.1, Theorem 14.14]. Char-
acteristic and minimal polynomials can be computed in the claimed time using the
Las Vegas algorithms of [2, 69] and [47] respectively. Neunhöffer & Praeger [87]
describe Monte Carlo and deterministic algorithms to construct the minimal poly-
nomial; these have complexity O(d3) and O(d4) respectively and are implemented
in GAP.

2.5 The pseudo-order of a matrix

To determine the order of g ∈ GL(d, q) currently requires factorisation of numbers
of the form qi − 1, a problem generally believed not to be solvable in polynomial
time. Since GL(d, q) has elements of order qd − 1 (namely, Singer cycles), it is not
practical to compute powers of g until we obtain the identity.

Celler & Leedham-Green [35] present the following algorithm to compute the
order of g ∈ GL(d, q).

• Compute a “good” multiplicative upper bound B for |g|.
• Factorise B =

∏m
i=1 pαi

i where the primes pi are distinct.

• If m = 1, then calculate gpj
1 for j = 1, 2, . . . , α1 − 1 until the identity is

constructed.

• If m > 1 then express B = uv, where u, v are coprime and have approximately
the same number of distinct prime factors. Now gu has order k dividing v and
gk has order ℓ say dividing u, and the order of g is kℓ. Hence the algorithm
proceeds by recursion on m.

They prove the following:

O’Brien: Algorithms for matrix groups 5

Theorem 2.2 If we know a factorisation of B, then the cost of the algorithm is
O(d4 log q log log qd) field operations.

We can readily compute in polynomial time a “good” multiplicative upper bound
for |g|. Let the factorisation over GF(q) of the minimal polynomial f(x) of g into
powers of distinct irreducible monic polynomials be given by f(x) =

∏t
i=1 fi(x)ni ,

where deg(fi) = ei. Then |g| divides B := lcm(qe1 − 1, . . . , qet − 1) × pβ , where
β = ⌈logp max ni⌉ and GF(q) has characteristic p.

The GAP and Magma implementations of the order algorithm are very efficient,
and use databases of factorisations of numbers of the form qi − 1, prepared as part
of the Cunningham Project [20].

From B, we can learn in polynomial time the exact power of 2 (or of any specified
prime) which divides |g|. By repeated division by 2, we write B = 2mb where b
is odd. Now we compute h = gb, and determine (by powering) its order, which
divides 2m. In particular, we can deduce if g has even order.

For most applications, it suffices to know the pseudo-order of g ∈ GL(d, q), a
refined version of B. Leedham-Green & O’Brien [73, Section 2] define this for-
mally and show that it can be computed in O(d3 log d + d2 log d log log d log q) field
operations.

2.6 Straight-line programs

One may intuitively think of a straight-line program (SLP) for g ∈ G = 〈X〉 as
an efficiently stored word in X that evaluates to g; for a formal definition and
discussion of their significance, see [97, p. 10]. While the length of a word in a
given generating set constructed in n multiplications and inversions can increase
exponentially with n, the length of the corresponding SLP is linear in n. Babai &
Szemerédi [6] prove that every element of a finite group G has an SLP of length
O(log2 |G|) in every generating set. Both Magma and GAP use SLPs.

3 The major tasks

We identify three major problems for a (quasi)simple group G = 〈X〉. (Recall that
G is quasisimple if G is perfect and G/Z(G) is simple.)

(i) The naming problem: determine the name of G.

(ii) The constructive recognition problem: construct an isomorphism (possibly
modulo scalars) between G and a “standard copy” of G.

(iii) The constructive membership problem: if x ∈ G, then write x as an SLP in
X.

An algorithm to solve (i) may simply establish that G contains a named group
as its unique non-abelian composition factor. Such information is useful: if we
learn that G is a member of a particular family of finite simple groups, then we
can apply algorithms to G which are specific to this family.

For each finite (quasi)simple group, we designate one explicit representation as its
standard copy and designate a particular generating set as its standard generators.

O’Brien: Algorithms for matrix groups 6

For example, the standard copy of An is on n points; its standard generators are
(1, 2, 3) and either of (3, . . . , n) or (1, 2)(3, . . . , n) according to the parity of n.

To aid exposition, we focus on one common situation. Consider the classical
groups, where the standard copy is the natural representation. Let H ≤ GL(d, q)
denote the natural representation of a classical group. Given as input an arbi-
trary permutation or projective matrix representation G = 〈X〉, a constructive
recognition algorithm sets up an isomorphism between G and H/Z(H).

To enable this construction, we define standard generators S for H. Assume we
can construct the image S̄ of these standard generators in G as SLPs in X. We may
now define the isomorphism φ : H/Z(H) → G. If we can solve the constructive
membership problem in H, then the image in G of an arbitrary element of H can
be constructed: if h has a known SLP in S then φ(h) is the SLP evaluated in S̄.
Similarly if we can solve the constructive membership problem in G, then we can
define τ : G → H/Z(H). We say that these isomorphisms are constructive.

4 The black-box approach

The black-box group approach, initiated and pioneered by Babai and Beals (see
[7] for an excellent account), focuses on the abstract structure of a finite group
G. Recall, for example from [59, pp. 31–32], that G has a characteristic series of
subgroups:

1 ≤ O∞(G) ≤ S∗(G) ≤ P (G) ≤ G

where
• O∞(G) is the largest soluble normal subgroup of G, the soluble radical;

• S∗(G)/O∞(G) is the socle of G/O∞(G) and equals T1 × · · · ×Tk, where each
Ti is non-abelian simple;

• φ : G → Sym(k) is the representation of G induced by conjugation on
{T1, . . . , Tk}, and P (G) = kerφ;

• P (G)/S∗(G) ≤ Out(T1)×· · ·×Out(Tk) and so is soluble (by the proof of the
Schreier conjecture);

• G/P (G) ≤ Sym(k) where k ≤ log |G|/ log 60.
In summary, the black-box approach aims to construct this characteristic series

C for G ≤ GL(d, q) using black-box algorithms. In 2009, as a culmination of 25
years of work, Babai, Beals & Seress [10] proved that, subject to the existence
of a discrete log oracle and the ability to factorise integers of the form qi − 1 for
1 ≤ i ≤ d, there exist black-box polynomial-time Las Vegas algorithms to construct
C for a large class of matrix groups. Building on results of [9], [56], [81] and [93],
they solve the major tasks identified in Section 3 (and others) for groups in this
class. We refer the reader to [7] and [10] for details.

In Section 12 we consider how the black-box approach underpins various practical
algorithms for matrix groups.

O’Brien: Algorithms for matrix groups 7

5 Geometry following Aschbacher

By contrast, the geometric approach investigates whether a linear group satisfies
natural and inherent geometric properties in its action on the underlying space. A
classification of the maximal subgroups of classical groups by Aschbacher [3] under-
pins this approach. Let Z denote the subgroup of scalar matrices of G ≤ GL(d, q).
Then G is almost simple modulo scalars if there is a non-abelian simple group T
such that T ≤ G/Z ≤ Aut(T), the automorphism group of T . We paraphrase
Aschbacher’s theorem as follows.

Theorem 5.1 Let V be the vector space of row vectors on which GL(d, q) acts,
and let Z be the subgroup of scalar matrices of G. If G is a subgroup of GL(d, q),
then one of the following is true:
C1. G acts reducibly.

C2. G acts imprimitively: G preserves a decomposition of V as a direct sum
V1 ⊕ V2 ⊕ · · · ⊕ Vr of r > 1 subspaces of dimension s, which are permuted
transitively by G, and so G ≤ GL(s, q) ≀ Sym(r).

C3. G acts on V as a group of semilinear automorphisms of a (d/e)-dimensional
space over the extension field GF(qe) for some e > 1, and so G embeds in
ΓL(d/e, qe). (This includes the class of “absolutely reducible” linear groups,
where G embeds in GL(d/e, qe).)

C4. G preserves a decomposition of V as a tensor product U ⊗ W of spaces of
dimensions d1, d2 > 1 over GF(q). Then G is a subgroup of the central
product of GL(d1, q) and GL(d2, q).

C5. G is definable modulo scalars over a subfield: for some proper subfield GF(q′)
of GF(q), Gg ≤ GL(d, q′).Z, for some g ∈ GL(d, q).

C6. For some prime r, d = rn, and G is contained in the normaliser of an
extraspecial group of order r2n+1, or of a group of order 22n+2 and symplectic-
type (namely, the central product of an extraspecial group of order 22n+1 with
a cyclic group of order 4, amalgamating central involutions).

C7. G is tensor-induced: G preserves a decomposition of V as V1 ⊗V2 ⊗· · ·⊗Vm,
where each Vi has dimension r > 1, d = rm, and the set of Vis is permuted
transitively by G, and so G/Z ≤ PGL(r, q) ≀ Sym(m).

C8. G normalises a classical group in its natural representation.

C9. G is almost simple modulo scalars.

We summarise the outcome: a linear group preserves some natural linear structure
in its action on the underlying space and has a normal subgroup related to this
structure, or it is almost simple modulo scalars.

In broad outline, it suggests that a first step in investigating a linear group is
to determine (at least one of) its categories in the Aschbacher classification. If a
category is recognised, then we can investigate the group structure more completely
using algorithms designed for this category. Usually, we have reduced the size and
nature of the problem. For example, if G ≤ GL(d, q) acts imprimitively, then we

O’Brien: Algorithms for matrix groups 8

obtain a permutation representation of degree dividing d for G; if G preserves a
tensor product, we obtain two linear groups of smaller degree. If a proper normal
subgroup N exists, we investigate N and G/N recursively, ultimately obtaining a
composition series for G.

The base cases for the geometric approach are groups in C8 and C9: classical
groups in their natural representation, and other groups which are almost simple
modulo scalars. Liebeck [74] proved that “most” maximal subgroups of GL(d, q)
have order at most q3d, small by contrast with |GL(d, q)|; the exceptions are known.
Further, the absolutely irreducible representations of degree at most 250 of all
quasisimple finite groups are now explicitly known: see Hiss & Malle [55] and
Lübeck [78].

Landazuri & Seitz [71] and Seitz & Zalesskii [96] provide lower bounds for degrees
of non-linear irreducible projective representations of finite Chevalley groups. They
show that a faithful projective representation in cross characteristic has degree that
is polynomial in the size of the defining characteristic. Hence our principal focus
is on matrix representations in defining characteristic.

5.1 Deciding membership of an Aschbacher category

In [91] we reported in detail on the algorithms developed to decide if G = 〈X〉 ≤
GL(d, q), acting on the underlying vector space V , lies in one of the first seven
Aschbacher categories. Consequently we only update that report. In Section 6.1
we report on a Monte Carlo algorithm which decides if G is in C8.

5.1.1 Reducible groups

The MeatAxe algorithm of Holt & Rees [57] is Las Vegas and has complexity
O(d3(d log d+log q)). A key component is a search in the GF(q)-algebra generated
by X for a random element whose characteristic polynomial has an irreducible
factor of multiplicity one. The analysis of [57], completed in [64], shows that the
proportion of such elements is at least 0.08.

A matrix A over GF(q) for which the underlying vector space, considered as a
GF(q)[A]-module, has at least one cyclic primary component is f-cyclic. Glasby &
Praeger [49] present and analyse a test for the irreducibility of G using the set of
f -cyclic matrices in G, which contains as a proper subset those considered in [57].

5.1.2 C3 and C5

Holt et al. [58] present the Smash algorithm: effectively an algorithmic realisation
of Clifford’s theorem [36] about decompositions of V preserved by a non-scalar
normal subgroup of G.

If G acts absolutely irreducibly, then we apply Smash to a normal generating
set for its derived group G′ to decide if G acts semilinearly. The polynomial-time
algorithm of [48] to decide membership in C5 requires that G′ acts absolutely
irreducibly on V . Implementations of both are available in Magma.

O’Brien: Algorithms for matrix groups 9

Carlson, Neunhöffer & Roney-Dougal [33] present a polynomial-time Las Vegas
algorithm to find a non-trivial “reduction” of an irreducible group G that either
lies in C3 or C5, or whose derived group does not act absolutely irreducibly on
V . In particular, they deduce that G is in one of C2, C3, C4, or C5; or obtain a
homomorphism from G to GF(q)×. An implementation is available in GAP.

5.1.3 Normalisers of p-groups

If G is in C6, then it normalises a group R of order either r2n+1 (extraspecial) or
22n+2 (symplectic-type).

Brooksbank, Niemeyer & Seress [25] present an algorithm to produce a non-
trivial homomorphism from G to either GL(2m, r) or Sym(rm) where 1 6 m 6 n.
They prove that this algorithm runs in polynomial time when G is either the full
normaliser in GL(d, q) of R, or d = r2. The special case where d = r was solved by
Niemeyer [89]. Implementations are available in GAP and Magma.

5.1.4 Towards polynomial time?

A major theoretical challenge is the following: decide membership of a given group
G ≤ GL(d, q) in a specific Aschbacher category in polynomial time. This we can
always do for C1 and C8, and sometimes for C3, C5 and C6.

Recently Neunhöffer [86] has further developed and analysed variations of the
Smash algorithm, and has also reformulated the Aschbacher categories to facilitate
easier membership problems. This work and the “reduction algorithms” of [25] and
[33] suggest that, subject to the availability of discrete log and integer factorisation
oracles, it may be possible using matrix group algorithms to construct in polynomial
time the composition factors of G. We contrast this with the results obtained in
the black-box context [10].

6 Naming algorithms

Let b and e be positive integers with b > 1. A prime r dividing be −1 is a primitive
prime divisor of be − 1 if r|(be − 1) but r 6 |(bi − 1) for 1 ≤ i < e. Zsigmondy [107]
proved that be − 1 has a primitive prime divisor unless (b, e) = (2, 6), or e = 2 and
b + 1 is a power of 2. Recall that

|GL(d, q)| = q(
d

2
)

d
∏

i=1

(qi − 1).

Hence primitive prime divisors of qe − 1 for various e ≤ d divide both the orders
of GL(d, q) and of the other classical groups. We say that g ∈ GL(d, q) is a ppd-
element if its order is divisible by some primitive prime divisor of qe − 1 for some
e ∈ {1, . . . , d}.

O’Brien: Algorithms for matrix groups 10

6.1 Classical groups in natural representation

Much of the recent activity on algorithms for linear groups was stimulated by
Neumann & Praeger [84], who presented a Monte Carlo algorithm to decide whether
or not a subgroup of GL(d, q) contains SL(d, q).

Niemeyer & Praeger [88] answer the equivalent question for an arbitrary classical
group. This they do by refining a classification by Guralnick et al. [51] of the
subgroups of GL(d, q) which contain ppd-elements for e > d/2. The resulting
Monte Carlo algorithms have complexity O(log log d(ξ + dω(log q)2)), where ξ is
the cost of selecting a random element and dω is the cost of matrix multiplication.
For an excellent account, see [94]. Their implementation is available in Magma.

6.2 Black-box groups of Lie type

Babai et al. [8] present a black-box algorithm to name a group G of Lie type
in known defining characteristic p. The algorithm selects a sample L of random
elements in G, and determines the three largest integers v1 > v2 > v3 such that at
least one member of L has order divisible by a primitive prime divisor of pv − 1
for v = v1, v2, or v3. Usually {v1, v2, v3} determines |G| and so names G. The
algorithm of Altseimer & Borovik [1] distinguishes between PΩ(2m + 1, q) and
PSp(2m, q) for odd q. The central result of [8] is the following.

Theorem 6.1 Given a black-box group G isomorphic to a simple group of Lie
type of known characteristic, the standard name of G can be computed using a
polynomial-time Monte Carlo algorithm.

An implementation developed by Malle and O’Brien is distributed with GAP

and Magma. It includes naming procedures for the other quasisimple groups: if
the non-abelian composition factor is alternating or sporadic, then we identify it
by considering the orders of random elements.

6.3 Determining the defining characteristic

Theorem 6.1 assumes that the defining characteristic of the input group of Lie type
is known.

Problem 6.2 Let G be a group of Lie type in unknown defining characteristic r.
Determine r.

Liebeck & O’Brien [76] present a Monte Carlo polynomial-time black-box algo-
rithm which proceeds recursively through centralisers of involutions of G to find
SL(2, F), where F is a field in characteristic r. It is now easy to read off the value
of r.

Kantor & Seress [67] prove that the three largest element orders determine the
characteristic of Lie-type simple groups of odd characteristic, and use this result
to underpin an alternative algorithm.

The former is distributed in Magma, the latter in GAP.

O’Brien: Algorithms for matrix groups 11

7 Constructing an involution centraliser

Involution centralisers played a key role in the classification of finite simple groups.
They were also used extensively in early computations with sporadic groups; see
for example [77]. Borovik [15], Parker & Wilson [93] and Yalçınkaya [106] study
them in the general context of black-box groups.

The centraliser of an involution in a black-box group having an order oracle can
be constructed using an algorithm of Bray [18], who proves the following.

Theorem 7.1 If x is an involution in a group H, and w is an arbitrary element of
H, then [x, w] either has odd order 2k+1, in which case w[x, w]k commutes with x,
or has even order 2k, in which case both [x, w]k and [x, w−1]k commute with x. If
w is uniformly distributed among the elements of the group for which [x, w] has odd
order, then w[x, w]k is uniformly distributed among the elements of the centraliser
of x.

Thus if the odd order case occurs sufficiently often (with probability at least a
positive rational function of the input size), then we can construct random elements
of the involution centraliser in Monte Carlo polynomial time. In practice, we also
use the output of the even-order case to obtain a generating set for the centraliser.

Parker & Wilson [93] prove the following.

Theorem 7.2 There is an absolute positive constant c such that if H is a finite
simple classical group of Lie rank r defined over a field of odd characteristic, and
x is an involution in H, then [x, h] has odd order for at least a proportion c/r of
the elements h in H.

For each class of involutions, they find a dihedral group of twice odd order
generated by two involutions of this class, and show that a significant proportion
of pairs of involutions in this class generate such a dihedral group.

For exceptional groups, they show that the analogous result is true for at least
a positive proportion of elements h in H.

For each sporadic group we can calculate explicitly the proportion of [x, h] which
have odd order: for every class of involutions, this proportion is at least 17%.

The work of Liebeck & Shalev [75, Theorem] implies that, with arbitrarily high
probability, a constant number of random elements generates the centraliser of an
involution in a finite simple group.

Holmes et al. [56] establish the cost of constructing an involution centraliser:

Theorem 7.3 Let H be a simple group of Lie type defined over a field of odd
characteristic, having a black-box encoding of length n and equipped with an order
oracle. Let ξ and ρ denote the cost of selecting a random element and of an order
oracle respectively. The centraliser in H of an involution can be computed in time
O(

√
n(ξ +ρ) log(1/ǫ)+µn) with probability of success at least 1− ǫ, for positive ǫ.

O’Brien: Algorithms for matrix groups 12

8 Constructive recognition

Assume that we wish to construct isomorphisms between the central quotient of
a given quasisimple group H and a projective representation G = 〈X〉 of H. Re-
call from Section 3 that we do this by defining standard generators for H and
constructing the corresponding standard generators of G as SLPs in X.

8.1 Black-box classical groups

Kantor & Seress [65] prove the following.

Theorem 8.1 There is a Las Vegas algorithm which, when given as input a black-
box perfect group G where G/Z(G) is isomorphic to a classical simple group C of
known characteristic, produces a constructive isomorphism G/Z(G) → C.

Recall that g ∈ G is p-singular if its order is divisible by p. As Isaacs, Kantor &
Spaltenstein [63] and Guralnick & Lübeck [52] show, a group of Lie type in defining
characteristic p has a small proportion of p-singular elements.

Theorem 8.2 If G is a group of Lie type defined over GF(q), then 2
5q < ρ(G) < 5

q ,
where ρ(G) denotes the proportion of p-singular elements in G.

A necessary first step of the Kantor & Seress algorithm [65] is to find an element
of order p: hence its running time has a factor of q = pf and so it is not polynomial
in the size of the input.

Brooksbank & Kantor [22] identify that the obstruction to a polynomial-time
algorithm for constructive recognition of the classical groups is PSL(2, q). Babai &
Beals [7] formulate the problem explicitly as follows.

Problem 8.3 Find an element of order p in PSL(2, pf) as a word in its defining
generators in polynomial time.

Since ρ(PSL(2, q)) ≤ 2/q, a random search will involve O(q) selections.
A consequence of the work of [71] is that the degree of a faithful projective

representation of SL(2, q) in cross characteristic is polynomial in q rather than in
log q. Hence the critical instances of this problem are matrix representations of
SL(2, q) in defining characteristic.

Conder & Leedham-Green [37] and Conder, Leedham-Green & O’Brien [38]
present an algorithm which, subject to the existence of a discrete log oracle, con-
structively recognises SL(2, q) as a linear group in defining characteristic in time
polynomial in the size of the input. The principal result is the following.

Theorem 8.4 Let G be a subgroup of GL(d, F) for d ≥ 2, where F is a finite field
of the same characteristic as GF(q); assume that G is isomorphic modulo scalars
to PSL(2, q). Subject to a fixed number of calls to a discrete log oracle for GF(q),
there is a Las Vegas algorithm that constructs an epimorphism from G to PSL(2, q)
at a cost of O(d5τ(d)) field operations, where τ(d) denotes the number of divisors
of d.

O’Brien: Algorithms for matrix groups 13

Brooksbank [21, 24] and Brooksbank & Kantor [22, 26] have exploited this work
to produce better constructive recognition algorithms for black-box classical groups.
We summarise the outcome.

Theorem 8.5 There is a Las Vegas algorithm which, when given as input a black-
box G such that C ∼= G/Z(G) is PSL(d, q), PSp(2m, q), PSU(d, q), or PΩǫ(d, q) for
ǫ ∈ {±, 0}, and a constructive recognition oracle for SL(2, q), outputs a constructive
isomorphism G/Z(G) → C. Its running time is a polynomial in the input length
plus the time of polynomially many calls to the SL(2, q) oracle.

A partial implementation of the algorithm of [65], developed by Brooksbank,
Seress and others, is available in GAP and Magma. The algorithm of [38] is
available in Magma.

8.2 Classical groups in their natural representation

Leedham-Green & O’Brien [73] developed constructive recognition algorithms for
the classical groups in their natural representation, over fields of odd defining char-
acteristic. A key component is the use of involution centralisers, whose structure
in such groups is well-known; see, for example, [50, Table 4.5.1].

Let ξ denote an upper bound to the number of field operations needed to con-
struct a random element of a group, and let χ(q) denote an upper bound to the
number of field operations equivalent to a call to a discrete logarithm oracle for
GF(q).

Leedham-Green & O’Brien [73] prove the following.

Theorem 8.6 There is a Las Vegas algorithm that takes as input a subset X of
bounded cardinality of GL(d, q), where X generates a classical group G, and returns
standard generators for G as SLPs of length O(log3 d) in X. The algorithm has
complexity O(d(ξ + d3 log d + d2 log d log log d log q + χ(q))) if G is neither of type
SO− or Ω−. Otherwise the complexity is O(d(ξ + d3 log d + d2 log d log log d log q +
χ(q)) + χ(q2)).

We describe the algorithm for H = SL(d, q). Let V denote the natural H-module
with basis {e1, . . . , ed}. We first define standard generators S = {s, δ, u, v} for H.
The matrices s, δ, u lie in a copy of SL(2, q); they fix each of e3, . . . , ed and induce
the following action on 〈e1, e2〉:

s 7−→
(

1 1
0 1

)

δ 7−→
(

ω 0
0 ω−1

)

u 7−→
(

0 1
−1 0

)

.

The d−cycle v maps e1 7−→ ed 7−→ −ed−1 7−→ −ed−2 7−→ · · · 7−→ −e1.
The input to the algorithm is G = 〈X〉 = SL(d, q). Its task is construct S as

SLPs in X.
A strong involution in SL(d, q) has its −1-eigenspace of dimension in the range

(d/3, 2d/3]. If t ∈ G is an involution with 1- and −1-eigenspace E+ and E−

respectively, then CG(t) is (GL(E+) × GL(E−)) ∩ SL(d, q).
The steps of the recursive algorithm are:

O’Brien: Algorithms for matrix groups 14

1. Find and construct a strong involution t having its −1-eigenspace of dimen-
sion e. Rewrite G with respect to the new basis E− ∪ E+.

2. Now construct CG(t). Construct the direct summands of its derived group
to obtain SL(e, q) and SL(f, q) as subgroups of G where f = d − e.

3. Construct standard generators for SL(e, q) and SL(f, q).

4. Construct the centraliser C in G of the involution

Ie−2 0 0
0 −I4 0
0 0 If−2

 .

5. Within C solve constructively for the matrix g

Ie−2 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 If−2

.

6. Now use g to “glue” the e-cycle ve ∈ SL(e, q) and f -cycle vf ∈ SL(f, q) to
obtain the d-cycle v := vegvf .

The first step of the algorithm is to search for an element of SL(d, q) of even
order that powers to a strong involution. Lübeck, Niemeyer & Praeger [80] prove
the following.

Theorem 8.7 For some absolute positive constant c, the proportion of g ∈ SL(d, q)
such that a power of g is a strong involution is at least c/ log d.

Observe that Step 3 is recursive, prompting invocations of the same procedure
for SL(e, q) and SL(f, q). Since g is a strong involution, each group has degree
less than 2d/3; as shown in [73], the recursive calls do not affect the degree of
complexity of the overall algorithm.

Recursion to smaller cases requires additional results about involutions which
are not strong. We summarise the relevant results of [73].

Theorem 8.8 For some absolute positive constant c, the proportion of g ∈ SL(d, q)
such that a power of g is a “suitable” involution is at least c/d.

The base cases for the recursion are SL(d, q) where d ≤ 4. For SL(2, q) we use
the algorithm of [38] to construct standard generators as SLPs in the input gener-
ators; for SL(3, q) we use the algorithm of [79]; for SL(4, q) we use the involution-
centraliser algorithm of [56]. An implementation is available with Magma.

Black-box versions of these algorithms are being developed by Damien Burns.
We are developing similar algorithms for classical groups in characteristic 2. As
Theorem 8.2 indicates, the principal challenge is to construct a strong involution.

Brooksbank [23] also developed constructive recognition algorithms for classical
groups in their natural representation: their effective cost is O(d5 log2 q), subject
to calls to an SL(2, q) oracle.

O’Brien: Algorithms for matrix groups 15

8.3 Small degree matrix representations of SL(d, q)

Let SL(d, q) ≤ H ≤ GL(d, q) with q = pf , where V is the natural H-module and
V ∗ is its dual module. Define the Frobenius map δ : GL(d, q) → GL(d, q) by
(ai,j)

δ = (ap
i,j) for (ai,j) ∈ GL(d, q).

Let H act on an irreducible GF(q)-module W of dimension at most d2. Consider
V ∗ ⊗ V with basis {ei ⊗ ej | 1 ≤ i, j ≤ d} and let

w :=

d
∑

i=1

ei ⊗ ei, U :=

∑

i,j

αi,jei ⊗ ej |
d

∑

i=1

αi,i = 0

, W1 := U ∩ 〈w〉.

The adjoint module of V is W := U/W1. If d ≡ 0 mod p then W has dimension
d2 − 2, otherwise d2 − 1. The remaining irreducible representations of dimension
at most d2 are V ⊗ V δe

and V ∗ ⊗ V δe

where 0 < e < f . For a discussion, see [74].
Magaard, O’Brien & Seress [82] describe algorithms which, given as input W ,

construct a d-dimensional projective representation of H. Their principal result is
the following.

Theorem 8.9 Let d ≥ 2 and let q = pf be a prime power. Let SL(d, q) ≤ H ≤
GL(d, q) where H has natural module V . Let G = 〈X〉 be a representation of H
acting irreducibly on a GF(q)-vector space W of dimension n ≤ d2.

Given as input G, the value of d, and error probability ǫ > 0, there is a Las
Vegas algorithm that, with probability at least 1− ǫ, constructs the projective action
of G on V .

The algorithms are specific to each representation type and in all but one case
run in polynomial time. A common feature is to search randomly in G for (a power
of) a Singer cycle s, and identify a basis for W consisting of eigenvectors for the
action of s on W ⊗ GF(qd). Implementations are available in Magma.

Ryba [95] presents a polynomial-time Las Vegas algorithm that, given as input
an absolutely irreducible representation in odd defining characteristic of a finite
Chevalley group, constructs its action on the adjoint module. A combination of his
algorithm and that of [82] can be used to construct the natural projective action
of SL(d, q).

8.4 Alternating groups

Beals et al. [13] prove the following.

Theorem 8.10 Black-box groups isomorphic to An or Sn with known value of n
can be recognised constructively in O(ξn + µ|X|n log n) time, where ξ is the time
to construct a random element, µ is the time for a group operation, and X is the
input generating set for the group.

Beals et al. [14] present a more efficient algorithm for the deleted permuta-
tion module viewed as a linear group. Implementations are available in GAP and
Magma.

An alternative black-box algorithm, developed by Bratus & Pak [17], was further
refined and implemented in Magma by Derek Holt.

O’Brien: Algorithms for matrix groups 16

8.5 Exceptional groups

Algorithms to recognise constructively matrix representations of the Suzuki, large
and small Ree groups were developed by Bäärnhielm [11, 12]. Implementations are
available in Magma.

Kantor & Magaard [68] present black-box Las Vegas algorithms to recognise
constructively the exceptional simple groups of Lie type and rank at least 2, other
than 2F4(q), defined over a field of known size.

8.6 Sporadic groups

Wilson [103] introduced the concept of standard generators for the sporadic groups.
He, Bray and others provide black-box algorithms for their construction. For fur-
ther details, see the Atlas web site [104].

9 The constructive membership problem

Recall our definition of the constructive membership problem for a quasisimple
group G = 〈X〉: if g ∈ G then write g as an SLP in X.

Assume we have solved the constructive recognition problem for G: namely, we
have constructed standard generators S̄ for G as SLPs in X. If we can express
g ∈ G as an SLP in S̄, then we rewrite the SLP in S̄ for g to obtain one in X.
Hence we focus on the task of writing g ∈ G as an SLP in S̄.

9.1 Classical groups

Costi [41] developed algorithms to write an element of a classical group H ≤
GL(d, q) in its natural representation as an SLP in the standard generators of H.
These algorithms are natural (but quite technical) extensions of row and column
operations, and have complexity O(d3 log q) field operations.

Consider now the case where G is a defining characteristic (projective) irre-
ducible representation of H. Again Costi [41] developed algorithms to solve the
membership problem for G; these have complexity O(d4n3 log3 q+d2n4 log q) where
n is the degree of G. Implementations of both are available in Magma.

Key components are two polynomial-time algorithms for unipotent groups:
1. Subspace-Stabiliser algorithm

Input: a unipotent matrix group S and a subspace U of its underlying vector
space.
Output: a canonical element U of the orbit of U under S; and s ∈ S such
that U s = U ; and generators for the stabiliser of U in S.

2. An algorithm to solve the constructive membership problem in a unipotent
matrix group.

We summarise Costi’s algorithm when H = SL(d, q). Let G ≤ GL(n, F) be a
defining characteristic projective irreducible representation of H. Let G act on the
underlying vector space V , and let φ : H/Z(H) → G be a constructive isomorphism.
Assume that we wish to write g ∈ G as an SLP in S̄.

O’Brien: Algorithms for matrix groups 17

1. Let K be the maximal parabolic subgroup of H that fixes the space spanned
by the first element of the standard basis for the underlying space of H.
Namely, elements of K have shape

det−1 0 0 0
⋆
... GL(d − 1, q)
⋆

where each ⋆ is an arbitrary element of GF(q). Since Kφ is a p-local subgroup
in defining characteristic p, it stabilises a proper Kφ-submodule U of V .

2. Consider the elementary abelian subgroup E of H generated by elements

1 ⋆ . . . ⋆
0
... Id−1

0

.

Use Subspace-Stabiliser to construct x ∈ Eφ as an SLP that maps Ug to
U . Hence Ugx = U and so the preimage of gx is in K. Thus we have “killed”
the first row of the preimage of gx.

3. Dualise to kill first column, obtaining g1 :=

(

α 0
0 A

)

.

4. Observe that tφ := g−1
1 · T φ

1,j · g1 ∈ Eφ where T1,j is a transvection with
non-zero entry in (1, j) position. Use the constructive unipotent membership
test for tφ in Eφ to obtain its preimage t ∈ E.

5. Read off from t (a scalar multiple of) the j-th row of the preimage in SL(d, q)
of g1.

6. We have now reduced the constructive membership problem to the natural
representation in rank d − 1; use the corresponding natural representation
algorithm to solve this simpler problem.

The two “unipotent” components of this algorithm depend critically on the as-
sumption that G is a matrix representation of H in defining characteristic.

In ongoing work, Murray, Praeger and Schneider are developing black-box algo-
rithms to solve the problem for classical groups on the standard generators defined
in [73]. The basic structure of their algorithms is similar to Costi’s, but the prob-
lems addressed using the unipotent components must now be solved in a black-box
group.

The black-box algorithms of [22, 24, 65] solve the same task, again using a similar
approach, on different and significantly larger generating sets. An implementation
of [65] is available in Magma for SL(d, q), as are implementations by Brooksbank
of some small rank cases from [22, 24].

9.2 Other algorithms

The centraliser-of-involution algorithm [56] reduces the problem of testing whether
an arbitrary element g of a black-box group G lies in a fixed subgroup H to in-
stances of the same problem for CH(t) for (at most) three involutions t ∈ H. The

O’Brien: Algorithms for matrix groups 18

reduction occurs in polynomial time. The algorithm is constructive: if g ∈ H then
it returns an SLP for g in the generators of H. Our implementation in Magma

uses CompositionTree, described in Section 11, to solve the problem for each
centraliser.

The Schreier-Sims algorithm, and its variations, solves the constructive mem-
bership problem for a permutation or matrix group G. First introduced by Sims
[99], it constructs a base for G which determines a stabiliser chain in G. For a basic
outline, see [91]; for an analysis, see [97, p. 64].

9.3 Sporadic groups

For each sporadic group, O’Brien and Wilson developed a black-box algorithm to
construct a chain of its subgroups; as described in [91], they exploit the reducibility
of members of this chain to obtain a “good” base for the Schreier-Sims algorithm.

With this assistance, either the Schreier-Sims algorithm or the algorithm of [56]
solves the constructive membership problem for all Atlas representations [104] of
most sporadic groups; the exceptions are the Baby Monster and the Monster where
strategies developed by Wilson and others are employed [105]. Implementations
are available in Magma.

10 Short presentations

Standard generators may be used to define a surjection from a supplied group
G = 〈X〉 to a simple group H. Is this surjection an isomorphism? If not, what is
its kernel? If we have a presentation P for H on standard generators, then we can
evaluate relations of P in standard generators of G and so obtain normal generators
for the kernel of the map from G to H. This motivates our interest in presentations
for groups of Lie type on particular generating sets.

Babai & Szemerédi [6] define the length of a presentation to be the number of
symbols required to write down the presentation. Each generator is a single symbol,
and a relator is a string of symbols, where exponents are written in binary. The
length of a presentation is the number of generators plus the sum of the lengths of
the relators. They also formulated the Short Presentation Conjecture: there exists
a constant c such that every finite simple group G has a presentation of length
O(logc |G|).

Perhaps the best known presentations for the finite symmetric groups are those
of Moore [83]; see also [42, 6.22]. There, the symmetric group Sn of degree n is
presented in terms of the transpositions tk = (k, k+1) for 1≤k<n, which generate
Sn and satisfy the defining relations tk

2 = 1 for 1 ≤ k < n, and (tk−1tk)
3 = 1 for

1<k <n, and (tjtk)
2 = 1 for 1≤ j <k−1<n−1. For n > 1 the number of these

relations is n(n−1)/2, and since each relator has bounded length, the presentation
length is O(n2).

If, for example, Sn acts on the deleted permutation module, then the cost of eval-
uating these relations is O(n5): this is more expensive than constructive recognition
of this representation (which can be performed using the algorithm of [14]).

O’Brien: Algorithms for matrix groups 19

Hence a goal of both theoretical and practical interest is to obtain “short” pre-
sentations for the finite simple groups on particular generating sets.

A key step is to obtain short presentations for An and Sn. Independently in
2006, Bray et al. [19] and Guralnick et al. [53] proved the following.

Theorem 10.1 An and Sn have presentations with a bounded number of genera-
tors and relations, and length O(log n).

This is best possible since it requires log n bits to represent n; the previous best
result was a modification of the Moore presentation having length O(n log n).

Guralnick et al. [54] prove that An has a presentation on 3 generators, 4 relations,
and length O(log n). Bray et al. [19] prove that Sn has a presentation of length
O(n2) on generators (1, 2) and (1, 2, . . . , n), and at most 123 relations.

Problem 10.2 Is there a shorter presentation for Sn defined on generators (1, 2)
and (1, 2, . . . , n) with a uniformly bounded number of relations?

In a major extension, Guralnick et al. [53] prove the following.

Theorem 10.3 Every non-abelian finite simple group of rank n over GF(q), with
the possible exception of the Ree groups 2G2(q), has a presentation with a bounded
number of generators and relations and total length O(log n + log q).

Again this is best possible. It exploits the following results.
• Campbell, Robertson & Williams [27]: PSL(2, q) has a presentation on (at

most) 3 generators and a bounded number of relations.

• Hulpke & Seress [62]: PSU(3, q) has a presentation of length O(log2 q).
In ongoing work, Leedham-Green and O’Brien are constructing explicit short

presentations on our standard generators for the classical groups.

11 The composition tree

In ongoing work, Bäärnhielm, Leedham-Green and O’Brien are developing the
concept of a composition tree, an integrated framework to realise and exploit the
geometric approach. An early design was presented in [72]; our latest is imple-
mented in Magma. A variation developed by Neunhöffer & Seress [85] is available
in GAP.

A composition series for a group G can be viewed as a labelled rooted binary
tree. A node corresponds to a section H of G, the root node to G. If a node is not
a leaf, then it has a left child corresponding to a proper normal subgroup K of H
and a right child I isomorphic to H/K.

The right child is an image under a homomorphism. Usually these arise natu-
rally from the Aschbacher category of the group, but we exploit additional homo-
morphisms, including the determinant map and some applicable to unipotent and
soluble groups. The left child of a node is the kernel of the chosen homomorphism.

The tree is constructed in right depth-first order. Namely, we process the node
associated with H: if H is not a leaf, construct recursively the subtree rooted at
its right child I, then the subtree rooted at its left child K.

O’Brien: Algorithms for matrix groups 20

A leaf of the composition tree is usually a composition factor of G: however,
a non-abelian leaf need only be simple modulo scalars, and cyclic factors are not
necessarily of prime order.

Assume φ : H → I where K = ker φ. It is easy to construct I, since it is
the image of H under a homomorphism φ. Sometimes it is easy theoretically to
construct generating sets for kerφ, for example if H is in Aschbacher category C3.
Otherwise, we first construct a normal generating set for K by evaluating in the
generators of H the relators in a presentation for I and then take its normal closure
using the algorithm of [97, Chapter 2].

To obtain a presentation for a node, we need only presentations for its associated
kernel and image; an algorithm for this task is described in [72]. Hence inductively
we require presentations only for the leaves. If we know a presentation on standard
generators for the leaf, then this is used; otherwise we use the algorithm of [28] to
construct such a presentation.

We solve the constructive membership problem directly for a leaf using the tech-
niques of Section 9. If we solve the membership problem for the children of a node,
then we readily solve the problem for the node, and so recursively obtain a solution
for the root node.

Assume that G = 〈X〉 ≤ GL(d, q) is input to CompositionTree. Some of
the algorithms used in constructing a composition tree for G are Monte Carlo.
To verify the resulting construction, we write down a presentation for the group
defined by the tree and show that G satisfies its relations.

The output of CompositionTree is:
• A composition series 1 = G0 � G1 � G2 � · · · � Gm = G.

• A representation Sk = 〈Xk〉 of Gk/Gk−1.

• Effective maps τk : Gk → Sk and φk : Sk → Gk. The map τk is an epimor-
phism with kernel Gk−1; if g ∈ Sk, then φk(g) is an element of Gk satisfying
τkφk(g) = g.

• A map to write g ∈ G as an SLP in X.

12 Applications

Over the past decade, Cannon, Holt and their collaborators have pioneered the
development of certain practical algorithms to answer structural questions about
finite groups. These exploit the characteristic series C of a finite group G

1 ≤ O∞(G) ≤ S∗(G) ≤ P (G) ≤ G

and a refined series for the soluble radical O∞(G)

1 = N0 � N1 � · · · � Nr = O∞(G) � G

where Ni � G and Ni/Ni−1 is elementary abelian. Since G/O∞(G) has a trivial
Fitting subgroup, we call it a TF-group.

The resulting framework is sometimes called the Trivial Fitting model of com-
putation. It suggests the following paradigm to solve a problem.

O’Brien: Algorithms for matrix groups 21

Solve the problem first in G/Nr, and then, successively, solve it in
G/Ni, for i = r − 1, . . . , 0.

Since H := G/O∞(G) has the structure outlined in Section 4, the problem may
have an “easy” solution in H. In particular, we can usually readily reduce the
problem for H to a question about almost simple groups. Increasingly, explicit
solutions are available for such groups.

Algorithms which use this paradigm include:
• Determine conjugacy classes of elements (see [29]).

• Determine conjugacy classes of subgroups (see [30]).

• Determine the automorphism group (see [31]).

• Determine maximal subgroups (see [32] and [45]).
While these algorithms are effectively black-box, their current Magma imple-

mentations use the Schreier-Sims algorithm for associated computations and so are
limited in range. Recently, Holt refined the output of CompositionTree for a
group to obtain a chief series exhibiting C. In ongoing work Holt, Leedham-Green,
O’Brien and Roney-Dougal are exploring how to exploit CompositionTree and
this chief series to provide basic infrastructure for such algorithms.

12.1 Exploiting data for classical groups

We mention two examples where available data for classical groups can be exploited.
In 1963, Wall [102] described theoretically the conjugacy classes and centralisers

of elements of classical groups. In ongoing work, Haller and Murray exploit this
description and provide algorithms which construct these explicitly in the natural
representation of groups contained in the conformal group (the group preserving the
corresponding form up to scalars). The constructive isomorphisms obtained from
constructive recognition allow us to map the class representatives and centralisers
from the natural copy to an arbitrary projective representation.

Kleidman & Liebeck [70] describe the maximal subgroups in the Aschbacher cat-
egories C1-C8 of classical groups of degree d ≥ 13. Holt & Roney-Dougal [60, 61]
construct generating sets in the natural representation for these subgroups; in on-
going work with Bray they classify all maximals for d ≤ 12. Again the constructive
isomorphism is used to construct their images in an arbitrary projective represen-
tation.

12.2 Constructing the automorphism group of a finite group

As one illustration of the paradigm, we sketch the algorithm of Cannon & Holt
[31] to compute the automorphism group of an arbitrary finite group G. (Special
purpose algorithms exist for soluble groups.)

Recall that H := G/O∞(G) permutes the direct factors of its socle S by conju-
gation. We embed H in the direct product D :=

∏

i Aut(Ti) ≀ Sym(di), where Ti

occurs di times as socle factor of S. Now Aut(H) is the normaliser of the image of
H in D. Hence we effectively reduce the computation for the TF-group H to the
finite simple case.

O’Brien: Algorithms for matrix groups 22

We now lift results through elementary abelian layers, computing Aut(G/Ni)
successively. Suppose N ≤ M ≤ G, where both M and N are characteristic in G,
and M/N is elementary abelian of order pd.

Assume Aut(G/M) is known. All automorphisms of G fix both M and N .
Observe that Aut(G/N) has normal subgroups C ≤ B where B induces the identity
on G/M , and C induces the identity on both G/M and M/N . A key observation
is that M/N is a GF(p)(G/M)-module.

• Elements of C correspond to derivations from G/M to M/N and are obtained
by solving systems of equations over GF(p).

• Elements of B/C correspond to module automorphisms of M/N . We can
usually choose M and N to ensure that both this and the previous calculation
are “easy”.

• The remaining – and hardest – task is to determine the subgroup S of
Aut(G/M) which lifts to G/N . Observe that S ≤ T , the subgroup of
Aut(G/M) whose elements preserve the (module) isomorphism type of M/N .
Usually T can be computed readily. If G/N is a split extension of M/N by
G/M , then all elements of T lift. Otherwise, we must test each element of T
to decide whether it lifts to G/N .

References

[1] Christine Altseimer and Alexandre V. Borovik. Probabilistic recognition of orthogonal
and symplectic groups. In Groups and Computation, III (Columbus, OH, 1999),
volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 1–20. De Gruyter, Berlin,
2001.

[2] Sophie Ambrose. Matrix Groups: Theory, Algorithms and Applications. PhD thesis,
University of Western Australia, 2006.

[3] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent.
Math. 76, 469–514, 1984.

[4] László Babai. Local expansion of vertex-transitive graphs and random generation in
finite groups. Theory of Computing, (Los Angeles, 1991), pp. 164–174. Association
for Computing Machinery, New York, 1991.

[5] László Babai. Randomization in group algorithms: conceptual questions. In Groups
and Computation, II (New Brunswick, NJ, 1995), 1–17, Amer. Math. Soc., Provi-
dence, RI, 1–17, 1997.

[6] László Babai and Endre Szemerédi. On the complexity of matrix group problems, I.
In Proc. 25th IEEE Sympos. Foundations Comp. Sci., pages 229–240, 1984.

[7] László Babai and Robert Beals. A polynomial-time theory of black box groups. I. In
Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture Note
Ser., pages 30–64, 1999. Cambridge Univ. Press.

[8] László Babai, William M. Kantor, Péter P. Pálfy and Ákos Seress. Black-box recog-
nition of finite simple groups of Lie type by statistics of element orders. J. Group
Theory 5, 383–401, 2002.

[9] László Babai, Péter P. Pálfy and Jan Saxl. On the number of p-regular elements in
finite simple groups. LMS J. Comput. Math. 12, 82–119, 2009.

[10] László Babai, Robert Beals and Ákos Seress. Polynomial-time Theory of Matrix
Groups. In Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, pages 55–64, 2009.

O’Brien: Algorithms for matrix groups 23

[11] Henrik Bäärnhielm. Algorithmic problems in twisted groups of Lie type. PhD thesis,
Queen Mary, University of London, 2006.

[12] Henrik Bäärnhielm. Recognising the Suzuki groups in their natural representations.
J. Algebra 300, 171–198, 2006.

[13] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger and
Ákos Seress. A black-box group algorithm for recognizing finite symmetric and alter-
nating groups. I. Trans. Amer. Math. Soc. 355, 2097–2113, 2003.

[14] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger and
Ákos Seress. Constructive recognition of finite alternating and symmetric groups
acting as matrix groups on their natural permutation modules. J. Algebra 292, 4–46,
2005.

[15] Alexandre V. Borovik. Centralisers of involutions in black box groups. In Com-
putational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), 7–20,
Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002.

[16] Wieb Bosma, John Cannon and Catherine Playoust. The Magma algebra system I:
The user language. J. Symbolic Comput. 24, 235–265, 1997.

[17] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box group
isomorphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comput. 29, 33–57,
2000.

[18] John N. Bray. An improved method for generating the centralizer of an involution.
Arch. Math. (Basel) 74, 241–245, 2000.

[19] John Bray, M.D.E. Conder, C.R. Leedham-Green and E.A. O’Brien. Short presen-
tations for alternating and symmetric groups. To appear Trans. Amer. Math. Soc.
2010.

[20] John Brillhart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and S.S. Wagstaff,
Jr. Factorizations of bn ± 1, volume 22 of Contemporary Mathematics. American
Mathematical Society, Providence, RI, second edition, 1988. www.cerias.purdue.

edu/homes/ssw/cun/index.html.
[21] Peter A. Brooksbank. A constructive recognition algorithm for the matrix group

Ω(d, q). In Groups and Computation, III (Columbus, OH, 1999), volume 8 of Ohio
State Univ. Math. Res. Inst. Publ., pages 79–93. De Gruyter, Berlin, 2001.

[22] Peter A. Brooksbank and William M. Kantor. On constructive recognition of a black
box PSL(d, q). In Groups and Computation, III (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., pages 95–111. De Gruyter, Berlin, 2001.

[23] Peter A. Brooksbank. Constructive recognition of classical groups in their natural
representation. J. Symbolic Comput. 35, 195–239, 2003.

[24] Peter A. Brooksbank. Fast constructive recognition of black-box unitary groups. LMS
J. Comput. Math. 6, 162–197 (electronic), 2003.

[25] Peter Brooksbank, Alice C. Niemeyer and Ákos Seress. A reduction algorithm for
matrix groups with an extraspecial normal subgroup. Finite Geometries, Groups and
Computation, (Colorado), pp. 1–16. De Gruyter, Berlin, 2006.

[26] Peter A. Brooksbank and William M. Kantor. Fast constructive recognition of black
box orthogonal groups. J. Algebra 300, 256–288, 2006.

[27] C.M. Campbell, E.F. Robertson and P.D. Williams. On Presentations of PSL(2, pn).
J. Austral. Math. Soc. 48, 333–346, 1990.

[28] John J. Cannon. Construction of defining relators for finite groups. Discrete Math.
5, 105–129, 1973.

[29] John Cannon and Bernd Souvignier. On the computation of conjugacy classes in
permutation groups. In Proceedings of International Symposium on Symbolic and
Algebraic Computation, Hawaii, 1997, pages 392–399. Association for Computing
Machinery, 1997.

O’Brien: Algorithms for matrix groups 24

[30] John J. Cannon, Bruce C. Cox and Derek F. Holt. Computing the subgroups of a
permutation group. J. Symbolic Comput. 31, 149–161, 2001.

[31] John J. Cannon and Derek F. Holt. Automorphism group computation and isomor-
phism testing in finite groups. J. Symbolic Comput. 35, 241–267, 2003.

[32] John J. Cannon and Derek F. Holt. Computing maximal subgroups of finite groups.
J. Symbolic Comput. 37, 589–609, 2004.

[33] Jon F. Carlson, Max Neunhöffer and Colva M. Roney-Dougal. A polynomial-time
reduction algorithm for groups of semilinear or subfield class. J. Algebra 322, 613–
617, 2009.

[34] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer and
E.A. O’Brien. Generating random elements of a finite group. Comm. Algebra 23,
4931–4948, 1995.

[35] Frank Celler and C.R. Leedham-Green. Calculating the order of an invertible matrix.
In Groups and Computation II, volume 28 of Amer. Math. Soc. DIMACS Series, pages
55–60. (DIMACS, 1995), 1997.

[36] A.H. Clifford. Representations induced in an invariant subgroup. Ann. of Math. 38,
533–550, 1937.

[37] Marston Conder and Charles R. Leedham-Green. Fast recognition of classical groups
over large fields. In Groups and Computation, III (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., pages 113–121. De Gruyter, Berlin, 2001.

[38] M.D.E. Conder, C.R. Leedham-Green and E.A. O’Brien. Constructive recognition of
PSL(2, q). Trans. Amer. Math. Soc. 358, 1203-1221, 2006.

[39] Gene Cooperman. Towards a practical, theoretically sound algorithm for random
generation in finite groups. Posted on arXiv:math, May 2002.

[40] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. J. Symbolic Comput. 9, 251–280, 1990.

[41] Elliot Costi. Constructive membership testing in classical groups. PhD thesis, Queen
Mary, University of London, 2009.

[42] H.S.M. Coxeter and W.O.J. Moser. Generators and Relations for Discrete Groups,
4th ed. Springer-Verlag (Berlin), 1980, ix+169 pp.

[43] A.S. Detinko, B. Eick and D.L. Flannery. Computing with matrix groups over infinite
fields. These Proceedings.

[44] John D. Dixon. Generating random elements in finite groups. Electron. J. Combin.
15 (2008), no. 1, Research Paper 94, 13 pp.

[45] Bettina Eick and Alexander Hulpke. Computing the maximal subgroups of a permu-
tation group. I. In Groups and Computation, III (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., pages 155–168. De Gruyter, Berlin, 2001.

[46] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12; 2008.
www.gap-system.org.

[47] Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms. PhD thesis,
University of Toronto, 1993.

[48] S.P. Glasby, C.R. Leedham-Green and E.A. O’Brien. Writing projective representa-
tions over subfields. J. Algebra 295, 51–61, 2006.

[49] S.P. Glasby and Cheryl E. Praeger. Towards an efficient Meat-axe algorithm using
f -cyclic matrices: The density of uncyclic matrices in M(n, q). J. Algebra 322, 766–
790, 2009.

[50] Daniel Gorenstein, Richard Lyons and Ronald Solomon. The classification of the finite
simple groups. Number 3. American Mathematical Society, Providence, RI, 1998.

[51] Robert Guralnick, Tim Penttila, Cheryl E. Praeger and Jan Saxl. Linear groups with
orders having certain large prime divisors. Proc. London Math. Soc. 78, 167–214,
1999.

O’Brien: Algorithms for matrix groups 25

[52] R.M. Guralnick and F. Lübeck. On p-singular elements in Chevalley groups in char-
acteristic p. In Groups and Computation, III (Columbus, OH, 1999), volume 8 of
Ohio State Univ. Math. Res. Inst. Publ., pages 169–182, De Gruyter, Berlin, 2001.

[53] R.M. Guralnick, W.M. Kantor, M. Kassabov and A. Lubotzky. Presentations of finite
simple groups: a quantitative approach. J. Amer. Math. Soc. 21, 711–774, 2008.

[54] R.M. Guralnick, W.M. Kantor, M. Kassabov and A. Lubotzky. Presentations of finite
simple groups: a computational approach. To appear J. European Math. Soc., 2010.

[55] G. Hiss and G. Malle. Low-dimensional representations of quasi-simple groups. LMS
J. Comput. Math., 4:22–63, 2001. Also: Corrigenda LMS J. Comput. Math. 5,
95–126, 2002.

[56] P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba and R.A. Wilson. Constructive
membership in black-box groups. J. Group Theory 11, 747–763, 2008.

[57] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math.
Soc. Ser. A 57, 1–16, 1994.

[58] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien and Sarah Rees. Computing
matrix group decompositions with respect to a normal subgroup. J. Algebra 184,
818–838, 1996.

[59] Derek F. Holt, Bettina Eick and Eamonn A. O’Brien. Handbook of computational
group theory. Chapman and Hall/CRC, London, 2005.

[60] Derek F. Holt and Colva M. Roney-Dougal. Constructing maximal subgroups of
classical groups. LMS J. Comput. Math. 8, 46–79, 2005.

[61] Derek F. Holt and Colva M. Roney-Dougal. Constructing maximal subgroups of
orthogonal groups. To appear LMS J. Comput. Math. 2010.

[62] Alexander Hulpke and Ákos Seress. Short presentations for three-dimensional unitary
groups. J. Algebra 245, 719–729, 2001.

[63] I.M. Isaacs, W.M. Kantor and N. Spaltenstein. On the probability that a group
element is p-singular. J. Algebra 176, 139–181, 1995.

[64] Gábor Ivanyos and Klaus Lux. Treating the exceptional cases of the MeatAxe. Ex-
periment. Math. 9, 373–381, 2000.

[65] William M. Kantor and Ákos Seress. Black box classical groups. Mem. Amer. Math.
Soc., 149 (708):viii+168, 2001.

[66] William M. Kantor and Ákos Seress. Computing with matrix groups. In Groups,
Combinatorics & Geometry (Durham, 2001), 123–137, World Sci. Publishing, River
Edge, NJ, 2003.

[67] William M. Kantor and Ákos Seress. Large element orders and the characteristic of
Lie-type simple groups. J. Algebra 322, 802–832, 2009.

[68] William M. Kantor and Kay Magaard. Black box exceptional groups of Lie type.
Preprint 2009.

[69] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoret. Com-
put. Sci. 36, 309–317, 1985.

[70] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical
groups. London Mathematical Society Lecture Note Series, 129. Cambridge Univer-
sity Press, Cambridge, 1990.

[71] Vicente Landazuri and Gary M. Seitz. On the minimal degrees of projective repre-
sentations of the finite Chevalley groups. J. Algebra 32, 418–443, 1974.

[72] C.R. Leedham-Green. The computational matrix group project. In Groups and
Computation, III (Columbus, OH, 1999), 229–248. De Gruyter, Berlin, 2001.

[73] C.R. Leedham-Green and E.A. O’Brien. Constructive recognition of classical groups
in odd characteristic. J. Algebra 322, 833–881, 2009.

[74] Martin W. Liebeck. On the orders of maximal subgroups of the finite classical groups.
Proc. London Math. Soc. (3) 50, 426–446, 1985.

O’Brien: Algorithms for matrix groups 26

[75] Martin W. Liebeck and Aner Shalev. The probability of generating a finite simple
group. Geom. Ded. 56, 103–113, 1995.

[76] Martin W. Liebeck and E.A. O’Brien. Finding the characteristic of a group of Lie
type. J. Lond. Math. Soc. 75, 741–754, 2007.

[77] S.A. Linton. The art and science of computing in large groups. Computational Algebra
and Number Theory (Sydney, 1992), pp. 91–109, 1995. Kluwer Academic Publishers,
Dordrecht.

[78] F. Lübeck. Small degree representations of finite Chevalley groups in defining char-
acteristic. LMS J. Comput. Math. 4, 135–169, (electronic), 2001.

[79] F. Lübeck, K. Magaard and E.A. O’Brien. Constructive recognition of SL3(q). J.
Algebra 316, 619–633, 2007.

[80] Frank Lübeck, Alice C. Niemeyer and Cheryl E. Praeger. Finding involutions in finite
Lie type groups of odd characteristic. J. Algebra 321, 3397-3417, 2009.

[81] Eugene M. Luks. Computing in solvable matrix groups. In Proc. 33rd IEEE Sympos.
Foundations Comp. Sci., 111–120, 1992.

[82] Kay Magaard, E.A. O’Brien and Ákos Seress. Recognition of small dimensional rep-
resentations of general linear groups. J. Aust. Math. Soc. 85, 229–250, 2008.

[83] E.H. Moore. Concerning the abstract groups of order k! and 1

2
k!. Proc. London

Math. Soc. 28, 357–366, 1897.
[84] Peter M. Neumann and Cheryl E. Praeger. A recognition algorithm for special linear

groups. Proc. London Math. Soc. (3), 65, 555–603, 1992.
[85] Max Neunhöffer and Ákos Seress. A data structure for a uniform approach to com-

putations with finite groups, ISSAC 2006, ACM, New York, 2006, pp. 254–261.
[86] Max Neunhöffer. Constructive Recognition of Finite Groups. Habilitationsschrift,

RWTH Aachen, 2009.
[87] Max Neunhöffer and Cheryl E. Praeger. Computing minimal polynomials of matrices.

LMS JCM 11, 252-279, 2008.
[88] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for classical groups

over finite fields. Proc. London Math. Soc., 77:117–169, 1998.
[89] Alice C. Niemeyer. Constructive recognition of normalisers of small extra-special

matrix groups. Internat. J. Algebra Comput., 15, 367–394, 2005.
[90] E.A. O’Brien and M.R. Vaughan-Lee. The 2-generator restricted Burnside group of

exponent 7. Internat. J. Algebra Comput., 12, 575–592, 2002.
[91] E.A. O’Brien. Towards effective algorithms for linear groups. Finite Geometries,

Groups and Computation, (Colorado), pp. 163-190. De Gruyter, Berlin, 2006.
[92] Igor Pak. The product replacement algorithm is polynomial. In 41st Annual Sym-

posium on Foundations of Computer Science (Redondo Beach, CA, 2000), 476–485,
IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[93] Christopher W. Parker and Robert A. Wilson. Recognising simplicity of black-box
groups. To appear J. Algebra, 2010.

[94] Cheryl E. Praeger. Primitive prime divisor elements in finite classical groups. In
Groups St. Andrews 1997 in Bath, II, 605–623, Cambridge Univ. Press, 1999.

[95] Alexander J.E. Ryba. Identification of matrix generators of a Chevalley group. J.
Algebra 309, 484–496, 2007.

[96] Gary M. Seitz and Alexander E. Zalesskii. On the minimal degrees of projective
representations of the finite Chevalley groups. II. J. Algebra 158, 233–243, 1993.

[97] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Math-
ematics. Cambridge University Press, Cambridge, 2003.

[98] Igor E. Shparlinski. Finite fields: theory and computation. The meeting point of
number theory, computer science, coding theory and cryptography. Mathematics and
its Applications, 477. Kluwer Academic Publishers, Dordrecht, 1999.

O’Brien: Algorithms for matrix groups 27

[99] Charles C. Sims. Computational methods in the study of permutation groups. In
Computational problems in abstract algebra, pages 169–183, Oxford, 1970. (Oxford,
1967), Pergamon Press.

[100] V. Strassen. Gaussian elimination is not optimal. Numer. Math. 13, 354–356, 1969.
[101] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra, Cambridge

University Press, 2002.
[102] G.E. Wall. On the conjugacy classes in the unitary, symplectic and orthogonal

groups. J. Austral. Math. Soc. 3, 1–62, 1963.
[103] Robert A. Wilson. Standard generators for sporadic simple groups. J. Algebra 184,

505–515, 1996.
[104] R.A. Wilson et al. Atlas of Finite Group Representations. brauer.maths.qmul.

ac.uk/Atlas.
[105] R.A. Wilson. Computing in the Monster. In Groups, Combinatorics & Geometry

(Durham, 2001), 327–335, World Sci. Publishing, River Edge, NJ, 2003.
[106] Şükrü Yalçınkaya. Black box groups. Turkish J. Math. 31, 171–210, 2007.
[107] K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh. für Math. u. Phys. 3, 265–

284, 1892.

