Character Theory of Finite Groups NZ Mathematics Research Institute Summer Workshop

Day 4: The McKay Correspondence

Don Taylor

The University of Sydney

Nelson, 7–13 January 2018

Polyhedral groups

These are the *cyclic* groups, the *dihedral* groups and the rotation groups of the *Platonic solids*. We shall compute their character tables.

But first, some isomorphisms.

The rotation group of a *regular tetrahedron* is isomorphic to Alt(4) — acting on the four faces of the tetrahedron.

The rotation group of a *cube* (or its dual, the *octahedron*) is isomorphic to Sym(4)

- acting on the four lines through antipodal vertices.

The rotation group of a *regular icosahedron* (or its dual, the *dodecahedron*) is isomorphic to Alt(5)

- acting on the five cubes inscribed in the dodecahedron.

The polyhedral groups have presentations of the form

$$((a, b, c)) = \langle r, s, t | r^a = s^b = t^c = rst = 1 \rangle.$$

The groups are finite if and only if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} > 1$, in which case its order is $2 / \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1\right)$.

- ((1, n, n)) the cyclic group of order n
- ((2,2,n)) the dihedral group of order 2n
- ((2,3,3)) the tetrahedral group, of order 12
- ((2,3,4)) the octahedral group, of order 24
- ((2,3,5)) the icosahedral group, of order 60

The tetrahedral group Alt(4)

Class	1	(12)(34)	(123)	(143)
Size	1	3	4	4
Order	1	2	3	3
χ_1	1	1	1	1
X 2	1	1	ω	ω^2
<i>Х</i> з	1	1	ω^2	ω
χ_4	3	-1	0	0

where $\omega^3 = 1$.

If r = (12)(34), s = (123) and t = (143), then $r^2 = s^3 = t^3 = rst = 1$.

The octahedral group Sym(4)

	Class	1	t^2	r	S	t
	Size	1	3	6	8	6
	Order	1	2	2	3	4
_	X 1	1	1	1	1	1
	X 2	1	1	-1	1	-1
	<i>Х</i> з	2	2	0	-1	0
	χ_4	3	-1	-1	0	1
	χ5	3	-1	1	0	-1

 $r = (12), \quad s = (134), \quad t = (1432), \quad t^2 = (13)(24)$

The icosahedral group Alt(5)

					0
Class	1	r	S	t	t^2
Size	1	15	20	12	12
Order	1	2	3	5	5
χ_1	1	1	1	1	1
X 2	3	-1	0	$(1 + \sqrt{5})/2$	$(1 - \sqrt{5})/2$
<i>Х</i> з	3	-1	0	$(1 - \sqrt{5})/2$	$(1 + \sqrt{5})/2$
χ_4	4	0	1	-1	-1
X 5	5	1	-1	0	0

 $r = (12)(34), \quad s = (254), \quad t = (12345), \quad t^2 = (13524)$

5/18

The binary polyhedral groups

These are the finite subgroups of SU(2), which is also the group of quaternions of norm 1. The group SU(2) is a double cover of SO(3) and the *binary polyhedral groups* are the inverse images of the polyhedral groups.

They have presentations of the form

 $\langle \langle a, b, c \rangle \rangle = \langle r, s, t | r^a = s^b = t^c = rst \rangle.$

	the cyclic group of order 2n
$\langle\!\langle 2,2,n\rangle\!\rangle$	the binary dihedral group of order $4n$
$\langle\!\langle 2,3,3 \rangle\!\rangle$	the binary tetrahedral group, of order 24
$\langle\!\langle 2, 3, 4 \rangle\!\rangle$	the binary octahedral group, of order 48
$\langle\!\langle 2,3,5\rangle\!\rangle$	the binary icosahedral group, of order 120

In all cases z = rst is a central element of order 2.

The quaternion group Q_8

The quaternion group is the binary dihedral group

$$\langle\langle 2, 2, 2 \rangle\rangle = \langle r, s, t \mid r^2 = s^2 = t^2 = rst \rangle$$

	Class	1	Z	r	S	t
Size		1	1	2	2	2
	Order	1	2	4	4	4
-	χ_1	1	1	1	1	1
	X 2	1	1	1	-1	-1
	<i>Х</i> з	1	1	-1	1	-1
	χ_4	1	1	-1	-1	1
	$\rightarrow \chi_5$	2	-2	0	0	0

The McKay graphs

The characters of G are $\chi_1, \chi_2, \ldots, \chi_r$. Given any character χ let $\Gamma(\chi)$ be the graph with r vertices and m_{ij} directed edges from the *i* th to the *j* th vertex, where

$$\chi\chi_i = \sum_{j=1}^r m_{ij}\chi_j.$$

Taking G to be the quaternion group and χ the character of degree 2, we find that the graph is

where the vertices are labelled with the *degrees* of the characters.

The binary tetrahedral group \simeq SL(2,3)

Class 1 z
$$s^2$$
 t^2 r s t
Size 1 1 4 4 6 4 4
Order 1 2 3 3 4 6 6
 χ_1 1 1 1 1 1 1 1 1
 χ_2 1 1 ω^2 ω 1 ω ω^2
 χ_3 1 1 ω ω^2 1 ω^2 ω
 $\rightarrow \chi_4$ 2 -2 -1 -1 0 1 1
 χ_5 2 -2 $-\omega^2$ $-\omega$ 0 ω^2 ω
 χ_6 2 -2 $-\omega$ $-\omega^2$ 0 ω^2 ω
 χ_7 3 3 0 0 -1 0 0

In SL(2,3) we have $r \leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $s \leftrightarrow \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$, $t \leftrightarrow \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$

The homomorphism onto Alt(4) is given by

 $r \rightarrow (12)(34), \quad s \rightarrow (123), \quad t \rightarrow (143).$

The graph of the binary tetrahedral group

Let's play the same game with SL(2,3), where χ is the real character of degree 2, $\Gamma(\chi)$ is the graph with 7 vertices and there are m_{ij} directed edges from the *i* th to the *j* th vertex, where

The binary octahedral group

Class	1	Z	SZ	t^2	r	S	t	tz
Size	1	1	8	6	12	8	6	6
Order	1	2	3	4	4	6	8	8
<i>X</i> 1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	1	-1	-1
<i>Х</i> з	2	2	-1	2	0	-1	0	0
$\rightarrow \chi_4$	2	-2	-1	0	0	1	$\sqrt{2}$	$-\sqrt{2}$
$\rightarrow \chi_5$	2	-2	-1	0	0	1	$-\sqrt{2}$	$\sqrt{2}$
χ_6	3	3	0	-1	1	0	-1	-1
X7	3	3	0	-1	-1	0	1	1
X8	4	-4	1	0	0	-1	0	0

The homomorphism onto Sym(4) is given by

 $r \rightarrow (12), \quad s \rightarrow (134), \quad t \rightarrow (1432)$

Coxeter–Dynkin diagrams of type A, D and E and the binary polyhedral groups

The graph for the binary octahedral group is

The graphs associated with the binary polyhedral groups are the *affine Dynkin diagrams* of types

- \widetilde{A}_n for the cyclic group of order n+1
- \triangleright \widetilde{D}_n for the binary dihedral group of order 4n-8
- \widetilde{E}_6 for the binary tetrahedral group
- \widetilde{E}_7 for the binary octahedral group
- \widetilde{E}_8 for the binary icosahedral group

This is the *McKay correspondence*.

The binary icosahedral group

Class	1	Z	SZ	r	t^2	t^4	S	t^3	t
Size	1	1	20	30	12	12	20	12	12
Order	1	2	3	4	5	5	6	10	10
χ_1	1	1	1	1	1	1	1	1	1
$\rightarrow \chi_2$	2	-2	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	1	$\frac{-1-\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$
$\rightarrow \chi_3$	2	-2	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	1	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$
χ_4	3	3	0	-1	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	0	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$
X5	3	3	0	-1	$\frac{-1-\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$	0	$\frac{-1-\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$
χ_6	4	4	1	0	-1	-1	1	-1	-1
X 7	4	-4	1	0	-1	-1	-1	1	1
X8	5	5	-1	1	0	0	-1	0	0
X 9	6	-6	0	0	1	1	0	-1	-1

The homomorphism onto Alt(5) is given by

 $r \rightarrow (12)(34), \quad s \rightarrow (254), \quad t \rightarrow (12345)$

The group SU(2)

Let \mathbb{S}^3 be the unit sphere in the division algebra \mathbb{H} of quaternions.

We regard \mathbb{H} as a *left* vector space of dimension 2 over \mathbb{C} . The elements of \mathbb{S}^3 act on \mathbb{H} by multiplication on the *right*. This establishes an isomorphism between \mathbb{S}^3 and the *special unitary group* SU(2) of all matrices

 $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ where $|\alpha|^2 + |\beta|^2 = 1$.

Furthermore, there is an action of this matrix on polynomials in X and Y such that

$$X \to \alpha X + \beta Y$$
 and $Y \to -\overline{\beta}X + \overline{\alpha}Y$.

16/18

Representations of SU(2)

Let \mathscr{H}_m be the space of homogeneous polynomials of degree m in Xand Y. This is an irreducible representation of SU(2) of degree m+1. Let χ_m be the character of \mathscr{H}_m . Every element of SU(2) is conjugate to a matrix of the form

$$A = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$$
 where $q = e^{i\theta}$

and so

$$\chi_m(A) = q^m + q^{m-2} + \dots + q^{2-m} + q^{-m} = \frac{\sin((m+1)\theta)}{\sin\theta}.$$

Thus, from the addition formula for $\sin\theta$ we have

$$\chi_m \chi_1 = \chi_{m-1} + \chi_{m+1}$$

 $\bullet^{1} \bullet^{2} \bullet^{3} \cdots$

For each finite subgroup of SU(2) and the appropriate character χ of degree 2 obtained from the representation \mathscr{H}_1 , the matrix M is the adjacency matrix of the McKay graph. The graphs which occur are precisely those whose adjacency matrix has maximum eigenvalue equal to 2.

The corresponding Cartan matrix is C = 2I - M. This describes the root system of a reflection group (or Lie algebra, or ...) of type \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 or \tilde{E}_8 .

The columns of the character table are eigenvectors of *C* and the eigenvalues are $2 - \chi(x_i)$.

References

