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Induced class functions

Let H be a subgroup of G and ϕ be a class function on H . Extend ϕ
to

◦
ϕ : G →C by defining

◦
ϕ(x) = 0 for x ∉ H and

◦
ϕ(x) =ϕ(x) for x ∈ H .

Definition
The class function on G induced by ϕ is defined by

indG
H ϕ(x) = 1

|H |
∑

u∈G

◦
ϕ(u−1xu).

Let T be a (left) transversal of H in G; that is, a set of representatives
for the left cosets xH . Then the formula for indG

H ϕ(x) can be written

indG
H ϕ(x) = ∑

t∈T

◦
ϕ(t−1xt ).

because
◦
ϕ is constant on H-conjugacy classes.
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Frobenius reciprocity

Let ϕ be a class function on H , let ψ be a class function on G where
H ≤G and let resH ψ denote the restriction of ψ to H . Then

〈 indG
H ϕ |ψ〉G = 〈ϕ | resH ψ〉H .

Proof.
From the definitions of indG

H and 〈− | −〉 we have

〈 indG
H ϕ |ψ〉G = 1

|G| |H |
∑

u,x∈G

◦
ϕ(u−1xu)ψ(x)

= 1

|G| |H |
∑

u,x∈G

◦
ϕ(x)ψ(u−1xu) = 1

|G| |H |
∑

u∈G
x∈H

ϕ(x)ψ(x)

= 1

|H |
∑

x∈H
ϕ(x)ψ(x) = 〈ϕ | resH ψ〉H
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When is a class function a character?

If χ is a character of H , indG
H χ is a class function. Is it a character?

First of all, if ϕ : G →C is a class function and χ1, χ2, . . . , χr are the
irreducible characters of G, it follows from the first orthogonality
relations that

ϕ=
r∑

i=1
〈ϕ |χi 〉χi .

Thus ϕ is a character if and only if 〈ϕ |χi 〉 is a nonnegative integer
for 1 ≤ i ≤ r .

Furthermore, ϕ is irreducible if and only if, in addition, 〈ϕ |ϕ〉 = 1.

If 〈ϕ |χi 〉 is an integer for 1 ≤ i ≤ r , then ϕ is called a generalised
character of G.
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Induced characters

Theorem
Suppose H is a subgroup of G.
I If ϕ is a character of H , then indG

H ϕ is a character of G.
I If ϕ is a generalised character of H , then indG

H ϕ is a generalised
character of G.

Proof.
If ϕ is a character of H and χ is an irreducible character of G, then
〈 indG

H ϕ |χ〉G = 〈ϕ | resH χ〉H ∈N and therefore indG
H ϕ is a character.

If ϕ=χ−ξ, where χ and ξ are characters of H , then
indG

H ϕ= indG
H χ− indG

H ξ, hence indG
H ϕ is a generalised character.
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Properties of the induction map

Let H be a subgroup of G, let ϕ be a class function on H and let ψ
be a class function on G. Then

1 If H ≤ K , then indG
H ϕ= indG

K (indK
H ϕ).

2 indG
H (ϕ resH ψ) = (indG

H ϕ)ψ

Proof.
1 Let χ be an irreducible character of G. Then

〈 indG
K (indK

H ϕ) |χ〉 = 〈 indK
H ϕ | resK χ〉 = 〈ϕ | resH χ〉 = 〈 indG

H ϕ |χ〉.
2 For x ∈G,

indG
H (ϕ resH ψ)(x) = 1

|H |
∑

u∈G

◦
ϕ(u−1xu)

◦
ψ(u−1xu)

= 1

|H |
∑

u∈G

◦
ϕ(u−1xu)ψ(u−1xu) = ψ(x)

|H |
∑

u∈G

◦
ϕ(u−1xu) =ψ(x)(indG

H ϕ)(x).
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Permutation actions

Suppose that G acts on the set Γ. Choose α ∈ Γ.
The stabiliser of α is the subgroup Gα = { x ∈G | xα=α }.

The orbit of α is the subset Gα= { xα | x ∈G }.

There is a bijection between the left cosets of Gα and the orbit Gα,
given by

xGα↔ xα.

Therefore, |G : Gα| = |Gα|, where |G : Gα| is the number of (left) cosets
of Gα in G.
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Permutation characters

Suppose that G acts transitively on Γ (i.e., G has a single orbit on Γ)
and let H be the stabiliser of some α ∈ Γ.
For u, x ∈G, we have

◦
1H (u−1xu) = 1 if and only if xuα= uα. Thus

(indG
H 1H )(x) = |H |−1 ∑

u∈G
◦
1H (u−1xu) = |FixΓ(x)|.

Therefore indG
H 1H is the permutation character corresponding to Γ.

More generally, suppose that G acts on Γ with orbits Γ1, . . . , Γk and
for 1 ≤ i ≤ k let Hi be the stabiliser of a point in Γi . The permutation
character of Γ is π= indG

H1
1H1 +·· ·+ indG

Hk
1Hk .

Then 〈π | 1G 〉G = 〈 indG
H1

1H1 | 1G 〉G +·· ·+〈 indG
Hk

1Hk | 1G 〉G .

But 〈 indG
Hi

1Hi | 1G 〉G = 〈1H | 1H 〉H = 1 for all i and so

〈π | 1G 〉G = k, the number of orbits of G on Γ
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The Mackey formulas

I H and K are subgroups of G

I S is a set of representatives for the double cosets K xH

I ϕ is a class function on H

I ψ is a class function on K

I ϕs is the class function ϕs : sH s−1 →C : x 7→ϕ(s−1xs)

I Hs = sH s−1 ∩K

resK indG
H ϕ= ∑

s∈S
indK

Hs
resHs ϕ

s

〈 indG
H ϕ | indG

K ψ〉G = ∑
s∈S

〈resHs ϕ
s | resHs ψ〉Hs

indG
H ϕ · indG

K ψ= ∑
s∈S

indHs (resHs ϕ
s · resHs ψ)

The second formula follows from the first by Frobenius reciprocity.
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Proof

K acts on the cosets sH by left multiplication. The stabiliser in K of
sH is Hs = sH s−1 ∩K and the union of the orbit of K is K sH .

For s ∈ S let Ts be a set of representatives for the left cosets of Hs

in K . Then { t sH | s ∈ S, t ∈ Ts } is the set of left cosets of H in G.
Thus, for x ∈ K ,

indG
H ϕ(x) = ∑

s∈S,t∈Ts

◦
ϕ(s−1t−1xt s) = ∑

s∈S,t∈Ts

◦
ϕs(t−1xt )

But
◦
ϕs(y) = 0 for y ∉ Hs , therefore∑

t∈Ts

◦
ϕs(t−1xt ) = indK

Hs
resHs ϕ

s(x)

and hence resK indG
H ϕ=∑

s∈S indK
Hs

resHs ϕ
s .
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Double transitivity

Suppose that G acts transitively on Γ and that π is the corresponding
permutation character. Then π= indG

H 1H , where H is the stabiliser of
a point in Γ.

From the second Mackey formula with H = K and ϕ= 1H we find that
〈π |π〉 is the number of double cosets H sH .

The cosets of H are in bijection with the points of Γ and the double
cosets are in bijection with the orbits of H on Γ.

In particular, 〈π |π〉 = 2 if and only if H has two orbits on Γ, which
must be {α} and Γ\ {α}. This is equivalent to G acting transitively on
the set of ordered pairs (α,β) where α 6=β.
That is, 〈π |π〉 = 2 if and only if G acts doubly transitively on Γ.

In this case π= 1G +χ, where χ is irreducible.
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The existence of Frobenius kernels

Suppose that H ≤G and that H ∩xH x−1 = 1 for all x ∈G \ H . If
1 < H <G, then G is called a Frobenius group and H is a Frobenius
complement. A normal subgroup N /G is called a Frobenius kernel if
H ∩N = 1 and G = H N .

Theorem (Frobenius)
Every Frobenius group has a Frobenius kernel.

Currently there is no known proof of this result which doesn’t use
some character theory. (However, in 2013 Terry Tao produced a proof
that uses only representations of the centre of the group algebra.)

Let S =⋃
x∈G (xH x−1 \ {1}) and put N =G \ S. The number of

conjugates of H in G is the index |G : NG (H)| of the normaliser NG (H)
of H and therefore |S| = |G : H |(|H |−1) because our hypotheses imply
NG (H) = H . Thus |N | = |G : H |. We must show that N is a subgroup.
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Proof. Constructing irreducible characters of G

Begin with the irreducible characters ϕ0 = 1H , ϕ1, . . . , ϕm of H and
define ψi =ϕi (1)1H −ϕi for 1 ≤ i ≤ m. Then

〈ψi |ψ j 〉 =ϕi (1)ϕ j (1)+δi j , 〈ψi | 1H 〉 =ϕi (1) and ψi (1) = 0. (?)

If s ∉ H , then Hs = sH s−1 ∩H = 1 and since ψi (1) = 0, the second
Mackey formula reduces to

〈 indG
H ψi | indG

H ψ j 〉G = 〈ψi |ψ j 〉H (??)

Furthermore, by Frobenius reciprocity,
〈 indG

H ψi | 1G 〉 = 〈ψi | 1H 〉 =ϕi (1) and therefore indG
H ψi =ϕi (1)1G −χi

for some generalised character χi such that 〈χi | 1G 〉 = 0.

But now, from (?) and (??) we have 〈χi |χ j 〉 = δi j . Also, from
indG

H ψi (1) = 0 we have χi (1) =ϕi (1) > 0 and therefore χi is an
irreducible character.
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Proof that N is a normal subgroup

Let N0 =⋂m
i=1 kerχi . Using our assumption that H ∩ sH s−1 = 1 for all

s ∉ H , the first Mackey formula implies

ϕi (1)1H − resH χi = resH indG
H ψi = resH ψi =ϕi (1)1H −ϕi

and therefore resH χi =ϕi for all i = 1, . . . ,m.

Suppose that h ∈ H ∩N0. Then ϕi (h) =ϕi (1) for 1 ≤ i ≤ m and we also
have ϕ0(h) = 1 =ϕ0(1). Thus regH (h) =∑m

i=0ϕi (1)2 = |H | = regH (1).
But regH (h) = 0 if h 6= 1 and therefore h = 1 and hence H ∩N0 = 1.

If x ∈ N and x 6= 1, no conjugate of x is in H and so indG
H ψi (x) = 0.

Thus χi (x) =ϕi (1) for all i whence x ∈ N0, and therefore N ⊆ N0. On
the other hand, H ∩N0 = 1 and so |N0| ≤ |G|/|H | = |N |. It follows that
N = N0.
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Further reading

David M. Goldschmidt.
Group characters, symmetric functions, and the Hecke algebra.
American Mathematical Society, Providence, RI, 1993.


