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ABSTRACT. We present an algorithm to decide whether a finitely generated linear group over an
infinite field is solvable-by-finite, thereby obtaining a computationally effective version of the Tits
alternative. We also give algorithms to decide whether the group is nilpotent-by-finite, abelian-by-
finite, or central-by-finite. Implementations of the algorithms are publicly available in MAGMA .

1. INTRODUCTION

The Tits alternative, established by Tits [28], states that a finitely generated linear group overa
field either is solvable-by-finite, or it contains a non-cyclic free subgroup. This theorem partitions
finitely generated linear groups into two very different classes, which require separate treatment.
Consequently, one of the first questions that must be settled for such a group is to determine the class
of the Tits alternative to which it belongs. In the class of groups with non-cyclic free subgroups, some
basic computational problems are undecidable in general; whereas solvable-by-finite groups are more
amenable to computation (see [16, Section 3]). For further discussion of the Tits alternative, and its
influence on other areas of group theory, we refer to [18].

Algorithms to decide the Tits alternative over the rational fieldQ were proposed in [6, 7]. Drawing
on results of [17], a different approach was considered in [24]. Another algorithm for the Tits alter-
native inGL(n,Q), as well as practical algorithms to test solvability and polycyclicity of rational
matrix groups, appeared in [1, 2, 3]. We are not aware of implementations of these algorithms to
decide the Tits alternative overQ.

This paper gives a practical algorithm to decide whether a finitely generated linear group over an
arbitrary field is solvable-by-finite. Additionally, we can test whether the group is solvable. Our
method uses congruence homomorphism techniques (see [16, Section 4]), which were applied previ-
ously to special cases of the problems mentioned above; namely, deciding finiteness and nilpotency
[11, 12, 13, 14]. We also rely on two other recent developments. The first is a description by Wehrfritz
[30] of congruence subgroups of solvable-by-finite linear groups.The second is the development of
effective algorithms to construct presentations of matrix groups over finitefields (see [4, 23]).

If the field isQ, our algorithm to test virtual solvability is a refinement and extension of that in[1].
However, we consider finitely generated linear groups defined over anarbitrary field (albeit possibly
with a finite number of exceptions in positive characteristic). We also solve therelated problems of
deciding whether a group defined over a field of characteristic zero is virtually nilpotent, virtually
abelian, or central-by-finite. The resulting algorithms are practical, and implementations are publicly
available in MAGMA [8].
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We emphasize that this paper demonstrates that the various problems of testingvirtual proper-
ties aredecidablefor finitely generated groups over a wide range of fields. Solvability testing was
previously known to be decidable for groups over number fields [21].

Section 2 sets up the background theory for our congruence homomorphism techniques. In Sec-
tion 3 we present an algorithm to decide virtual solvability. Section 4 deals with the special case
where the group is completely reducible. In Section 5 we outline algorithms to decide whether a
group in characteristic zero is nilpotent-by-finite, abelian-by-finite, or central-by-finite. Finally, we
report on the MAGMA implementation of our algorithms.

2. CONGRUENCE HOMOMORPHISMS AND COMPUTING IN SOLVABLE-BY-FINITE GROUPS

We start by fixing some notation. LetG = 〈S 〉 ≤ GL(n,F), whereS = {g1, . . . , gr} andF
is an infinite field. Denote the integral domain generated by the entries of the matrices inS ∪ S−1

by R. Recall thatR/ρ is a finite field if ρ is a maximal ideal ofR [29, 4.1, p. 50]. Letρ be an
ideal of a subring∆ of F; then natural projection∆ → ∆/ρ extends to a group homomorphism
GL(n,∆) → GL(n,∆/ρ) and a ring homomorphismMat(n,∆) → Mat(n,∆/ρ). We denote all
these homomorphisms byψρ. The kernel ofψρ on G is denotedGρ, and is called acongruence
subgroupof G.

2.1. Congruence subgroups of solvable-by-finite groups.Each solvable-by-finite linear group has
a triangularizable normal subgroup of finite index [27, Theorem 7, p. 135]; in particular, its Zariski
connected component is unipotent-by-abelian. Proving thatG is solvable-by-finite is therefore equiv-
alent to proving thatG has a unipotent-by-abelian normal subgroup of finite index. So to apply
congruence homomorphism techniques to computing in the first class of the Titsalternative, we
should first answer the following question: ifG is solvable-by-finite, for which idealsρ ⊆ R isGρ

unipotent-by-abelian? We summarize recent results of Wehrfritz [30, Theorems 1–3] that describe
such ideals (as usual,H ′ is the commutator subgroup[H,H] of a groupH).

Theorem 2.1. Suppose thatG ≤ GL(n,∆) is solvable-by-finite, where∆ is an integral domain.

(i) Let ρ be an ideal of∆. If char∆ = p > n, or char∆ = 0 andchar(∆/ρ) = p > n, then
G′

ρ is unipotent.
(ii) Suppose that∆ is a Dedekind domain of characteristic zero, andρ is a maximal ideal of∆.

If p ∈ Z is an odd prime such thatp ∈ ρ\ρp−1, thenGρ is connected; henceG′
ρ is unipotent.

We callψρ : GL(n,∆) → GL(n,∆/ρ) a W-homomorphismif ∆/ρ is finite andG′
ρ is unipotent

wheneverG ≤ GL(n,∆) is solvable-by-finite.

2.2. Construction of W-homomorphisms. We may assume thatF is finitely generated over its
prime subfield, and is the field of fractions ofR. Then it suffices to letF be one of

I. the rationalsQ,
II. a number field,

III. a function fieldP(x1, . . . , xm), or
IV. a finite extension ofP(x1, . . . , xm),

whereP is a number field or finite field in III–IV. See [16, Section 4] for more details.
In each case I–IV we explain below how to construct W-homomorphisms onGL(n,R). Note that

if F has positive characteristic at mostn, then in general we cannot construct a W-homomorphism.
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For a subring∆ of a field, 1
µ
∆ denotes the localization{xµ−i | x ∈ ∆, i ≥ 0} of ∆ at a non-zero

elementµ.

2.2.1. The rational field.(Cf. [17, Lemma 9].) LetF = Q. ThenR = 1

µ
Z for someµ ∈ Z \ {0}

determined by the denominators of entries in the elements ofS ∪S−1. By Theorem 2.1 (ii), ifp ∈ Z

is an odd prime not dividingµ, then reduction modp is a W-homomorphism fromGL(n,R) onto
GL(n, p). We denote this homomorphism byΨ1 = Ψ1,p.

2.2.2. Number fields.Let F = Q(α) whereα is an algebraic integer. We may takeR = 1

µ
Z[α],

µ ∈ Z \ {0}. Let f(t) = a0 + · · · + ak−1t
k−1 + tk ∈ Z[t] be the minimal polynomial ofα. For a

primep ∈ Z not dividingµ, defineψ2,p : R→ Zp(ᾱ) by

ψ2,p :
∑k−1

i=0
biα

i 7→
∑k−1

i=0
b̄iᾱ

i

whereb̄i denotes the reduction ofbi modp, andᾱ is a root off̄(t) = ā0 + · · ·+ āk−1t
k−1 + tk.

Lemma 2.2. (i) Let p ∈ Z be an odd prime dividing neitherµ nor the discriminant off(t).
Thenψ2,p is a W-homomorphism.

(ii) Letp ∈ Z be a prime greater thann not dividingµ. Thenψ2,p is a W-homomorphism.

Proof. LetO be the ring of integers ofF. Select an irreducible factor̄fj(t) of f̄(t), and letfj(t) be a
pre-image off̄j(t) in Z[t]. The idealρ of 1

µ
O generated byp andfj(α) is maximal, andp 6∈ ρ2 (see

[20, Proposition 3.8.1, Theorem 3.8.2]). Since the kernel ofψ2,p on GL(n,R) is contained in the
kernel ofψρ onGL(n, 1

µ
O), Theorem 2.1 (ii) implies thatψ2,p is a W-homomorphism. The second

part is immediate from Theorem 2.1 (i). �

For example, letF be thecth cyclotomic field; ifp is an odd prime not dividinglcm(µ, c), then
ψ2,p is a W-homomorphism.

We denote the W-homomorphismψ2,p for p as in Lemma 2.2 byΨ2 = Ψ2,p.

2.2.3. Function fields.Let F = P(x1, . . . , xm), soR ⊆ 1

µ
P[x1, . . . , xm] for someP-polynomial

µ = µ(x1, . . . , xm). Suppose thatα = (α1, . . . , αm) is a non-root ofµ, where theαi are in the
algebraic closureP of P. Note that ifP is infinite thenα can always be chosen inPm. Defineψ3,α to
be the substitution homomorphism that replacesxi by αi, 1 ≤ i ≤ m.

Let charR = 0. SetΨ3 = Ψ3,α,p = Ψi,p ◦ ψ3,α, wherep > n, i = 1 if P = Q, andi = 2 if
P 6= Q is a number field.

If charR = p > n then setΨ3 = Ψ3,α = ψ3,α.
In all casesΨ3 is a W-homomorphism by Theorem 2.1 (i).

2.2.4. Algebraic function fields.Let F = L(β) whereL = P(x1, . . . , xm), |F/L| = e andβ has
minimal polynomialf(t) = a0 + · · · + ae−1t

e−1 + te. ThenR ⊆ 1

µ
L0[β] for someµ ∈ L0 =

P[x1, . . . , xm]. We may assume thatf(t) ∈ L0[t].
Defineψ4,α on GL(n,R) as follows. Letα ∈ P

m
, µ(α) 6= 0; and letβ̃ be a root off̃(t) =

ã0 + · · · + ãe−1t
e−1 + te whereãi := ψ3,α(ai). Each element ofR may be uniquely expressed as∑e−1

i=0
ciβ

i for someci ∈ 1

µ
L0. Then

ψ4,α :
∑e−1

i=0
ciβ

i 7→
∑e−1

i=0
c̃iβ̃

i

wherec̃i = ψ3,α(ci).



4 A. S. DETINKO, D. L. FLANNERY, AND E. A. O’BRIEN

Suppose thatcharR = 0, so we can chooseα ∈ Pm. SetΨ4 = Ψ4,α,p = Ψi,p ◦ ψ4,α where
p > n, i = 1 if P = Q andβ̃ ∈ Q, andi = 2 otherwise.

If charR = p > n then setΨ4 = ψ4,α.
By Theorem 2.1 (i),Ψ4 is a W-homomorphism.

Remark2.3. An SW-homomorphismonGL(n,R) is a congruence homomorphism with finite image
such that every torsion element of its congruence subgroup is unipotent(see [29, 4.8, p. 56] and
[16, Section 4]). This property of the congruence subgroup is crucial to the algorithms of [14]
for finiteness testing and structural analysis of finite matrix groups over infinite fields. The W-
homomorphismsΨi are SW-homomorphisms; moreover, this remains true forΨ3 andΨ4 without
requiring thatp > n.

3. TESTING VIRTUAL SOLVABILITY

3.1. Preliminaries. If ψρ is a W-homomorphism onGL(n,R), thenG is solvable-by-finite if and
only if G′

ρ is unipotent. In this subsection we develop procedures to test whether a finitely generated
subgroup ofGL(n,R) is unipotent-by-abelian. Denote theF-enveloping algebra ofM ⊆ Mat(n,F)

by 〈M 〉F, and theF-linear span ofM by spanF(M).

Lemma 3.1. Let H ≤ GL(n,F) be unipotent-by-abelian. Thengh − hg ∈ Rad〈H 〉F for all
g, h ∈ H.

Proof. (Cf. [17, p. 256] and [1, Lemma 5].) SinceH ′ is unipotent,h1 = [g, h]− 1n is nilpotent. For
everya ∈ 〈H 〉F, the matrixah1 is nilpotent (asH is triangularizable), and soh1 ∈ Rad〈H 〉F. Thus
gh− hg = hgh1 ∈ Rad〈H 〉F. �

Lemma 3.2. LetH EG whereH is unipotent-by-abelian. Ifx ∈ Rad〈H 〉F then there is a non-zero
G-module in the nullspace ofx.

Proof. The hypotheses onH ensure thatxg ∈ Rad〈H 〉F for all g ∈ G. Thus, the nullspace of
Rad〈H 〉F is a (non-zero)G-module in the nullspace ofx. �

In [13, p. 4155] we describe a simple recursive procedureModuleViaNullSpace(S, x) that finds,
in no more thann iterations, aG-moduleU in the nullspace ofx ∈ Mat(n,F) that contains every
suchG-module. Hence, ifx is as in Lemma 3.2 thenU is non-zero.

We now establish a convention. For a subsetK = {h1, . . . , hk} of Mat(n,F), define

KG = {hg
1
, . . . , hgk | g ∈ G}.

If K ⊆ G then〈KG〉 is the normal closure of〈K 〉 in G, which is usually denoted〈K 〉G.
We next state a procedure that will be needed in several places later.

BasisAlgebraClosure(K,S)

Input: finite subsetsK andS = {g1, . . . , gr} of GL(n,F).
Output: A basis of theF-enveloping algebra of〈KG〉, whereG = 〈S 〉.

(1) A := K ∪K−1.
(2) While∃ g ∈ S ∪ S−1 andA ∈ A such thatg−1Ag /∈ spanF(A), do

A := A ∪ {g−1Ag}.
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(3) ‘Spin up’ to construct a basisB of theF-enveloping algebra of〈A〉.
(4) ReturnB.

BasisAlgebraClosure terminates in at mostn2 iterations. For a discussion of the well-known
‘spinning up’ method in step (3), see, e.g., [12, Section 3.1]. One featureof BasisAlgebraClosure
is that the basisB returned consists of elements of〈KG〉.

Remark3.3. If K ⊆ Mat(n,F) contains non-invertible elements, then the obvious modifications
should be made toBasisAlgebraClosure. That is,A is initialized toK in step (1); and in step
(3) a basis of〈A〉F is constructed (by the same spinning up as before). The output of this modified
procedure, which we nameBasisAlgebraClosure∗, is a basis of〈KG〉F.

3.2. Testing virtual solvability. Let U be aH-submodule ofV := Fn, whereH ≤ GL(n,F).
Extend a basis ofU to one ofV , with respect to whichH has block triangular form. We denote the
projection homomorphism ofH onto the corresponding block diagonal group inGL(n,F) by πU .
The kernel ofπU is a unipotent normal subgroup ofH.

NormalGenerators is a procedure that acceptsS and a W-homomorphismΨ = ψρ as input, and
returnsnormal generatorsfor Gρ, i.e., generators for a subgroup whose normal closure inG isGρ.
This procedure first finds a presentationP of Ψ(G) on the generating setΨ(g1), . . . ,Ψ(gr). Such
presentations can be computed using algorithms from [4, 23]. The relatorsin P are then evaluated
by replacing each occurrence ofΨ(gi) in each relator bygi, 1 ≤ i ≤ r. The resulting words in thegi
constitute the output ofNormalGenerators.

We also need the following recursive procedure.

ExploreBasis(A, T )

Input: finite subsetsA, T of GL(m,F), whereA ⊆ 〈T 〉.
Output:true or false.

(1) If [Ai, Aj ] = 1m ∀Ai, Aj ∈ A then returntrue.
(2) U1 := ModuleViaNullSpace(T,AiAj −AjAi) where[Ai, Aj ] 6= 1m.

If U1 = {0} then returnfalse.
(3) π := πU1

, U2 := V/U1.
(4) Forℓ = 1, 2 do

Aℓ := {π(Aj)|Uℓ
| Aj ∈ A}, Tℓ := {π(hj)|Uℓ

| hj ∈ T};
if ExploreBasis(Aℓ, Tℓ) = false then returnfalse.

(5) Returntrue.

Now we can assemble our algorithm to decide the Tits alternative.

IsSolvableByFinite(S)

Input: S = {g1, . . . , gr} ⊆ GL(n,R).
Output:true if G = 〈S 〉 is solvable-by-finite andfalse otherwise.

(1) K := NormalGenerators(S,Ψ), Ψ a W-homomorphism onGL(n,R).
(2) A := BasisAlgebraClosure(K,S).
(3) ReturnExploreBasis(A, S).
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Remark3.4. WhenF = Q, IsSolvableByFinite is similar to the algorithm of [1, p. 1280]—but
see the first paragraph of [1, Section 10.1].

IsSolvableByFinite terminates in no more thann iterations at step (3). A report offalse is
correct by Lemmas 3.1 and 3.2. Note that iftrue is returned at the first pass through step (1) of
ExploreBasis, thenG is abelian-by-finite.

Algorithms to test solvability of matrix groups over finite fields are implemented in [3,8]. We can
augmentIsSolvableByFinite by checking solvability ofΨ(G) during step (1), and thus obtain a
solvability testing algorithm for finitely generated subgroups ofGL(n,F). Moreover, whenR = Z,
these algorithms decide whetherG is polycyclic or polycyclic-by-finite (cf. [5, Theorem 4.2]).

We now point out some further additions to our basic method for deciding virtual solvability.
First suppose thatcharF = 0. Sometimes we can quickly detect thatG is not solvable-by-finite,

by means of the following observations. A classical theorem of Jordan states that there is a function
f : N → N (independent ofF) such that ifG is a finite subgroup ofGL(n,F), thenG has an abelian
normal subgroup of index bounded byf(n). It follows from [29, 10.11, p. 142] that ifG is solvable-
by-finite, then the solvable radical ofΨ(G) has index bounded byf(n). To apply this criterion, we
use an algorithm described in [19, Section 4.7.5] to compute the index of the solvable radical of a
matrix group over a finite field, and then we compare this index withf(n). Collins [9] has found the
optimal functionf for all n. In particular,f(n) = (n+ 1)! for n ≥ 71.

Next, recall that ifΨ = ψρ is Ψ3,α,p or Ψ4,α,p, thenp must be greater thann by definition.
However, with extra restrictions in place, it is possible to test virtual solvabilityin characteristic
p ≤ n too. Suppose thatρ is a proper ideal ofR such that either (i)charR = 0, char(R/ρ) > 0

andGρ is generated by unipotent elements; or (ii)charR > 0 andGρ is generated by diagonalizable
elements. ThenG is solvable-by-finite if and only ifG′

ρ is unipotent: this follows from the last
paragraph of [30, Section 1], and [30, Theorem 1 (d)]. We can determine whether (i) or (ii) holds by
checking whether each normal generator ofGρ is unipotent or diagonalizable.

4. COMPLETELY REDUCIBLE GROUPS

Some of our problems coincide in an important special case.

Lemma 4.1. Suppose thatG ≤ GL(n,F) is completely reducible, whereF is any field. Then the
following are equivalent:

(i) G is solvable-by-finite;
(ii) G is nilpotent-by-finite;

(iii) G is abelian-by-finite.

Proof. Trivially (iii) ⇒ (ii) ⇒ (i). If G is solvable-by-finite, then a normal unipotent-by-abelian
subgroup ofG must be abelian, because a completely reducible unipotent group is trivial. Thus (i)
implies (iii). �

Motivated by Lemma 4.1, we consider how to decide whether a solvable-by-finite groupG is
completely reducible. Letψρ be a W-homomorphism onGL(n,R). If Gρ is completely reducible
(hence abelian) andcharR does not divide|G : Gρ|, thenG is completely reducible by [27, The-
orem 1, p. 122]. Therefore, in characteristic zero,G is completely reducible if and only if the
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elements ofBasisAlgebraClosure(K,S) commute pairwise and are all diagonalizable, where
K = NormalGenerators(S, ψρ). If charR = p > 0 divides |G : Gρ|, then we cannot decide
complete reducibility ofG; otherwise we apply the characteristic zero criterion.

A finitely generated solvable linear group may not be finitely presentable [29, 4.22, p. 66]. How-
ever, ifG is both solvable-by-finite and completely reducible, thenGρ is a finitely generated abelian
normal subgroup of finite index. So we can compute presentations ofGρ andψρ(G), and combine
them as explained in [1, 4], to obtain a finite presentation ofG.

5. TESTING VIRTUAL NILPOTENCY AND RELATED ALGORITHMS

We now consider the problems of deciding whether a finitely generated lineargroup is nilpotent-
by-finite, abelian-by-finite, or central-by-finite. Algorithms for nilpotencytesting and computing
with finitely generated nilpotent groups over arbitrary fields are given in [10, 11].

HenceforthcharF = 0 unless stated otherwise.

5.1. Preliminaries.

Lemma 5.1. LetH ≤ GL(n,F) be nilpotent-by-finite (resp. abelian-by-finite),F any field. IfH is
connected thenH is nilpotent (resp. abelian).

Proof. (Cf. [17, Lemma 9].) LetN ≤ H be nilpotent (resp. abelian) of finite index. Then the Zariski
closure ofN in H is nilpotent (resp. abelian) and contains the connected component ofH; see [29,
Chapter 5]. The lemma follows. �

Corollary 5.2. Suppose thatR is a Dedekind domain of characteristic zero, andρ is a maximal ideal
of R such thatchar(R/ρ) = p > 2, wherep /∈ ρp−1. ThenG ≤ GL(n,R) is nilpotent-by-finite
(resp. abelian-by-finite) if and only ifGρ is nilpotent (resp. abelian).

Proof. This follows from Theorem 2.1 (ii) and Lemma 5.1. �

Denote bygd, gu ∈ GL(n,F) the diagonalizable and unipotent parts ofg ∈ GL(n,F), i.e.,
g = gdgu = gugd is the Jordan decomposition ofg. ForX ⊆ GL(n,F) we put

Xd = {xd | x ∈ X} and Xu = {xu | x ∈ X}.

Proposition 5.3. LetH = 〈KG〉, whereK is a finite subset ofG. ThenH is nilpotent andH ′ is
unipotent if and only if〈KG

d 〉 is abelian,〈KG
u 〉 is unipotent, and[KG

d ,K
G
u ] = {1n}.

Proof. If 〈KG
d 〉 is abelian,〈KG

u 〉 is unipotent, and these groups centralize each other, then the group
L that they generate is unipotent-by-abelian and nilpotent. Hence the same is true forH ≤ L.

Now suppose thatH is unipotent-by-abelian and nilpotent. Thenfd : H → Hd, fu : H → Hu

defined by
fd : h 7→ hd, fu : h 7→ hu

are homomorphisms by [26, Proposition 3, p. 136]. Thus

Hd = 〈fd(K
G)〉 and Hu = 〈fu(K

G)〉.

Now hg = hgdh
g
u andhgd, hgu are diagonalizable, unipotent respectively. Uniqueness of the Jordan

decomposition implies thathgd = (hg)d andhgu = (hg)u, so

Hd = 〈KG
d 〉 and Hu = 〈KG

u 〉.
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Thus〈KG
u 〉 is unipotent. SinceH is nilpotent,[KG

d ,K
G
u ] = {1n} (see [26, Proposition 3, p. 136]

again). Finally, since〈KG
d 〉 = Hd is unipotent-by-abelian and completely reducible, it must be

abelian. �

5.2. Nilpotent-by-finite and abelian-by-finite groups. Our algorithms for deciding whetherG is
nilpotent-by-finite or abelian-by-finite require thatG be defined over a Dedekind domainR. Hence
they apply, for example, whenF is Q, a number field, or (a finite extension of) a univariate function
field.

Lemma 5.4. LetK ⊆ GL(n,F), andK̃ := {h− 1n | h ∈ K ∪K−1}. ThenH = 〈K 〉 is unipotent
if and only if〈K̃ 〉F is nilpotent.

Proof. Observe that〈K̃ 〉F = spanF({h − 1n | h ∈ H}). Therefore, ifH is unipotent thenHx is
unitriangular for somex ∈ GL(n,F), so〈K̃ 〉F is nilpotent. Conversely, if〈K̃ 〉F is nilpotent then
h− 1n is nilpotent for allh ∈ H, i.e.,H is unipotent. �

Let K be a finite subset ofGL(n,F). The procedureIsAbelianClosure determines whether
〈KG〉 is abelian by testing whether the elements ofBasisAlgebraClosure(K,S) commute pair-
wise. Another auxiliary procedure is the following (recall Remark 3.3).

IsUnipotentClosure(K,S)

Input: finite subsetsK = {h1 . . . , hk} andS of GL(n,F), where thehi are unipotent.
Output:true if 〈KG〉 is unipotent,false otherwise, whereG = 〈S 〉.

(1) K̃ := {hj − 1n | 1 ≤ j ≤ k}.
(2) B := BasisAlgebraClosure∗(K̃, S).
(3) If |B| > n(n − 1)/2, or B is not nilpotent for someB ∈ B (i.e.,Bn 6= 0n), then return

false.
(4) If 〈B + 1n : B ∈ B〉 is unipotent then returntrue; else returnfalse.

Remark5.5. Lemma 5.4 guarantees correctness ofIsUnipotentClosure. See [10, Section 2.1] for
a procedure to test whether a finitely generated linear group is unipotent.

Let Ψ be a W-homomorphism as in Corollary 5.2. By Proposition 5.3, we have the following
algorithm to test virtual nilpotency.

IsNilpotentByFinite(S)

Input: a finite subsetS of GL(n,R),R a Dedekind domain of characteristic zero.
Output:true if G = 〈S 〉 is nilpotent-by-finite, andfalse otherwise.

(1) K := {h1, . . . , hk} = NormalGenerators(S,Ψ).
(2) Kd := {(hi)d | 1 ≤ i ≤ k},Ku := {(hi)u | 1 ≤ i ≤ k}.
(3) If not IsUnipotentClosure(Ku, S) or notIsAbelianClosure(Kd, S)

or [KG
d ,K

G
u ] 6= {1n} then returnfalse; else returntrue.
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Remark5.6. In step (3) we use the fact that[KG
d ,K

G
u ] = {1n} if and only if the elements of

BasisAlgebraClosure(Kd, S) commute with the elements ofBasisAlgebraClosure(Ku, S)

(these two bases are already computed in this step).

Similarly, for Dedekind domainsR of characteristic zero, the algorithmIsAbelianByFinite(S)
decides whetherG is abelian-by-finite: it returnsIsAbelianClosure(K,S), where as usualK is
NormalGenerators(S,Ψ).

If either of IsNilpotentByFinite(S) or IsAbelianByFinite(S) returnstrue, then we can
decide complete reducibility ofG: nowG is completely reducible if and only ifKu = {1n}.

5.3. Central-by-finite groups. In this subsection, instead of a W-homomorphism we may use more
generally an SW-homomorphism (see Remark 2.3).

Lemma 5.7. LetH be a group such thatH ′ is finite. IfA is a torsion-free normal subgroup ofH,
thenA is central.

Proof. Since[A,H] ≤ A ∩H ′ = {1}, this is clear. �

Corollary 5.8. LetF be any field of characteristic zero, and letΨ = ψρ be an SW-homomorphism
onGL(n,R). ThenG ≤ GL(n,F) is central-by-finite if and only ifGρ is central.

Proof. If G is central-by-finite thenG′ is finite by a result of Schur [25, 10.1.4, p. 287]. SinceGρ is
torsion-free, it is central by Lemma 5.7. The other direction is trivial because|G : Gρ| is finite. �

Corollary 5.8 underpins a simple procedureIsCentralByFinite(S) which returnstrue if
[K,S] = {1n}, whereGρ = 〈KG〉; else it returnsfalse. HereF is any field of characteristic zero.
The same procedure works for the fieldsF of positive characteristic in Sections 2.2.3–2.2.4, provided
thatΨ is a W-homomorphism as defined there andGρ is completely reducible (hence torsion-free).

We could also decide whetherG is central-by-finite by checking whether the ‘adjoint’ representa-
tion that arises from the conjugation action ofG on〈G〉F has finite image (using, e.g., the algorithms
of [14]), as suggested in [7]. While this approach is valid for all fieldsF, it may involve computing
with matrices of dimensionn2.

6. IMPLEMENTATION AND PERFORMANCE

We have implemented our algorithms as part of the MAGMA package INFINITE [15]. We use the
COMPOSITIONTREE package [4, 23] to study congruence images and construct their presentations.

In practice, the single most expensive task is evaluating relators to obtain normal generators for
the kernel of a W-homomorphism.

We describe below sample outputs covering the main domains and types of groups. The exper-
iments were performed using MAGMA V2.17-2 on a 2GHz machine. The examples are randomly
conjugated so that generators are not sparse, and matrix entries are typically large. All (algebraic)
function fieldsF in these examples are univariate, and if they have zero characteristic areoverQ.
Since random selection plays a role in some of the algorithms, times have been averaged over three
runs. The complete examples are available in the INFINITE package.

(1) G1 ≤ GL(7,F) whereF is a function field of characteristic zero. It is conjugate to an infinite
monomial subgroup ofGL(7,Q). We decide that this4-generator group is abelian-by-finite
in 82s.
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(2) G2 ≤ GL(40,F) whereF is an algebraic function field of characteristic zero. It is conjugate
to an infinite completely reducible nilpotent subgroup ofGL(40,Q). We decide that this
4-generator group is central-by-finite in30s.

(3) G3 ≤ GL(56,F) whereF is an algebraic function field of characteristic zero. It is conjugate
to the Kronecker product of an infinite reducible nilpotent subgroup ofGL(8,Q) with a
primitive complex reflection group from the Shephard-Todd list. We decide that this 7-
generator group is nilpotent-by-finite in219s.

(4) G4 ≤ GL(18,F) whereF is a function field overGF(19). It is conjugate to the Kro-
necker product of a solvable subgroup ofGL(6, 19) with an infinite triangular subgroup of
GL(3,F). We decide that this13-generator group is solvable in80s.

(5) G5 ≤ GL(32,F) whereF is the fifth cyclotomic field. It is conjugate to the Kronecker prod-
uct of an infinite solvable subgroup ofGL(8,Q) from [3] with a primitive complex reflection
group from the Shephard-Todd list. We decide that this8-generator group is solvable-by-
finite in 90s.

(6) G6 ≤ GL(12,F) whereF is a function field of characteristic zero. It is conjugate to
SL(12,Z). We decide that this3-generator group is not solvable-by-finite in10s.

(7) G7 ≤ GL(32,F) whereF is a number field of degree4 over Q. It is conjugate to the

Kronecker product of〈
(
1 1

0 1

)
,
(
1 0

2 1

)
〉 with an infinite reducible nilpotent rational matrix

group. We decide that this4-generator group is not solvable-by-finite in56s.
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