ALGORITHMS FOR THE TITS ALTERNATIVE AND RELATED PROBLEMS

A. S. DETINKO, D. L. FLANNERY, AND E. A. O'BRIEN

ABSTRACT. We present an algorithm to decide whether a finitely generated lineap greer an
infinite field is solvable-by-finite, thereby obtaining a computationally effectiersion of the Tits
alternative. We also give algorithms to decide whether the group is nilpbyefitite, abelian-by-
finite, or central-by-finite. Implementations of the algorithms are publiciilabile in MAGMA.

1. INTRODUCTION

The Tits alternative established by Tits [28], states that a finitely generated linear groupaover
field either is solvable-by-finite, or it contains a non-cyclic free subgrothis theorem partitions
finitely generated linear groups into two very different classes, whighire separate treatment.
Consequently, one of the first questions that must be settled for suohaigrto determine the class
of the Tits alternative to which it belongs. In the class of groups with natfiecfree subgroups, some
basic computational problems are undecidable in general; whereaslsdbyafinite groups are more
amenable to computation (see [16, Section 3]). For further discussioe ditthalternative, and its
influence on other areas of group theory, we refer to [18].

Algorithms to decide the Tits alternative over the rational figidrere proposed in [6, 7]. Drawing
on results of [17], a different approach was considered in [24btAer algorithm for the Tits alter-
native inGL(n, Q), as well as practical algorithms to test solvability and polycyclicity of rational
matrix groups, appeared in [1, 2, 3]. We are not aware of implementaticihege algorithms to
decide the Tits alternative ovér.

This paper gives a practical algorithm to decide whether a finitely geniagar group over an
arbitrary field is solvable-by-finite. Additionally, we can test whether thtmugris solvable. Our
method uses congruence homomorphism techniques (see [16, Sectishidf) were applied previ-
ously to special cases of the problems mentioned above; namely, decidiegess and nilpotency
[11, 12,13, 14]. We also rely on two other recent developments. T8tésfi description by Wehrfritz
[30] of congruence subgroups of solvable-by-finite linear grodjp& second is the development of
effective algorithms to construct presentations of matrix groups over fieits (see [4, 23)).

If the field isQ, our algorithm to test virtual solvability is a refinement and extension of tHaj.in
However, we consider finitely generated linear groups defined ovardtnary field (albeit possibly
with a finite number of exceptions in positive characteristic). We also solveethed problems of
deciding whether a group defined over a field of characteristic zerotisallyr nilpotent, virtually
abelian, or central-by-finite. The resulting algorithms are practical, and imgsitations are publicly
available in MAGMA [8].
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We emphasize that this paper demonstrates that the various problems of w@stiagproper-
ties aredecidablefor finitely generated groups over a wide range of fields. Solvability testiag w
previously known to be decidable for groups over number fields [21].

Section 2 sets up the background theory for our congruence homoistarggthniques. In Sec-
tion 3 we present an algorithm to decide virtual solvability. Section 4 deals watlsplcial case
where the group is completely reducible. In Section 5 we outline algorithms idedetether a
group in characteristic zero is nilpotent-by-finite, abelian-by-finite, otraé-by-finite. Finally, we
report on the M\GMA implementation of our algorithms.

2. CONGRUENCE HOMOMORPHISMS AND COMPUTING IN SOLVABLEBY-FINITE GROUPS

We start by fixing some notation. L&t = (S) < GL(n,F), whereS = {g1,...,9,} andF
is an infinite field. Denote the integral domain generated by the entries of thieesatrS U S—1
by R. Recall thatR/p is a finite field if p is a maximal ideal ofR [29, 4.1, p. 50]. Letp be an
ideal of a subringA of [F; then natural projectiol — A/p extends to a group homomorphism
GL(n,A) — GL(n,A/p) and a ring homomorphisilat(n, A) — Mat(n, A/p). We denote all
these homomorphisms hy,. The kernel ofi), on G is denotedG,, and is called a&ongruence
subgroupof G.

2.1. Congruence subgroups of solvable-by-finite groupsEach solvable-by-finite linear group has

a triangularizable normal subgroup of finite index [27, Theorem 7, B]; 18 particular, its Zariski
connected component is unipotent-by-abelian. Provingihiasolvable-by-finite is therefore equiv-
alent to proving thati has a unipotent-by-abelian normal subgroup of finite index. So to apply
congruence homomarphism techniques to computing in the first class of thalf€itsative, we
should first answer the following question:Gfis solvable-by-finite, for which ideals C R is G,
unipotent-by-abelian? We summarize recent results of Wehrfritz [30pr€hes 1-3] that describe
such ideals (as usuat]’ is the commutator subgroupl, H] of a groupH).

Theorem 2.1. Suppose thatr < GL(n, A) is solvable-by-finite, wheraA is an integral domain.

(i) Letp be anideal ofA. If char A = p > n, or char A = 0 andchar(A/p) = p > n, then
G, is unipotent.

(i) Suppose thad is a Dedekind domain of characteristic zero, gns a maximal ideal of\.
If p € Zis an odd prime such thatc p\ p?~!, thenG, is connected; henc@;, is unipotent.

We call, : GL(n,A) — GL(n, A/p) aW-homomorphisrif A/p is finite andG’, is unipotent
whenevelG < GL(n, A) is solvable-by-finite.

2.2. Construction of W-homomorphisms. We may assume thdt is finitely generated over its
prime subfield, and is the field of fractions Bf Then it suffices to leF be one of

|. the rational<Q,
[I. a number field,
Ill. afunction fieldP(xy, ..., z.), or
IV. afinite extension oP(x1, ..., zy,),
whereP is a number field or finite field in IlI-1V. See [16, Section 4] for more details.
In each case -1V we explain below how to construct W-homomorphisntsidm, R). Note that
if I has positive characteristic at mastthen in general we cannot construct a W-homomorphism.
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For a subringA of a field, %A denotes the localizatiofwy, ™ | z € A,i > 0} of A at a non-zero
elementu.

2.2.1. The rational field.(Cf. [17, Lemma 9].) Leff = Q. ThenR = iZ for somep € Z \ {0}
determined by the denominators of entries in the elemen§s .o —!. By Theorem 2.1 (ii), ifp € Z
is an odd prime not dividing:, then reduction mog is a W-homomorphism fron&L(n, R) onto
GL(n,p). We denote this homomorphism By = ¥ ,,.

2.2.2. Number fields.Let F = Q(«) wherea is an algebraic integer. We may take= %Z[a],
p € Z\{0}. Let f(t) = ag + - + ap_1t*~1 + t* € Z[t] be the minimal polynomial ofi. For a
primep € Z not dividing ., defineys , : R — Z,(&) by

Yoy Mg bt = S g b
whereb; denotes the reduction &f modp, anda is a root of f(t) = ag + - - - + ax_1t* ! 4 ¥,

Lemma 2.2. (i) Letp € Z be an odd prime dividing neithgr nor the discriminant off (¢).
Theny , is a W-homomorphism.
(i) Letp € Z be a prime greater than not dividingx. Themys , is a W-homomorphism.

Proof. Let O be the ring of integers df. Select an irreducible factd (¢) of f(¢), and letf;(t) be a
pre-image off;(¢) in Z[t]. The idealp of iO generated by and f;(«) is maximal, ang ¢ p? (see
[20, Proposition 3.8.1, Theorem 3.8.2]). Since the kerneb0f on GL(n, R) is contained in the
kernel ofi, on GL(n, iO), Theorem 2.1 (i) implies thap, , is a W-homomorphism. The second
part is immediate from Theorem 2.1 (i). d

For example, lef be thecth cyclotomic field; ifp is an odd prime not dividingcm(u, ¢), then
Yo Is @ W-homomorphism.
We denote the W-homomorphism ,, for p as in Lemma 2.2 by, = U, .

2.2.3. Function fields.Let F = P(z1,...,2Zm), SOR C %P[ml, ..., ] for someP-polynomial
w = pu(xy,...,xy). Suppose that = (aq,...,ay,) IS a non-root ofu, where thew; are in the
algebraic closur® of P. Note that ifP? is infinite thena can always be chosen . Definey; ,, to
be the substitution homomorphism that replaceby «;, 1 < i < m.

Letchar R = 0. SetV3 = W3,, = V; , 0934, Wherep > n,i = 1if P = Q, andi = 2 if
P # Q is a number field.

If char R = p > nthensetVs = V3, = 13 ,.

In all casesl; is a W-homomorphism by Theorem 2.1 (i).

2.2.4. Algebraic function fieldsLet F = LL(3) wherelL = P(z4,...,z,), |[F/L| = e and§ has
minimal polynomialf(t) = ag + - -+ + ae_1t"' +t¢. ThenR C %Lo[ﬁ] for someyp € Ly =
Plx1,...,zy). We may assume thgt(t) € Ly[t].

Define 4, on GL(n, R) as follows. Leta € P™, u(a) # 0; and letj3 be a root off(t) =
o+ -+ + Ge—1t°" ! + t° wherea; := 13 ,(a;). Each element of2 may be uniquely expressed as
S, ¢i3' for somec; € LLo. Then

o -
Vaa Y imgCiB = Yo

wherec; = 13 4(c;).
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Suppose thathar R = 0, so we can choose € P™. SetW, = V,,, = ¥;, o4, Where
p>n,i=1if P=Qands € Q, andi = 2 otherwise.

If char R = p > nthensetVy = 1y ,.

By Theorem 2.1 (i))¥4 is a W-homomorphism.

Remark2.3. An SW-homomorphiswn GL(n, R) is a congruence homomorphism with finite image
such that every torsion element of its congruence subgroup is unipsen{29, 4.8, p. 56] and
[16, Section 4]). This property of the congruence subgroup is drtwithe algorithms of [14]
for finiteness testing and structural analysis of finite matrix groups ovanitimffields. The W-
homomorphismsl; are SW-homomorphisms; moreover, this remains truelfpand ¥4 without
requiring thaty > n.

3. TESTING VIRTUAL SOLVABILITY

3.1. Preliminaries. If v, is a W-homomorphism ofsL(n, R), thenG is solvable-by-finite if and
only if G, is unipotent. In this subsection we develop procedures to test whethéely fienerated
subgroup ofGL(n, R) is unipotent-by-abelian. Denote tlieenveloping algebra off C Mat(n, F)
by (M )r, and theF-linear span of\/ by spang(M).

Lemma 3.1. Let H < GL(n,F) be unipotent-by-abelian. Theyio — hg € Rad(H )y for all
g,h € H.

Proof. (Cf. [17, p. 256] and [1, Lemma 5].) Sindé’ is unipotent); = [g, h] — 1,, is nilpotent. For
everya € (H )p, the matrixah, is nilpotent (ag{ is triangularizable), and so, € Rad(H )p. Thus
gh — hg = hghy € Rad(H )p. O

Lemma 3.2. Let H < G whereH is unipotent-by-abelian. it € Rad(H ) then there is a non-zero
G-module in the nullspace of.

Proof. The hypotheses of/ ensure thaty € Rad(H ) for all g € G. Thus, the nullspace of
Rad(H ) is a (non-zero}z-module in the nullspace af. O

In[13, p. 4155] we describe a simple recursive procedafmleViaNullSpace(S, ) that finds,
in no more tham iterations, aG-moduleU in the nullspace of € Mat(n,F) that contains every
suchG-module. Hence, if is as in Lemma 3.2 thell is non-zero.

We now establish a convention. For a subset {hq, ..., h;} of Mat(n, F), define

K ={h{,....,h | g €G}.
If K C G then(K%) isthe normal closure ofK) in G, which is usually denotedk )<,
We next state a procedure that will be needed in several places later.
BasisAlgebraClosure(K,S)

Input: finite subsetd” andS = {g1, ..., g, } of GL(n,F).
Output: A basis of th&-enveloping algebra of K¢ ), whereG = (S).

(1) A:=KUK™

(2) While3g € Su S~ andA € Asuchthay ' Ag ¢ spang(A), do
A:=AU{g tAg}.
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(3) ‘Spin up’ to construct a basi8 of the F-enveloping algebra ofA4).
(4) Returns.

BasisAlgebraClosure terminates in at most? iterations. For a discussion of the well-known
‘spinning up’ method in step (3), see, e.g., [12, Section 3.1]. One featBeesisAlgebraClosure
is that the basi# returned consists of elements(@“).

Remark3.3. If K C Mat(n,F) contains non-invertible elements, then the obvious modifications
should be made tBasisAlgebraClosure. That is, A is initialized to K in step (1); and in step
(3) a basis of A) is constructed (by the same spinning up as before). The output of this etbdifi
procedure, which we nanBasisAlgebraClosure®, is a basis of K& ).

3.2. Testing virtual solvability. Let U be aH-submodule oft” := F", whereH < GL(n,F).
Extend a basis df/ to one ofV/, with respect to which{ has block triangular form. We denote the
projection homomorphism aff onto the corresponding block diagonal groupdi(n, F) by =y .
The kernel ofry is a unipotent normal subgroup éf.

NormalGenerators is a procedure that accegfisand a W-homomorphisnr = ¢, as input, and
returnsnormal generatorsgor G, i.e., generators for a subgroup whose normal closutg G,
This procedure first finds a presentatiBrof ¥(G) on the generating séf(g; ), ..., ¥(gr). Such
presentations can be computed using algorithms from [4, 23]. The relatérare then evaluated
by replacing each occurrence®fg;) in each relator by;, 1 < i < r. The resulting words in the
constitute the output dformalGenerators.

We also need the following recursive procedure.

ExploreBasis(A,T)

Input: finite subsetst, T" of GL(m, F), whereA C (T').
Output: true or false.

(1) If [A;, A;] =1,V A;, A; € Athen returntrue.
(2) Uy := ModuleViaNullSpace(T, A;A; — A;A;) where[A;, A;] # 1,,,.
If Uy = {0} then returntalse.
(3) m:=my,, Uz :=V/Uj.
(4) For{ =1,2do
Ag = {m(Aj)w, | Aj € A}, Ty o= A{m (), [ h; € T}
if ExploreBasis(Ay, Ty) = false then returnfalse.
(5) Returntrue.

Now we can assemble our algorithm to decide the Tits alternative.

IsSolvableByFinite(S)

Input: S = {g1,...,9-} € GL(n, R).
Output:true if G = (S) is solvable-by-finite andalse otherwise.

(1) K := NormalGenerators(S, ¥), ¥ a W-homomorphism o&L(n, R).
(2) A :=BasisAlgebraClosure(K,YS5).
(3) ReturnExploreBasis(A,S).
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Remark3.4. WhenF = Q, IsSolvableByFinite is similar to the algorithm of [1, p. 1280]—but
see the first paragraph of [1, Section 10.1].

IsSolvableByFinite terminates in no more thamniterations at step (3). A report dalse is
correct by Lemmas 3.1 and 3.2. Note thatifue is returned at the first pass through step (1) of
ExploreBasis, thenG is abelian-by-finite.

Algorithms to test solvability of matrix groups over finite fields are implemented i8][3)Ve can
augmentsSolvableByFinite by checking solvability oft (G) during step (1), and thus obtain a
solvability testing algorithm for finitely generated subgroup&af(n, F). Moreover, wherk = Z,
these algorithms decide wheth@ris polycyclic or polycyclic-by-finite (cf. [5, Theorem 4.2]).

We now point out some further additions to our basic method for decidingavstivability.

First suppose thathar F = 0. Sometimes we can quickly detect thiais not solvable-by-finite,
by means of the following observations. A classical theorem of Jordtesdtaat there is a function
f : N — N (independent of) such that ifG is a finite subgroup ofzL(n, F), thenG has an abelian
normal subgroup of index bounded Ifyn). It follows from [29, 10.11, p. 142] that i7 is solvable-
by-finite, then the solvable radical @f(G) has index bounded bf(n). To apply this criterion, we
use an algorithm described in [19, Section 4.7.5] to compute the index of lrabkoradical of a
matrix group over a finite field, and then we compare this index W{th). Collins [9] has found the
optimal functionf for all n. In particular,f (n) = (n + 1)! forn > 71.

Next, recall that ifU = 1, is WU3,, or ¥ ,,, thenp must be greater than by definition.
However, with extra restrictions in place, it is possible to test virtual solvahilitgharacteristic
p < n too. Suppose that is a proper ideal o such that either (ifhar R = 0, char(R/p) > 0
andG,, is generated by unipotent elements; ordlijr R > 0 andG/, is generated by diagonalizable
elements. Ther- is solvable-by-finite if and only iG; is unipotent: this follows from the last
paragraph of [30, Section 1], and [30, Theorem 1 (d)]. We carriahte whether (i) or (ii) holds by
checking whether each normal generato€gfis unipotent or diagonalizable.

4. COMPLETELY REDUCIBLE GROUPS
Some of our problems coincide in an important special case.

Lemma 4.1. Suppose that < GL(n,F) is completely reducible, wheie is any field. Then the
following are equivalent:
() G is solvable-by-finite;
(ii) G is nilpotent-by-finite;
(i) G is abelian-by-finite.

Proof. Trivially (iii) = (ii) = (i). If G is solvable-by-finite, then a normal unipotent-by-abelian
subgroup ofG must be abelian, because a completely reducible unipotent group is triias (i)
implies (iii). O
Motivated by Lemma 4.1, we consider how to decide whether a solvablexitg-§roupG is
completely reducible. Lep, be a W-homomorphism o&L(n, R). If G, is completely reducible
(hence abelian) anehar R does not dividéG : G|, thenG is completely reducible by [27, The-
orem 1, p. 122]. Therefore, in characteristic zetbjs completely reducible if and only if the
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elements ofBasisAlgebraClosure(K,S) commute pairwise and are all diagonalizable, where
K = NormalGenerators(S,,). If char R = p > 0 divides|G : G,|, then we cannot decide
complete reducibility of7; otherwise we apply the characteristic zero criterion.

A finitely generated solvable linear group may not be finitely presentablet[29, p. 66]. How-
ever, ifG is both solvable-by-finite and completely reducible, tiignis a finitely generated abelian
normal subgroup of finite index. So we can compute presentatio6s ahd,(G), and combine
them as explained in [1, 4], to obtain a finite presentatio&' of

5. TESTING VIRTUAL NILPOTENCY AND RELATED ALGORITHMS

We now consider the problems of deciding whether a finitely generated neap is nilpotent-
by-finite, abelian-by-finite, or central-by-finite. Algorithms for nilpotenegting and computing
with finitely generated nilpotent groups over arbitrary fields are giveaOn 11].

Henceforthchar F = 0 unless stated otherwise.

5.1. Preliminaries.

Lemma5.1. Let H < GL(n, F) be nilpotent-by-finite (resp. abelian-by-finit& any field. IfH is
connected thei®f is nilpotent (resp. abelian).

Proof. (Cf.[17, Lemma 9].) LetV < H be nilpotent (resp. abelian) of finite index. Then the Zariski
closure of N in H is nilpotent (resp. abelian) and contains the connected componéhtsde [29,
Chapter 5]. The lemma follows. O

Corollary 5.2. Suppose thak is a Dedekind domain of characteristic zero, gnd a maximal ideal
of R such thatchar(R/p) = p > 2, wherep ¢ pP~!. ThenG < GL(n, R) is nilpotent-by-finite
(resp. abelian-by-finite) if and only @, is nilpotent (resp. abelian).

Proof. This follows from Theorem 2.1 (ii) and Lemma 5.1. O
Denote bygy, g, € GL(n,F) the diagonalizable and unipotent partsgofe GL(n,F), i.e.,
g = 949w = gu9ga IS the Jordan decomposition @f For X C GL(n,F) we put
Xd:{xd|x€X} and Xu:{xu]acGX}.

Proposition 5.3. Let H = (K%), whereK is a finite subset ofs. ThenH is nilpotent andH’ is
unipotent if and only if K§') is abelian,(K$') is unipotent, andK ¢, K& = {1,,}.

Proof. If (K§') is abelian{ K¢') is unipotent, and these groups centralize each other, then the group
L that they generate is unipotent-by-abelian and nilpotent. Hence the samefisrtil < L.
Now suppose thall is unipotent-by-abelian and nilpotent. Thgpn: H — Hy, f, : H — H,
defined by
fd2h>—>hd, fu:h'—>hu

are homomorphisms by [26, Proposition 3, p. 136]. Thus
Hg=(fa(K%)) and  H, = (fu(K)).

Now h9 = hjhi andhj, hi are diagonalizable, unipotent respectively. Uniqueness of the Jordan
decomposition implies that} = (h9)4 andhf, = (h?),, SO

Hy=(K$) and H,=(KS%).

u
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Thus(K$) is unipotent. Sinced is nilpotent,[K$, K¢] = {1,} (see [26, Proposition 3, p. 136]
again). Finally, since(Kf) = H, is unipotent-by-abelian and completely reducible, it must be
abelian. O

5.2. Nilpotent-by-finite and abelian-by-finite groups. Our algorithms for deciding whethé&¥ is
nilpotent-by-finite or abelian-by-finite require th@tbe defined over a Dedekind domaih Hence
they apply, for example, whdhis Q, a number field, or (a finite extension of) a univariate function
field.

Lemma5.4. LetK C GL(n,F), andK := {h —1, | h € K UK '}. ThenH = (K is unipotent
if and only if (K ) is nilpotent.

Proof. Observe that K ) = spang({h — 1,, | h € H}). Therefore, ifH is unipotent therH* is
unitriangular for some: € GL(n,F), so (K )r is nilpotent. Conversely, if K')r is nilpotent then
h — 1, is nilpotent for allh € H, i.e., H is unipotent. O

Let K be a finite subset ofsL(n,[F). The procedurd&sAbelianClosure determines whether
(K@) is abelian by testing whether the element®8aéisAlgebraClosure (K, S) commute pair-
wise. Another auxiliary procedure is the following (recall Remark 3.3).

IsUnipotentClosure(K, S)

Input: finite subsetd = {h; ..., ht} andS of GL(n, F), where theh; are unipotent.
Output: true if (K) is unipotentfalse otherwise, wher&' = (S).

(1) K :={hj— 1, |1 <j <k}

(2) B := BasisAlgebraClosure*(K,S).

(3) If |B] > n(n — 1)/2, or B is not nilpotent for some&3 € B (i.e., B" # 0,), then return
false.

(4) If (B+1,,: B € B) is unipotent then returarue; else returrfalse.

Remarks.5. Lemma 5.4 guarantees correctnessgifnipotentClosure. See [10, Section 2.1] for
a procedure to test whether a finitely generated linear group is unipotent.

Let ¥ be a W-homomorphism as in Corollary 5.2. By Proposition 5.3, we have theviotjo
algorithm to test virtual nilpotency.

IsNilpotentByFinite(S)

Input: a finite subse$ of GL(n, R), R a Dedekind domain of characteristic zero.
Output:true if G = (5) is nilpotent-by-finite, andalse otherwise.

(1) K :={h1,...,hx} = NormalGenerators(S, V).

(2) Kg:={(hi)a |1 <i<k}, Ky, :={(hi)u|1<i<Ek}.

(3) If not IsUnipotentClosure(kK,,S) or notIsAbelianClosure(Ky, S)
or [K$, K% # {1,} then returntalse; else returrcrue.
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Remark5.6. In step (3) we use the fact thak§, K¢ = {1,} if and only if the elements of
BasisAlgebraClosure(K 4, S) commute with the elements &asisAlgebraClosure(Ky,S)
(these two bases are already computed in this step).

Similarly, for Dedekind domaing& of characteristic zero, the algorithteAbelianByFinite(S)
decides whethefr is abelian-by-finite: it return§sAbelianClosure(X,.S), where as usuak’ is
NormalGenerators(S, U).

If either of IsNilpotentByFinite(S) or IsAbelianByFinite(S) returnstrue, then we can
decide complete reducibility @: now G is completely reducible if and only K, = {1,,}.

5.3. Central-by-finite groups. In this subsection, instead of a W-homomorphism we may use more
generally an SW-homomorphism (see Remark 2.3).

Lemma 5.7. Let H be a group such thaktl’ is finite. If A is a torsion-free normal subgroup &f,
then A is central.

Proof. Since[A, H] < An H' = {1}, thisis clear. O

Corollary 5.8. LetF be any field of characteristic zero, and Et= v, be an SW-homomorphism
onGL(n, R). ThenG < GL(n,F) is central-by-finite if and only if7, is central.

Proof. If G is central-by-finite thed” is finite by a result of Schur [25, 10.1.4, p. 287]. Sir€gis
torsion-free, it is central by Lemma 5.7. The other direction is trivial bsegt : G ,| is finite. [

Corollary 5.8 underpins a simple procedurgCentralByFinite(S) which returnstrue if
(K, S] = {1,}, whereG, = (K%); else it returngalse. HereF is any field of characteristic zero.
The same procedure works for the fiekllsf positive characteristic in Sections 2.2.3-2.2.4, provided
that ¥ is a W-homomorphism as defined there &¥glis completely reducible (hence torsion-free).

We could also decide whethéris central-by-finite by checking whether the *adjoint’ representa-
tion that arises from the conjugation action®bn (G )r has finite image (using, e.g., the algorithms
of [14]), as suggested in [7]. While this approach is valid for all fididg may involve computing
with matrices of dimension?.

6. IMPLEMENTATION AND PERFORMANCE

We have implemented our algorithms as part of thedwiA package NFINITE [15]. We use the
COMPOSITIONT REE package [4, 23] to study congruence images and construct theinpageas.

In practice, the single most expensive task is evaluating relators to obtairahgenerators for
the kernel of a W-homomorphism.

We describe below sample outputs covering the main domains and types pEgrbloe exper-
iments were performed using AMsMA V2.17-2 on a 2GHz machine. The examples are randomly
conjugated so that generators are not sparse, and matrix entries iaediytyjprge. All (algebraic)
function fieldsF in these examples are univariate, and if they have zero characteristverr®.
Since random selection plays a role in some of the algorithms, times have l@rage over three
runs. The complete examples are available in tireNITE package.

(1) G1 < GL(7,F) whereF is a function field of characteristic zero. It is conjugate to an infinite
monomial subgroup o&L(7, Q). We decide that thid-generator group is abelian-by-finite
in 82s.
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(2) G2 < GL(40,F) whereF is an algebraic function field of characteristic zero. It is conjugate
to an infinite completely reducible nilpotent subgroupG.(40, Q). We decide that this
4-generator group is central-by-finite 39s.

(3) G3 < GL(56,F) whereF is an algebraic function field of characteristic zero. It is conjugate
to the Kronecker product of an infinite reducible nilpotent subgroug:bf8, Q) with a
primitive complex reflection group from the Shephard-Todd list. We decide tttis 7-
generator group is nilpotent-by-finite 219s.

(4) G4 < GL(18,FF) whereF is a function field overGF(19). It is conjugate to the Kro-
necker product of a solvable subgroup@®.(6, 19) with an infinite triangular subgroup of
GL(3,F). We decide that thi$3-generator group is solvable &0s.

(5) G5 < GL(32,F) whereF is the fifth cyclotomic field. It is conjugate to the Kronecker prod-
uct of an infinite solvable subgroup 6fL.(8, Q) from [3] with a primitive complex reflection
group from the Shephard-Todd list. We decide that 8generator group is solvable-by-
finite in 90s.

(6) G¢ < GL(12,F) whereF is a function field of characteristic zero. It is conjugate to
SL(12,Z). We decide that thi8-generator group is not solvable-by-finitelis.

(7) Gy < GL(32,F) whereF is a number field of degre¢ over Q. It is conjugate to the
Kronecker product of (é 1) : (; ?)) with an infinite reducible nilpotent rational matrix

group. We decide that thisgenerator group is not solvable-by-finitehi6és.
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