Character Theory of Finite Groups

NZ Mathematics Research Institute Summer Workshop

Day 3: Induced characters

Don Taylor

The University of Sydney

Nelson, 7–13 January 2018

Induced class functions

Let *H* be a subgroup of *G* and φ be a class function on *H*. Extend φ to $\overset{\circ}{\varphi}: G \to \mathbb{C}$ by defining $\overset{\circ}{\varphi}(x) = 0$ for $x \notin H$ and $\overset{\circ}{\varphi}(x) = \varphi(x)$ for $x \in H$.

Definition

The class function on G *induced* by φ is defined by

$$\operatorname{ind}_{H}^{G}\varphi(x) = \frac{1}{|H|} \sum_{u \in G} \overset{\circ}{\varphi}(u^{-1}xu).$$

Let T be a (left) *transversal* of H in G; that is, a set of representatives for the left cosets xH. Then the formula for $\operatorname{ind}_{H}^{G}\varphi(x)$ can be written

$$\operatorname{ind}_{H}^{G}\varphi(x) = \sum_{t \in T} \overset{\circ}{\varphi}(t^{-1}xt).$$

because $\ddot{\varphi}$ is constant on *H*-conjugacy classes.

2/15

Frobenius reciprocity

Let φ be a class function on H, let ψ be a class function on G where $H \leq G$ and let $\operatorname{res}_H \psi$ denote the restriction of ψ to H. Then

$$\langle \operatorname{ind}_{H}^{G} \varphi | \psi \rangle_{G} = \langle \varphi | \operatorname{res}_{H} \psi \rangle_{H}.$$

Proof.

From the definitions of $\operatorname{ind}_{H}^{G}$ and $\langle - | - \rangle$ we have

$$\langle \operatorname{ind}_{H}^{G} \varphi | \psi \rangle_{G} = \frac{1}{|G||H|} \sum_{u,x \in G} \overset{\circ}{\varphi}(u^{-1}xu)\overline{\psi(x)}$$
$$= \frac{1}{|G||H|} \sum_{u,x \in G} \overset{\circ}{\varphi}(x)\overline{\psi(u^{-1}xu)} = \frac{1}{|G||H|} \sum_{\substack{u \in G \\ x \in H}} \varphi(x)\overline{\psi(x)}$$
$$= \frac{1}{|H|} \sum_{x \in H} \varphi(x)\overline{\psi(x)} = \langle \varphi | \operatorname{res}_{H} \psi \rangle_{H} \square$$

When is a class function a character?

If χ is a character of H, $\operatorname{ind}_{H}^{G} \chi$ is a class function. Is it a character? First of all, if $\varphi: G \to \mathbb{C}$ is a class function and $\chi_{1}, \chi_{2}, \ldots, \chi_{r}$ are the irreducible characters of G, it follows from the first orthogonality relations that

$$\varphi = \sum_{i=1}^r \langle \varphi \mid \chi_i \rangle \chi_i.$$

Thus φ is a character if and only if $\langle \varphi | \chi_i \rangle$ is a nonnegative integer for $1 \le i \le r$.

Furthermore, φ is irreducible if and only if, in addition, $\langle \varphi | \varphi \rangle = 1$.

If $\langle \varphi | \chi_i \rangle$ is an *integer* for $1 \le i \le r$, then φ is called a *generalised* character of *G*.

4/15

Theorem

Suppose H is a subgroup of G.

- If φ is a character of H, then $\operatorname{ind}_{H}^{G} \varphi$ is a character of G.
- If φ is a generalised character of H, then $\operatorname{ind}_{H}^{G} \varphi$ is a generalised character of G.

Proof.

If φ is a character of H and χ is an irreducible character of G, then $\langle \operatorname{ind}_{H}^{G} \varphi | \chi \rangle_{G} = \langle \varphi | \operatorname{res}_{H} \chi \rangle_{H} \in \mathbb{N}$ and therefore $\operatorname{ind}_{H}^{G} \varphi$ is a character.

If $\varphi = \chi - \xi$, where χ and ξ are characters of H, then $\operatorname{ind}_{H}^{G} \varphi = \operatorname{ind}_{H}^{G} \chi - \operatorname{ind}_{H}^{G} \xi$, hence $\operatorname{ind}_{H}^{G} \varphi$ is a generalised character.

Properties of the induction map

Let *H* be a subgroup of *G*, let φ be a class function on *H* and let ψ be a class function on *G*. Then

- If $H \le K$, then $\operatorname{ind}_{H}^{G} \varphi = \operatorname{ind}_{K}^{G}(\operatorname{ind}_{H}^{K} \varphi)$.
- 2 $\operatorname{ind}_{H}^{G}(\varphi \operatorname{res}_{H} \psi) = (\operatorname{ind}_{H}^{G} \varphi)\psi$

Proof.

1 Let χ be an irreducible character of G. Then

$$\langle \operatorname{ind}_{K}^{G}(\operatorname{ind}_{H}^{K}\varphi) | \chi \rangle = \langle \operatorname{ind}_{H}^{K}\varphi | \operatorname{res}_{K}\chi \rangle = \langle \varphi | \operatorname{res}_{H}\chi \rangle = \langle \operatorname{ind}_{H}^{G}\varphi | \chi \rangle.$$

2 For
$$x \in G$$
,

$$\operatorname{ind}_{H}^{G}(\varphi \operatorname{res}_{H} \psi)(x) = \frac{1}{|H|} \sum_{u \in G} \overset{\circ}{\varphi}(u^{-1}xu) \overset{\circ}{\psi}(u^{-1}xu)$$
$$= \frac{1}{|H|} \sum_{u \in G} \overset{\circ}{\varphi}(u^{-1}xu) \psi(u^{-1}xu) = \frac{\psi(x)}{|H|} \sum_{u \in G} \overset{\circ}{\varphi}(u^{-1}xu) = \psi(x)(\operatorname{ind}_{H}^{G}\varphi)(x). \square$$

Suppose that G acts on the set Γ . Choose $\alpha \in \Gamma$.

The *stabiliser* of α is the subgroup $G_{\alpha} = \{x \in G \mid x\alpha = \alpha\}$.

The *orbit* of α is the subset $G\alpha = \{x\alpha \mid x \in G\}$.

There is a *bijection* between the left cosets of G_{α} and the orbit G_{α} , given by

 $xG_{\alpha} \leftrightarrow x\alpha$.

Therefore, $|G:G_{\alpha}| = |G\alpha|$, where $|G:G_{\alpha}|$ is the number of (left) cosets of G_{α} in G.

Permutation characters

Suppose that G acts *transitively* on Γ (i.e., G has a single orbit on Γ) and let H be the stabiliser of some $\alpha \in \Gamma$.

For $u, x \in G$, we have $\mathring{1}_H(u^{-1}xu) = 1$ if and only if $xu\alpha = u\alpha$. Thus $(\operatorname{ind}_H^G 1_H)(x) = |H|^{-1} \sum_{u \in G} \mathring{1}_H(u^{-1}xu) = |\operatorname{Fix}_{\Gamma}(x)|$.

Therefore $\operatorname{ind}_{H}^{G} 1_{H}$ is the *permutation character* corresponding to Γ .

More generally, suppose that G acts on Γ with orbits $\Gamma_1, \ldots, \Gamma_k$ and for $1 \le i \le k$ let H_i be the stabiliser of a point in Γ_i . The permutation character of Γ is $\pi = \operatorname{ind}_{H_1}^G 1_{H_1} + \cdots + \operatorname{ind}_{H_k}^G 1_{H_k}$.

Then $\langle \pi | 1_G \rangle_G = \langle \operatorname{ind}_{H_1}^G 1_{H_1} | 1_G \rangle_G + \dots + \langle \operatorname{ind}_{H_k}^G 1_{H_k} | 1_G \rangle_G.$

But $\langle \operatorname{ind}_{H_i}^G 1_{H_i} | 1_G \rangle_G = \langle 1_H | 1_H \rangle_H = 1$ for all i and so

 $\langle \pi | 1_G \rangle_G = k$, the number of orbits of G on Γ

The Mackey formulas

- \blacktriangleright H and K are subgroups of G
- \triangleright S is a set of representatives for the double cosets KxH
- $\blacktriangleright \phi$ is a class function on H
- ψ is a class function on K
- φ^s is the class function $\varphi^s : sHs^{-1} \to \mathbb{C} : x \mapsto \varphi(s^{-1}xs)$

$$H_s = sHs^{-1} \cap K$$

$$\operatorname{res}_{K} \operatorname{ind}_{H}^{G} \varphi = \sum_{s \in S} \operatorname{ind}_{H_{s}}^{K} \operatorname{res}_{H_{s}} \varphi^{s}$$
$$\langle \operatorname{ind}_{H}^{G} \varphi | \operatorname{ind}_{K}^{G} \psi \rangle_{G} = \sum_{s \in S} \langle \operatorname{res}_{H_{s}} \varphi^{s} | \operatorname{res}_{H_{s}} \psi \rangle_{H_{s}}$$
$$\operatorname{ind}_{H}^{G} \varphi \cdot \operatorname{ind}_{K}^{G} \psi = \sum_{s \in S} \operatorname{ind}_{H_{s}} (\operatorname{res}_{H_{s}} \varphi^{s} \cdot \operatorname{res}_{H_{s}} \psi)$$

The second formula follows from the first by Frobenius reciprocity.

10/15

Proof

K acts on the cosets *sH* by left multiplication. The stabiliser in *K* of *sH* is $H_s = sHs^{-1} \cap K$ and the union of the orbit of *K* is *KsH*.

For $s \in S$ let T_s be a set of representatives for the left cosets of H_s in K. Then $\{tsH | s \in S, t \in T_s\}$ is the set of left cosets of H in G. Thus, for $x \in K$,

$$\operatorname{ind}_{H}^{G}\varphi(x) = \sum_{s \in S, t \in T_{s}} \overset{\circ}{\varphi}(s^{-1}t^{-1}xts) = \sum_{s \in S, t \in T_{s}} \overset{\circ}{\varphi}^{s}(t^{-1}xt)$$

But $\overset{\circ}{\varphi}{}^{s}(y) = 0$ for $y \notin H_{s}$, therefore

$$\sum_{x \in T_s} \overset{\circ}{\varphi}{}^s(t^{-1}xt) = \operatorname{ind}_{H_s}^K \operatorname{res}_{H_s} \varphi^s(x)$$

and hence $\operatorname{res}_K \operatorname{ind}_H^G \varphi = \sum_{s \in S} \operatorname{ind}_{H_s}^K \operatorname{res}_{H_s} \varphi^s$.

Suppose that G acts transitively on Γ and that π is the corresponding permutation character. Then $\pi = \operatorname{ind}_{H}^{G} 1_{H}$, where H is the stabiliser of a point in Γ .

From the second Mackey formula with H = K and $\varphi = 1_H$ we find that $\langle \pi | \pi \rangle$ is the number of double cosets HsH.

The cosets of H are in bijection with the points of Γ and the double cosets are in bijection with the orbits of H on Γ .

In particular, $\langle \pi | \pi \rangle = 2$ if and only if *H* has two orbits on Γ , which must be $\{\alpha\}$ and $\Gamma \setminus \{\alpha\}$. This is equivalent to *G* acting transitively on the set of ordered pairs (α, β) where $\alpha \neq \beta$.

That is, $\langle \pi | \pi \rangle = 2$ if and only if G acts *doubly transitively* on Γ .

In this case $\pi = 1_G + \chi$, where χ is irreducible.

The existence of Frobenius kernels

Suppose that $H \leq G$ and that $H \cap xHx^{-1} = 1$ for all $x \in G \setminus H$. If 1 < H < G, then *G* is called a *Frobenius group* and *H* is a *Frobenius complement*. A normal subgroup $N \triangleleft G$ is called a *Frobenius kernel* if $H \cap N = 1$ and G = HN.

Theorem (Frobenius)

Every Frobenius group has a Frobenius kernel.

Currently there is no known proof of this result which doesn't use some character theory. (However, in 2013 Terry Tao produced a proof that uses only representations of the *centre* of the group algebra.)

Let $S = \bigcup_{x \in G} (xHx^{-1} \setminus \{1\})$ and put $N = G \setminus S$. The number of conjugates of H in G is the index $|G: N_G(H)|$ of the normaliser $N_G(H)$ of H and therefore |S| = |G: H|(|H| - 1) because our hypotheses imply $N_G(H) = H$. Thus |N| = |G: H|. We must show that N is a subgroup.

12/15

Proof. Constructing irreducible characters of G

Begin with the irreducible characters $\varphi_0 = 1_H$, φ_1 , ..., φ_m of H and define $\psi_i = \varphi_i(1)1_H - \varphi_i$ for $1 \le i \le m$. Then

$$\langle \psi_i | \psi_i \rangle = \varphi_i(1)\varphi_i(1) + \delta_{ij}, \quad \langle \psi_i | 1_H \rangle = \varphi_i(1) \text{ and } \psi_i(1) = 0. \quad (\star)$$

If $s \notin H$, then $H_s = sHs^{-1} \cap H = 1$ and since $\psi_i(1) = 0$, the second Mackey formula reduces to

$$\langle \operatorname{ind}_{H}^{G} \psi_{i} | \operatorname{ind}_{H}^{G} \psi_{j} \rangle_{G} = \langle \psi_{i} | \psi_{j} \rangle_{H} \qquad (\star \star)$$

Furthermore, by Frobenius reciprocity, $\langle \operatorname{ind}_{H}^{G} \psi_{i} | 1_{G} \rangle = \langle \psi_{i} | 1_{H} \rangle = \varphi_{i}(1)$ and therefore $\operatorname{ind}_{H}^{G} \psi_{i} = \varphi_{i}(1)1_{G} - \chi_{i}$ for some generalised character χ_{i} such that $\langle \chi_{i} | 1_{G} \rangle = 0$.

But now, from (\star) and ($\star\star$) we have $\langle \chi_i | \chi_j \rangle = \delta_{ij}$. Also, from $\operatorname{ind}_H^G \psi_i(1) = 0$ we have $\chi_i(1) = \varphi_i(1) > 0$ and therefore χ_i is an *irreducible* character.

14/15

Proof that N is a normal subgroup

Let $N_0 = \bigcap_{i=1}^m \ker \chi_i$. Using our assumption that $H \cap sHs^{-1} = 1$ for all $s \notin H$, the first Mackey formula implies

$$\varphi_i(1)1_H - \operatorname{res}_H \chi_i = \operatorname{res}_H \operatorname{ind}_H^G \psi_i = \operatorname{res}_H \psi_i = \varphi_i(1)1_H - \varphi_i$$

and therefore $\operatorname{res}_H \chi_i = \varphi_i$ for all i = 1, ..., m.

Suppose that $h \in H \cap N_0$. Then $\varphi_i(h) = \varphi_i(1)$ for $1 \le i \le m$ and we also have $\varphi_0(h) = 1 = \varphi_0(1)$. Thus $\operatorname{reg}_H(h) = \sum_{i=0}^m \varphi_i(1)^2 = |H| = \operatorname{reg}_H(1)$. But $\operatorname{reg}_H(h) = 0$ if $h \ne 1$ and therefore h = 1 and hence $H \cap N_0 = 1$.

If $x \in N$ and $x \neq 1$, no conjugate of x is in H and so $\operatorname{ind}_{H}^{G} \psi_{i}(x) = 0$. Thus $\chi_{i}(x) = \varphi_{i}(1)$ for all i whence $x \in N_{0}$, and therefore $N \subseteq N_{0}$. On the other hand, $H \cap N_{0} = 1$ and so $|N_{0}| \leq |G|/|H| = |N|$. It follows that $N = N_{0}$.

Further reading

David M. Goldschmidt. Group characters, symmetric functions, and the Hecke algebra. American Mathematical Society, Providence, RI, 1993.