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Induced class functions

Let H be a subgroup of G and ¢ be a class function on H. Extend ¢
to ¢ : G — C by defining ¢(x) =0 for x ¢ H and ¢(x) = ¢(x) for x € H.

Definition
The class function on G induced by ¢ is defined by
1

T Y o txuw.

ueG

indg p(x) =

v

Let 7" be a (left) transversal of H in G; that is, a set of representatives
for the left cosets xH. Then the formula for ind%, ¢ (x) can be written

ind% () = Y ot x0).
teT

o - -
because ¢ is constant on H-conjugacy classes.
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Frobenius reciprocity

Let ¢ be a class function on H, let 1/ be a class function on G where
H < G and let resy v denote the restriction of 17 to H. Then

(Hld ely)c=(@lresygy)y.

Proof.

From the definitions of indf] and (—|—) we have

d¢ u xu) w(x)
(ind% @ |y = I u;th( v(x
1y (X)w(x)
= GIIH] M;ch(x vl = e |H| M;G(p v
xeH
Y @) yx) =(plresyy)n O

|H| xeH
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When is a class function a character?

If y is a character of I, ind, y is a class function. Is it a character?

First of all, if ¢ : G— C is a class function and ¥, y2, ..., ¥, are the
irreducible characters of G, it follows from the first orthogonality
relations that

.
@=) (@lxixi
i=1

Thus @ is a character if and only if {¢@| x;) is a nonnegative integer
forl<i<r.
Furthermore, ¢ is irreducible if and only if, in addition, (¢ |¢) = 1.

If (¢|y;)is an integer for 1 <i<r, then ¢ is called a generalised
character of G.
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Induced characters

Theorem
Suppose H is a subgroup of G.
» If ¢ is a character of H, then indgw is a character of G.

> If ¢ is a generalised character of H, then ind", ¢ is a generalised
character of G.

Proof.

If ¢ is a character of H and y is an irreducible character of G, then
<1ndH<p lv)e= (@ |resyy) €N and therefore ind?¥, /7 is a character.

If ¢ =y —¢, where y and ¢ are characters of H, then
indgcp = indgx—indgf, hence indflcp is a generalised character. [

v
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Properties of the induction map

Let H be a subgroup of G, let ¢ be a class function on H and let
be a class function on G. Then

Q If H=K, then 1ndHcp—1ndI(§(1nd Q).
@ ind? plpresgy) = (1nd )y

Proof.
©Q Let y be an irreducible character of G. Then

(ind% (de(p) ly) = (de(p |resg ) =(@|resgy) = (md Qlx).

Q For xe G,

Z(p(u xu)w(u Lxu)

ueG

. G
ind}; (@ resgy)(x) = |H|

Z(p(u_lxu) w(x)(ind% @) (x). O

ueG

= M;G(p(u xu)y(u xu) = |H|
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Permutation actions

Suppose that G acts on the set I'. Choose €T,
The stabiliser of « is the subgroup G, ={xe G| xa = a}.
The orbit of « is the subset Ga ={xa | x € G}.

There is a bijection between the left cosets of G, and the orbit Ga,
given by
xGy < xa.

Therefore, |G: G, | =|Gal, where |G : G| is the number of (left) cosets
of G, in G.
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Permutation characters

Suppose that G acts transitively on I' (i.e., G has a single orbit on T')
and let /7 be the stabiliser of some a €.

For 1, x € G, we have iH(u‘lxu) =1 if and only if xua = ua. Thus

(ind 157) (%) = | HI ' ¥ e L ocus) = [ Fixp ()1,

Therefore indng is the permutation character corresponding to I'.

More generally, suppose that G acts on I" with orbits I', ..., I'; and
for 1 =i <k let H; be the stabiliser of a point in I';. The permutation
character of I' is 7 = indg1 11, +---+ind](_;lk 1x, .

Then (7] 16)¢ = (indf 15, |16)+---+(indf; 1x,11c)c.

But (ind¥ 14 |1c)e={(1y|1g)y =1 for all i and so
H; i

(| 1Y =k, the number of orbits of G on T
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The Mackey formulas

H and K are subgroups of G

S is a set of representatives for the double cosets KxH
@ is a class function on H

Y is a class function on K

@’ is the class function ¢°:sHs ! — C:x— (s !xs)
Hy=sHs 'nK

vVvyvVvyvyyy

resg indG =Y 1ndH resy. ¢°
SES

<1nd (pllnd WY =) (resp, ¢’ |resy ¥,

SES

1ndg(p ind$ V= ZlndH (resy, @° -resy, ¥)

SES

The second formula follows from the first by Frobenius reciprocity.
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Proof

K acts on the cosets sH by left multiplication. The stabiliser in K of
sH is Hy=sHs 'n K and the union of the orbit of K is KsH.

For s€ S let T be a set of representatives for the left cosets of I,
in K. Then {tsH |se S, te T} is the set of left cosets of H in G.
Thus, for x€ K,

indS o= Y oG lrlxt= Y @'t 'xp

seS,teT; seS, teT;
But ¢°(y) =0 for y ¢ Hs, therefore

Z (,Oos(t_lxt) = indllfls resy, ¢° (x)

teT;

and hence resg indggo = Zsesindﬁ resy, ¢°. -
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Double transitivity

Suppose that G acts transitively on I' and that 7 is the corresponding
permutation character. Then 7 = indng, where H is the stabiliser of
a point in I

From the second Mackey formula with F/ = K and ¢ = 15 we find that
(| ) is the number of double cosets HsH.

The cosets of H are in bijection with the points of I' and the double
cosets are in bijection with the orbits of /7 on I

In particular, (7| 7) =2 if and only if H has two orbits on I', which
must be {a} and T'\ {a}. This is equivalent to G acting transitively on
the set of ordered pairs («, f) where o # f5.

That is, (m|7w) =2 if and only if G acts doubly transitively on T,

In this case 7 = 15+ y, where y is irreducible.

12/15

The existence of Frobenius kernels

Suppose that H< G and that HnxHx ' =1 for all xe G\ H. If
1 < H<G, then G is called a Frobenius group and H is a Frobenius

complement. A normal subgroup N <G is called a Frobenius kernel if
HNN=1and G= HN.

Theorem (Frobenius)

Every Frobenius group has a Frobenius kernel.

Currently there is no known proof of this result which doesn't use
some character theory. (However, in 2013 Terry Tao produced a proof
that uses only representations of the centre of the group algebra.)

Let S=J,cc(xHx "\ {1})) and put N =G\S. The number of

conjugates of H in G is the index |G : N (H)| of the normaliser N (H)
of H and therefore |S| =|G: H|(|H|—1) because our hypotheses imply
Ng(H) = H. Thus |N|=|G: H|. We must show that N is a subgroup.
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Proof. Constructing irreducible characters of &

Begin with the irreducible characters ¢y =14, @1, ..., ¢, of H and
define y; =@;(1)1y—¢; for 1<i<m. Then

<Wi|Wj>:(Pi(1)(Pj(1)+5ij, (willg)=¢@;() and v (1) =0. (*)

If s¢ H, then H;=sHs 'n H=1 and since 1,;(1) =0, the second
Mackey formula reduces to

(ind%w; |indGy )6 =(wilwi)y (x%)

Furthermore, by Frobenius reciprocity,
(indgwi |16 ={w;|1g)=¢;(1) and therefore indgwi =@pi(1lg—yxi
for some generalised character y; such that (y;|15) =0.

But now, from (%) and (%) we have (y;|y;)=0;;. Also, from
indgwi(l) =0 we have y;(1) = @;(1) >0 and therefore y; is an
irreducible character.
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Proof that IV is a normal subgroup

Let Nop =" kery;. Using our assumption that /7 n sHs™ ' =1 for all
s ¢ H, the first Mackey formula implies

@i(1)lg—resyy; = reSHindngi =resgy¥;=@i(1)1g—@;

and therefore resy; y; =, forall i =1,...,m.

Suppose that 1€ Hn Ny. Then ¢;(h) =;(1) for 1 <i < m and we also
have ¢o(h) =1=¢(1). Thus reg;(h) = Z;’io(pi(l)z = |H| =regy(1).
But reg;;(h) =0 if h#1 and therefore h =1 and hence Hn Ny = 1.

If xe N and x # 1, no conjugate of x is in H and so indgwi(x) =0.
Thus y;(x) = ¢;(1) for all i whence x € Ny, and therefore N < Ny. On
the other hand, NNy =1 and so |Ny| < |G|/|H| =|N]|. It follows that
N = N,. ]
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Further reading

® David M. Goldschmidt.
Group characters, symmetric functions, and the Hecke algebra.
American Mathematical Society, Providence, RI, 1993.



