The groups of order 256

Abstract

Building on earlier work, a new method for generating descriptions of p-groups
is developed. The theory and implementation of this method are described and

its application in determining the 56 092 groups of order 256 is outlined.

1 Introduction

In 1951, a detailed proposal for the use of computers in mathematics was made in a
lecture by M.H.A. Newman, delivered at the Inaugural Conference of the Manchester
University Computer. In his address, he discussed the use of probability testing in
determining the groups of order 256. In this paper, an algorithm used in the determi-
nation of the 56 092 groups of this order by computer is described.

In a 1977 paper, M.F. Newman gave a theoretical description of an algorithm that
can be used to generate descriptions of finite p-groups. The theory and implementation
of this algorithm, now known as the p-group generation algorithm, are described in
detail in O’Brien (1990). In practice, there are space and time limitations on the
performance of the algorithm implementation. The algorithm extensions described here
and in O’Brien (1990) significantly increase the range of applicability of the algorithm.

The determination of the groups of order 256 is used to motivate the development
of the extension. A detailed description of earlier work in using the algorithm to
determine the groups of order 128 is provided in James, Newman & O’Brien (1990).
However, the algorithm extension is described in a general context. An application of
the extension is given and a summary of the results of the determination of the groups

of order dividing 256 is given.

1980 Mathematics Subject Classification (1985 Revision). Primary 20-04, 20D15.



2 An extended p-group generation algorithm

In this paper, it is not intended to provide background on either the theory or im-
plementation of the p-group generation algorithm. The interested reader is referred
to Newman (1977) and O’Brien (1990). The notation used in the latter paper will
be used here and the implementation described there will be known as the standard
implementation.

The standard implementation was used to determine all of the groups of order 256
except for the immediate descendants of the elementary abelian groups of order 32 and
64 . These groups are denoted by (1°) and (1°), respectively. In these cases, difficulties
arise in computing the orbits of the allowable subgroups since the permutation group
degrees are 6 347 715 and 178 940 587, respectively. The direct computation of
the orbits of such permutation groups requires “large” resources. (However, such a
calculation is possible for (1°); in fact, it was carried out in order to verify the results
obtained in applying the extension described below.)

As a consequence, an extended algorithm was developed. The idea of the algorithm
is to use available information on the orbits of the s-step relative allowable subgroups
together with some additional information to obtain a representative of each orbit of the
(s+1)-step relative allowable subgroups. The additional information - essentially, au-
tomorphisms that map certain elements to their orbit representatives - can be obtained
easily. The representative obtained for each orbit is not necessarily the representative
obtained by using the standard implementation. The extended algorithm can also be
used to obtain a stabiliser of each representative.

Some of the notation established in O’Brien (1990) is summarised here. Let G =
F/R be a p-group where F' is a free group; its automorphism group is Aut G, its
p-covering group, G*, is F/R*, and its p-multiplicator, R/R*, has rank ¢. Let
C/R* be a characteristic, initial segment subgroup of rank ¢, where 1 < ¢ < ¢, in the
p-multiplicator of G'. The orbits of the s-step allowable subgroups are known as s-step

orbits.



Information is required on the orbits of the (s+1)-step allowable subgroups relative
to C/R*. In applying the extended algorithm, it is assumed that the orbits of the s-
step allowable subgroups relative to C/R* have been computed and that the stabiliser
of each orbit representative has been calculated.

Note that each s-step orbit representative is a subgroup of rank ¢ — s. The initial

step of the extended algorithm is the following:

1. For each s-step orbit representative in turn, compute the orbits of its maximal

subgroups under the action of its stabiliser. These orbits are called suborbits.

The representative of each suborbit is a subgroup of rank ¢ — s — 1. If C/R*
is properly contained in the nucleus, N/R*, then the relative nucleus is C/R*; it
follows that each suborbit representative is an (s+1)-step allowable subgroup relative
to C/R*.

The remaining case where the characteristic subgroup, C/R*, contains N/R* is

illustrated in Figure 1.

Figure 1: The characteristic subgroup contains the nucleus

The s-step relative allowable subgroup M/R* intersects the relative nucleus, N/R*,
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in a subgroup of rank r — s. Since G has (s+1)-step immediate descendants, this in-
tersection is non-trivial. Let U/R* be a maximal subgroup of M/R*. If U contains
M NN, then U/R* is not an (s+1)-step allowable subgroup since it does not supple-
ment the relative nucleus. If U does not contain M N N, then U/R* intersects the
nucleus in a subgroup of smaller rank; therefore, it supplements N/R* in C/R* and
it is an (s+1)-step allowable subgroup. The nucleus is a characteristic subgroup and
M/R* is fixed under the action of its stabiliser. Hence, the intersection of N/R* with
M/R* is fixed under the action of the stabiliser of M/R*. Thus, the suborbits are of
two types: either all elements of a suborbit are (s+1)-step allowable subgroups or all
elements are not. The latter suborbits are not required for the present calculation.

For the remainder of this section, relative allowable subgroups are simply described
as allowable subgroups. In order to assist the discussion, let the s-step orbits of G be
denoted by O1,...,0, and let these orbits have representatives Ri,..., R, , respec-
tively. An arbitrary s-step allowable subgroup is denoted by M rather than M/R*
and, similarly, an arbitrary (s+1)-step allowable subgroup is denoted by U .

Let £ be the list obtained by choosing a representative of each suborbit consisting

of (s+1)-step allowable subgroups.

Lemma 2.1 The list £ contains an element of each orbit of the (s+1)-step allowable

subgroups.

Proof Let U be an arbitrary (s+1)-step allowable subgroup, let M be an s-step
allowable subgroup containing U, and let the representative of the s-step orbit con-
taining M be Rj. Then there exists an extended automorphism, o*, of G that maps
M to Ry. The (s+1)-step allowable subgroup Uca* is in some suborbit of Ry and
the representative of this suborbit is in £. The suborbit representative and U are in

the same (s+1)-step orbit. O

Two members of the list may be in the same (s+1)-step orbit, so this lemma gives
an upper bound on the number of (s+1)-step orbits.

As a first step to reducing £ to a list of orbit representatives, certain orbit invariants
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are computed. Each (s+1)-step allowable subgroup has rank ¢—s—1 and is a maximal
subgroup of v = (p*™ —1)/(p — 1) s-step allowable subgroups. The cycle structure of
an (s+1)-step allowable subgroup, U, is the symbol (i7" ...47""), where Y7, m; = v
and, for each j € {1,...,n}, m; is the number of s-step allowable subgroups in O;;

which contain U. The number of occurrences of each i; is its multiplicity.

Lemma 2.2 Any two elements of the same (s+1)-step orbit have the same cycle struc-

ture.

Proof Let U be an (s+1)-step allowable subgroup and let Ua* be its image under an
extended automorphism, o*, of G. Let M be one of the s-step allowable subgroups
that contain U. Then M and Ma* are elements of the same s-step orbit. Therefore,

U and Ua* have the same cycle structure. O

Thus, only suborbit representatives having the same cycle structure can be elements
of the same (s+1)-step orbit and the number of different cycle structures is a lower

bound on the number of (s+1)-step orbits.

Lemma 2.3 Let U be a representative of a suborbit of Ry . If its cycle structure
contains an occurrence of some j where j # k, then there is another member of L

that is in the same (s+1)-step orbit as U .

Proof Since the cycle structure of U contains an occurrence of some j where j # k,
one of the s-step allowable subgroups containing U is an element of the s-step orbit O; .
Therefore, there exists an extended automorphism, «o*, of G' that maps this subgroup
to the representative, R;, of the orbit O;. Applying o* to the suborbit representative
U, a new element is obtained which is a maximal subgroup of R;. Representatives of
the suborbits of R; are in £ and U is in the same (s+1)-step orbit as one of these

representatives. O

The s-step orbit representatives are organised as a list in which they are ordered
by increasing label. In computing the suborbits, the s-step orbit representatives are

processed in this order. This provides an ordering on the members of L.



When the cycle structures of the members of £ have been computed, Lemma 2.3
may show that there are certain duplications in £. This lemma is applied by deleting
those members of the list that are representatives of suborbits of Ry and have cycle
structures containing an occurrence of some j, where j < k. In this way, a new list,
L, is obtained.

In this new list, duplications can occur only in the following case: let Ry be the
representative of a particular s-step orbit O and let Ui,...,U, be suborbit represen-
tatives of Ry which have the same cycle structure. Each element of this cycle structure
is at least k& and the multiplicity of £ is at least 1 since one of the s-step allowable
subgroups containing each of these subgroups is Ry .

The following lemma deals with the case where the multiplicity of £ in the cycle

structure of these suborbit representatives is exactly 1.

Lemma 2.4 Let U be both an element of L and a suborbit representative of Ry . If
the multiplicity of k in the cycle structure of U 1is exactly 1, then there is no other

member of the list which is an element of the same (s+1)-step orbit as U .

Proof The multiplicity of k£ in the cycle structure of U is 1; therefore, Rj is the
only element of O that contains U as a maximal subgroup. Assume that Ua* is in
the list, where o* is an extended automorphism of G'. Lemma 2.2 shows that U and
Ua* have the same cycle structure. Therefore, Ua* is a maximal subgroup of R; and
Rra*. But the multiplicity of k£ in the cycle structure of Ua* is exactly 1 showing
that R, = Rya*. Hence, a is an element of the stabiliser of R, and it follows that

U and Ua* are elements of the same suborbit of Ry. Thus, Ua*=U.0O

The above lemma shows that possible duplications can occur only when there are
(s+1)-step allowable subgroups, Uy, ...,U,, in the list that satisfy the following con-

ditions:
(i) all are representatives of suborbits of some Ry ;

(ii) each has the same cycle structure;



(iii) each is contained in exactly m allowable subgroups from Oy where m > 1.

Possible duplications that arise in this case can be removed by calculating auto-
morphisms of G whose extensions to G* map these m allowable subgroups to the
representative, Ry, of Oy.

Let U; be an element of {Uy,...,U,} andlet M, ..., M, be the s-step allowable
subgroups from O that contain U;. Note that one of these m subgroups, say M,
is Ry . Since M; and Rj are elements of the same orbit, for each j there exists an
automorphism, ~;;, of G whose extension, v;;, maps M; to Ry.

The image of U; under the action of each of the m —1 automorphisms, 7;; where
j # 1, is now calculated. If U; is mapped to the suborbit having representative U,
under the action of any of these automorphisms, then U; and U; are elements of the
same (s+1)-step orbit and their suborbits lie in the same (s+1)-step orbit.

A maximum of (m — 1) X y automorphisms are calculated and the images of the
U;s determined. When these calculations have been completed, all of the suborbits
that were found to lie in the same (s+1)-step orbit are fused together to form a set
of maximal subgroups; this set is called a fused suborbit. One of the U;s in the fused
suborbit is chosen as its representative. In order to simplify the notation of Lemma
2.5, if the suborbit having representative U; for i € {1,...,y} does not fuse with any
other suborbit, then the suborbit of U; is regarded as its fused suborbit.

Representatives of the fused suborbits are now selected to give, after suitable renum-
bering of the elements, a set {Uy,...,U,} where 1 <z <y.

Let U; be an element of {Ui,...,U,} and let M, be an s-step allowable subgroup
from Oy that contains U;. A particular automorphism <;; has been calculated which
satisfies the following conditions: the representative of the fused suborbit containing

Uiy is U; and My~ = Ry,
Lemma 2.5 No two of Uy,...,U, are elements of the same (s+1)-step orbit.

Proof Assume that U; and U, are elements of the same (s+1)-step orbit. Then there

exists an extended automorphism o* of G such that U;a* = U;. Under the action of
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o, Ry is mapped onto an s-step allowable subgroup M that contains U;. From the

previous calculations, a particular automorphism ~ has been obtained whose extension
~v* maps M to Ry and v* also maps U; to an element of its fused suborbit. It follows
that Rpa*y* = Ry and, therefore, ay is in the stabiliser of Ry . The suborbits of R
were computed under the action of the stabiliser of Ry . Hence, U;a*v* is an element
of the same suborbit as U;. But U;a*y* = Uyy* is in the same fused suborbit as U;.
Therefore, U; and U; are elements of the same fused suborbit. Hence, by the choice

of {Uy,...,U,}, Uy=0U;.0

If there are other suborbit representatives that satisfy conditions (i) to (iii) given
above, they must be processed similarly. When all of these cases have been processed,
the resulting list contains one representative of each (s+1)-step orbit.

Let U be both a member of this list and a representative of a suborbit of some Ry .
The calculation of the stabiliser of U, viewed as an (s+1)-step allowable subgroup, is
now discussed. As a first step, the subgroup of the stabiliser of R, that stabilises U
is computed. This subgroup, S(U), is called the suborbit stabiliser of U .

If the multiplicity of k£ in the cycle structure of U is exactly one, then the proof
of Lemma 2.4 shows that the suborbit stabiliser of U equals the stabiliser of U .

The case where the multiplicity, m, of k£ in the cycle structure of U is greater
than one is now considered. First, some notation is established. Let M;,..., M,, be
the s-step allowable subgroups that are elements of O, and contain U as a maximal
subgroup. Let the stabiliser of Ry be denoted by St(Ry).

Let ¢ be an arbitrary element of the stabiliser of U. If ¢* fixes R, then
¢ € S(U) and has already been obtained. Otherwise, the image Ry¢* equals some M;
in {M,..., My}, where M; # Ry, . There exists an automorphism, ¢, of G whose ex-
tension maps M; to Ry . Then Ry¢*y)* = Ry and ¢y = @ belongs to St(Ry). Thus,
¢ =0y~" and Ug* = (U*)y* = U. Since 6 € St(Ry), it follows that Up* = U#*
is in the same suborbit as U. Hence, there exists an automorphism ( that is an

element of St(Ry) and satisfies Uy*(* = U. Thus, 9 is an element of the stabiliser



of U. Clearly, Ry¢*y*(* = Ry,. It follows that ¢y is an element of St(Ry) and,
since it stabilises U, ¢¢ is also an element of S(U). Hence, S(U)¢ = S(U)¢( 1~ t.
Therefore, ¢ and (~'4~! are elements of the same coset of S(U).

Using these results, a method can now be described for computing a set of auto-
morphisms of G that together with S(U) generates the stabiliser of U. For each
M; € {M,, ..., M}, compute an automorphism, 1, of G whose extension maps M;
to Ry . Now compute the image, Uy*. If Uy* is an element of the same suborbit as
U, then compute an automorphism ( that is contained in the stabiliser of R and sat-
isfies Uy*(* = U . Then ( is an element of the stabiliser of U . The automorphisms
obtained in this way together with the suborbit stabiliser generate the stabiliser of U .

The length of an (s+1)-step orbit can be computed once the order of the stabiliser
of its representative has been determined.

The above discussion is now summarised by listing the remaining steps of the ex-

tended algorithm.

2. Let £ be the list obtained by choosing a representative of each suborbit of al-
lowable subgroups. For each member U of L, write down the s-step allowable
subgroups that contain U as a maximal subgroup and compute the cycle struc-

ture of U .

3. Use Lemma 2.3 to eliminate duplications from £. Lemmas 2.2 and 2.4 may

show that certain members of the list are elements of distinct (s+1)-step orbits.

4. Each subgroup, U, of a set whose elements satisfy conditions (i) to (iii) given
above is processed in turn. For each of the m — 1 subgroups that are elements of
Oy, contain U as a maximal subgroup, and are not Ry, find an automorphism
of G whose extension maps the subgroup to Ry . Use the m —1 automorphisms
to check possible fusion of the suborbits in order to obtain a representative of

each (s+1)-step orbit.

5. Calculate the stabiliser of each representative by first determining the suborbit



stabiliser of the representative and then calculating any additional generators

that are required.

6. For each representative, factor G* by the allowable subgroup to obtain a reduced

p-covering group.

In applying the extended algorithm, it has been assumed that the following information

on the s-step orbits is available:
(a) the s-step orbit representatives and their stabilisers;

(b) the representatives of the s-step orbits that contain particular s-step allowable

subgroups;

(c) automorphisms that map particular s-step allowable subgroups to their orbit

representatives.

The s-step orbits, their representatives, and the stabilisers of the representatives can
be computed when the extended algorithm is being applied or the results of previous
computations can be used. The required automorphisms are computed when applying
the extended algorithm. In iterating the extended algorithm to compute the orbits of
(s+2)-step allowable subgroups, it would be necessary to obtain the additional infor-
mation listed above for the (s+1)-step orbits.

Each reduced p-covering group and its stabiliser are now input to either the basic or
to the extended algorithm. The choice of algorithm depends on the permutation group
degrees that arise in processing the reduced p-covering groups. The largest degrees
that arise at the second intermediate stage of calculations for (1°) and (1°) are 2'2
and 2'%, respectively; therefore, the standard implementation was used to complete

the calculations.
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3 An implementation of the extended algorithm

Much of the standard implementation can be used in implementing the steps of the
extended algorithm. The problem of iterating the extended algorithm has not been
addressed. As a consequence, it is assumed that the orbits of the s-step allowable
subgroups and the stabilisers of the representatives of these orbits have been calculated
using the standard implementation.

The orbits of the maximal subgroups of an s-step orbit representative are first
computed. Let R; be an s-step orbit representative relative to the characteristic
subgroup C/R*; then Ry is a subgroup of rank ¢ — s. An option has been provided
in the standard implementation which allows a user to specify the generators of Ry .
Let o be a generator of the stabiliser of Rj;. An extended automorphism o is
computed and the automorphism matrix A, , which represents the action of a* on
the p-multiplicator of G, is assembled. The action of a* on a generator of Ry can
be obtained by adding appropriate multiples of rows of A,« and selecting a particular
submatrix from the result. Thus, a (¢t —s) x (t — s) automorphism matrix can be
computed which describes the action of the extended automorphism on the generators
of Ry .

The techniques outlined in O’Brien (1990, §3.3) are used to describe the maximal
subgroups of Ry . The supplied generators of Rj; provide a fixed basis for R, and
definition sets for its maximal subgroups can be calculated relative to this fixed basis.
Each maximal subgroup can be viewed as the kernel of a linear transformation from Ry,
viewed as a space of dimension t—s, to its definition set, a space of dimension one. The
matrix of the linear transformation is a 1x(t—s) matrix and provides a standard matrix
for the maximal subgroup. A label for each standard matrix can be computed. The
permutations of the subgroups induced by the extended automorphisms, the suborbits,
and the suborbit stabiliser of each suborbit representative can be computed using the
standard implementation.

The cycle structure for each suborbit representative is now computed. The s-step
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orbit representative, Ry, is represented by an s x ¢t standard matrix. Its suborbit
representatives are subgroups of rank ¢ — s — 1 which are represented by 1 x (¢ — s)
matrices. Let U be a suborbit representative of Ry . Its 1 x (¢ — s) matrix is extended
to a 1 x ¢t matrix by inserting s entries, all zero, at the beginning of each row of the
matrix. An (s+ 1) X ¢ matrix is now written down where the s x t standard matrix
representing Rj, forms the first s rows of the matrix and the 1 x ¢t matrix forms row
s+ 1 of the matrix. Left echelonisation of this matrix gives the standard matrix, S,
for the (s+1)-step allowable subgroup U .

The v subgroups of rank ¢—s that contain U can now be calculated using elemen-
tary linear algebra. Certain s x ¢ matrices are obtained by taking linear combinations
of rows of S'. The standard matrices of the subgroups are obtained by left echelonisa-
tion of these matrices. For example, the standard matrix of one of these subgroups is
obtained by taking the matrix consisting of the first s rows of S. After echelonising
the s x ¢t matrix obtained, the label of the s-step allowable subgroup is calculated.

Thus, the standard matrix of each (s+1)-step allowable subgroup, U, in the list £
is first computed. Using this matrix, the labels of the v subgroups of rank ¢t — s that
contain U are then calculated. These labels are used to determine the cycle structure
of U . Since complete information on the s-step orbits is available, the cycle structure
of U is found by looking up which orbits contain the labels.

Lemma 2.3 may now be used to eliminate certain duplications from the list. Lem-
mas 2.2 and 2.4 may show that certain members of the list are elements of distinct
(s+1)-step orbits.

In general, a number of possible duplications remain in the list. Let Uy,...,U,
be suborbit representatives that satisfy conditions (i) to (iii) of Section 2. Let U;
be one of these suborbit representatives and let M, ..., M,, be the s-step allowable
subgroups that contain U;. For each M;, an automorphism of G is calculated whose
extension maps M; to Rj. In order to compute such an automorphism, the orbit of
Ry, is built up systematically until M; has been obtained as an image in this orbit.

An automorphism that maps M; to Rj can now be calculated.
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The permutations of the maximal subgroups induced by the extensions of these
automorphisms are now computed. Since each permutation is stored in image form,
the image of U; under the action of an extended automorphism can be found by looking
up the appropriate entry in the array used to store the permutation induced by this
automorphism. This information is used to eliminate any remaining duplications from
the list.

The suborbit stabiliser of each member of the list is calculated at the same time as
the suborbits are computed. When a representative of each (s+1)-step orbit has been
obtained, the additional generators (if any) of the stabiliser of the representative are
then calculated. An automorphism that maps a particular element of an orbit to the
representative of this orbit can be calculated by building up the orbit systematically,
as mentioned above. The permutations of the maximal and s-step allowable subgroups
induced by the extension of such an automorphism can be computed readily using the

standard implementation.

4 An application of the extended algorithm

The extended algorithm is now used to calculate the orbits of 2-step allowable sub-
groups relative to a characteristic subgroup in the 2-multiplicator of (1%). A consistent

power-commutator presentation for the 2-covering group of (1°) is

{ai,...,a9r : lag,a1] = ar,[as, a1] = as, [a3, az] = ag, [as, a1] = a19, (a4, as] = a11,
[as, as] = a1a, [as, a1] = au3, [as, az] = a14, a5, as] = a15, [as, a4] = ass,
las, a1] = a1z, [ag, as] = aug, [as, as] = aig, [as, as] = ag, [ag, as] = aa1,
a} = agy, a3 = ag3,03 = Gg4, a5 = Ags, Az = Ggs, G2 = A7 }

where the relations whose right-hand sides are trivial are not shown.

Both the 2-multiplicator and the nucleus of (1°) have rank 21. The smallest,

characteristic, initial segment subgroup in the 2-multiplicator is the intersection of the

commutator subgroup of the 2-covering group of (1) with the 2-multiplicator of (1°);
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this subgroup has rank 15. We begin by applying Case II of the algorithm described in
O’Brien (1990, §4). At the first stage of the calculations, s’ runs from 0 to 2. When
s" equals 0 or 1, the standard implementation can be used to calculate the orbits of
relative allowable subgroups. As noted earlier, for s’ = 2, the number of allowable
subgroups relative to the characteristic subgroup is 178 940 587 .

The number of 1-step allowable subgroups relative to the characteristic subgroup

is 32 767. For each 1-step orbit, Table 1 lists a representative and the orbit length.

Orbit | Representative Length

1 1 651
2 7 18 228
3 293 13 838

Table 1: Summary of 1-step orbits of (1°) relative to chosen characteristic subgroup

The 1-step allowable subgroups having labels 1, 7 and 593 are, respectively,

(as,...,a01) (as, arag, azaio, G11, G12,...,a21) and
(as, Gg, G190, G11, A7Q12, A13, A70A14, A15, A16, G7A17, G18, A19, A20, A21 > .

Their stabilisers have orders 30 965 760, 1 105 920 and 1 451 520. Each allowable
subgroup has 16 383 maximal subgroups; all of these are 2-step allowable subgroups
since the chosen characteristic subgroup, C/R*, is contained in the nucleus.

The orbits of the maximal subgroups are now computed under the actions of the
stabilisers. The results of these computations are summarised in Table 2 where the
representatives of suborbits are listed by giving their labels relative to the basis of the
allowable subgroup; the suborbit lengths are also listed. Thus, 24 is an upper bound
on the number of 2-step orbits relative to C/R*.

Each suborbit representative is represented by a 1 x 14 matrix; this matrix is ex-
tended to a 1 x 15 matrix by inserting a zero as the first entry in each row. Each

representative is a maximal subgroup of three 1-step allowable subgroups. These are
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chosen as follows: the 1-step orbit representative, the 1-step allowable subgroup rep-
resented by the 1 X 15 matrix, and the allowable subgroup whose standard matrix is
obtained by left echelonisation of the sum of these two matrices. Table 2 gives the
cycle structure of each of the 24 suborbit representatives.

Thus, 9 is a lower bound on the number of 2-step orbits. Using Lemma 2.3, the
upper bound on the number of 2-step orbits can be reduced to 15.

A 2-step allowable subgroup will be referenced by a vector of length 2: the first
entry of the vector is a 1-step orbit representative and the second entry is a suborbit
representative.

Lemmas 2.2 and 2.4 show that the subgroups (1,1), (1,4), (1,9), (1,25),
(1,297), (1,1153), (7,297), (7,4102), and (593, 583) are elements of distinct 2-step
orbits. The possible duplications remaining in the list are given in Table 3, where they
are organised by cycle structure.

Consider the automorphisms, a; and ay, of (1%) given below in image form:

Q11 a1 FH— 10903040 , Qg . A1 FH— Q1030405
Ao +H—— Qas0g ay —— as
a3 FH— Q2040¢ a3 +—— Q405
as H—— a10a9 as —— Qg
as F—— Q2 as +—— (20304
ag H——> G204 ag +H—— a30g .

The 2-step allowable subgroup (7,4097) is mapped under «f to (7,385) and o}
maps (7,385) to (7,4097). Therefore, the suborbits of 7 having representatives 385
and 4097 fuse. No automorphisms were found that fuse any of the four suborbits
whose representatives have cycle structure (2%); hence, the four allowable subgroups
are elements of distinct 2-step orbits. Thus, the number of 2-step orbits relative to
C/R* is 14.

Recall from Section 2 that Lemma 2.3 is applied by deleting those members of
the list, £, that are suborbit representatives of some Rj and have cycle structures

containing an occurrence of some j where j < k. An alternative application of this
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1-step orbit rep | Suborbit rep | Suborbit length | Cycle structure
1 1 45 (13)
4 210 (122)
9 560 (122)
25 5040 (12?)
297 3360 (132)
1153 7168 (123)
7 1 15 (122)
2 10 (122)
6 6 (23)
17 360 (122)
21 1080 (23)
289 1440 (23)
297 1440 (232)
385 3840 (223)
4097 3840 (223)
4098 2560 (23)
4102 1536 (23?)
4417 256 (123)
593 1 315 (13%)
4 3780 (23%)
9 336 (123)
12 5040 (223)
7 4032 (23?)
583 2880 (3%)

Table 2: The cycle structures and orbit lengths of the suborbit representatives
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Cycle structure 2-step allowable subgroups
(23) (7,6) (7,21) (7,289) (7,4098)
(223) (7,385) (7,4097)

Table 3: Possible duplications remaining in the list

lemma is now described. Select all suborbit representatives having the same cycle
structure in which there are at least two distinct s-step orbit indices. Assume that
among these representatives there is one, say U, that is a suborbit representative of
some R; and the multiplicity of [ in its cycle structure is exactly 1. In practice, it
is sensible to retain U as a member of £ and to delete from L all other members
having the same cycle structure as U. Lemma 2.4 now shows that no other member
of the resulting list is an element of the same (s+1)-step orbit as U and, in addition,
the suborbit stabiliser of U equals its stabiliser. As an illustration, the second of the
possible duplications given in Table 3 could have been removed by retaining (593, 12)
as a member of £ and deleting (7,385) and (7,4097).

A summary of the 2-step orbits is given in Table 4. Recall that each 2-step allowable
subgroup is represented by a vector where the first entry of the vector is a 1-step orbit
representative and the second entry is a suborbit representative. The length of its 2-
step orbit divides the product of the lengths of the orbits containing these entries. This
is indicated in the table where the listed divisor is the index of the suborbit stabiliser
in the stabiliser of a representative.

Kepert (1983) used some special purpose programs to calculate the lengths of these
orbits. The lengths obtained from his calculations agree with those listed in Table 4
in all but one case - orbit 14 which he claims has length 9 332 736. Some results of
Ferguson (1946) can be interpreted to show that the number of 2-step orbits relative

to the corresponding subgroup is also 14 when the prime is odd.
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Orbit | Representative Length
1 (1, 1) 651 x 45/3 = 9765
2 (1, 4) 651 x 210 = 136 710
3 (1,9) 651 x 560/2 = 182280
4 (1, 25) 651 x 5040 = 3281040
5 (1, 297) 651 x 3360 = 2187 360
6 (1, 1153) 651 x 7168 = 4 666 368
7 (7, 6) 18228 x 6/3 = 36 456
8 (7, 21) 18 228 x 1080/3 = 6 562 080
9 (7, 289) 18 228 x 1440/3 = 8749 440
10 (7, 297) 18 228 x 1440 = 26 248 320
11 (7, 385) 18 228 x 3840 = 69 995 520
12 (7, 4098) 18 228 x 2560/3 = 15 554 560
13 (7, 4102) 18 228 x 1536 = 27 998 208
14 (593, 583) 13 888 x 2880/3 = 13 332 480

Table 4: Summary of 2-step orbits of (1°) relative to chosen characteristic subgroup
5 Summary of group determinations

Table 5 summarises the results of the determination of the groups of order dividing
256. For each n € {1,...,8} and for each relevant d € {1,...,8}, it lists the number
of d-generator groups of order 2". It also lists the number of capable d-generator
groups of order 2".

Using the work of G. Higman (1960), bounds on the number of p-groups of a fixed
order having class 2 can be calculated. The lower bound obtained for the number of
groups of order 256 having class 2 is 23 640 and the upper bound is about 9.4 x 10! .
In fact, 30 078 of the groups of order 256 have class 2.

A lower bound on the number of groups of order 512 can be obtained by using
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these techniques to calculate lower bounds on the number of d-generator class 2 groups

of this order. The results of these calculations are summarised in Table 6.

d Lower bound
4 5417
5 5 716 605
6 2723 430
7 73

Table 6: Lower bound on number of d-generator class 2 groups of order 512

In addition, there is one 3-generator and twelve 8-generator class 2 groups of order

512 showing that there are at least 8 445 538 groups having class 2 and order 512.

6 Providing access to the results

A library, GPS256, containing descriptions of the 56 092 groups of order 256 is dis-
tributed with each of the computational group theory systems, CAYLEY and GAP.
For descriptions of these systems, see Cannon (1984) and Nickel, Niemeyer & Schonert
(1988), respectively. In both organisation and storage techniques, these libraries are
modelled on the library TWOGPS, which is described in Newman & O’Brien (1989).
The total storage requirement for the group descriptions is about 2MB. The average
time taken to set up a power-commutator presentation for a group of order 256 is
about 0.5 seconds of CPU time on a VAX 8700. The anticipated development of
database facilities within the CAYLEY system will be a critical factor in providing
easy access within that environment to the group descriptions. The material is also

available for use with other systems.
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