Character Theory of Finite Groups NZ Mathematics Research Institute Summer Workshop

Day 2: The group algebra, divisibility and Burnside's $p^a q^b$ theorem

Don Taylor

The University of Sydney

Nelson, 7–13 January 2018

From yesterday: the essentials

First orthogonality relations

$$\langle \chi_i \mid \chi_j \rangle = \frac{1}{|G|} \sum_{x \in G} \chi_i(x) \overline{\chi_j(x)} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Second orthogonality relations

$$\sum_{i=1}^{r} \chi_i(x) \overline{\chi}_i(y) = \begin{cases} |C_G(x)| & x \text{ is conjugate to } y \\ 0 & x \text{ is not conjugate to } y \end{cases}$$

Orthogonality revisited

Let x_1, x_2, \ldots, x_r represent the conjugacy classes of G and define $h_i = |\operatorname{ccl}_G(x_i)|$ for $1 \le i \le r$.

Because characters are constant on conjugacy classes, the first orthogonality relations can be written as

$$\sum_{k=1}^r h_k \chi_i(x_k) \overline{\chi}_j(x_k) = \delta_{ij} |G|.$$

In matrix form this is $XD\overline{X}^{\top} = |G|I$, where $X = (\chi_i(x_j))$ is the *character table* and $D = \text{diag}(h_1, h_2, ..., h_r)$.

Consequently

$$\overline{X}^{\top} X D = \overline{X}^{\top} (X D \overline{X}^{\top}) \overline{X}^{-\top} = |G|I$$

and therefore $\overline{X}^{\top}X = |G|D^{-1}$, which is the matrix form of the second orthogonality relations.

Summary

In the character table

Class
$$C_1$$
 \ldots C_j \ldots C_r Size1 \ldots h_j \ldots h_r χ_1 1 \ldots 1 \ldots 1 \vdots \ddots \vdots \ddots \vdots χ_i n_i \ldots $\chi_i(x_j)$ \ldots $\chi_r(x_r)$ \vdots \ddots \vdots \ddots \vdots χ_r n_r \ldots $\chi_r(x_j)$ \ldots $\chi_r(x_r)$

we have

$$\sum_{k=1}^{r} h_k \chi_i(x_k) \overline{\chi}_j(x_k) = |G| \delta_{ij}$$

$$\sum_{i=1}^{r} \chi_i(x_i) \overline{\chi}_i(x_k) = |C_G(x_i)| \delta_{ik}$$

The alternating group Ale(*)					
	11 (12)(34)	(1237	(132)	
	(3	4	ž	
	1	1		1	
	1	l	ω	พิ	
	I	1	$\mathcal{W}^{\mathbf{A}}$	W	
	3	-1	0	0	
1	$(\omega^3 = 1)$				

The group algebra $\mathbb{C}[G]$

The group algebra $\mathbb{C}[G]$ is the vector space of dimension |G| with basis $(e_x)_{x \in G}$ and multiplication such that $e_x e_y = e_{xy}$.

Let $\rho_i: G \to \operatorname{GL}(W_i)$ for $1 \le i \le r$ be the distinct (up to isomorphism) irreducible representations of G, and put $n_i = \dim(W_i)$ so that the algebra $\operatorname{End}(W_i)$ of endomorphisms of W_i is isomorphic to $M_{n_i}(\mathbb{C})$, the algebra of all $n_i \times n_i$ complex matrices.

The map $\rho_i : G \to \operatorname{GL}(W_i)$ extends by linearity to an algebra homomorphism $\tilde{\rho}_i : \mathbb{C}[G] \to \operatorname{End}(W_i)$ such that $\tilde{\rho}_i(e_x) = \rho_i(x)$ and the family $(\tilde{\rho}_i)$ defines a homomorphism

$$\tilde{\rho}:\mathbb{C}[G]\to\prod_{i=1}^r \operatorname{End}(W_i)\simeq\prod_{i=1}^r M_{n_i}(\mathbb{C}).$$

$$\tilde{\rho}: \mathbb{C}[G] \to \prod_{i=1}^{r} \operatorname{End}(W_i) \simeq \prod_{i=1}^{r} M_{n_i}(\mathbb{C}).$$

Theorem

The homomorphism $\tilde{\rho}$ is an isomorphism.

Proof. [d'après J.-P. Serre].

Claim: $\tilde{\rho}$ is surjective. Suppose that f is a linear functional defined on $\prod_i M_{n_i}(\mathbb{C})$, which is zero on the image of $\tilde{\rho}$. This gives a linear relation between the functions $a_{jk}^{(i)}$, where $\left(a_{jk}^{(i)}(x)\right)_{j,k}$ is the matrix of $\rho_i(x)$. It follows from the Schur relations that f = 0 and hence $\tilde{\rho}$ is surjective. On the other hand, $\mathbb{C}[G]$ and $\prod_i M_{n_i}(\mathbb{C})$ both have dimension $|G| = \sum_{i=1}^r n_i^2$ and since $\tilde{\rho}$ is surjective it is bijective.

The inverse of $\tilde{\rho}$

Theorem (Fourier inversion)

Let $(u_i)_{1 \le i \le r} \in \prod_i \operatorname{End}(W_i)$ and $u = \sum_x u(x)e_x \in \mathbb{C}[G]$ be such that $\tilde{\rho}_i(u) = u_i$ for all *i*. Then

$$u(x) = \frac{1}{|G|} \sum_{i=1}^{r} n_i \operatorname{Tr}_{W_i}(\rho_i(x^{-1})u_i), \text{ where } n_i = \dim W_i.$$

Proof.

By linearity it suffices to take u = y in *G*. Then $u(x) = \delta_{xy}$ and hence $\operatorname{Tr}_{W_i}(\rho_i(x^{-1}u_i) = \chi_i(x^{-1}y))$, where χ_i is the character of ρ_i . This reduces us to proving

$$\delta_{xy} = \frac{1}{|G|} \sum_{i=1}^{r} n_i \chi_i(x^{-1}y),$$

which is a consequence of the orthogonality relations (equivalently r_G).

Central idempotents in $\mathbb{C}[G]$

An element $E \in \mathbb{C}[G]$ is *idempotent* if $E^2 = E$. Idempotents *E* and *E'* are *orthogonal* if EE' = 0 = E'E.

The identity transformations $I_i \in \text{End}(W_i)$ are idempotents and their inverse images $E_i = \tilde{\rho}^{-1}(I_i)$ are orthogonal idempotents in the centre $Z(\mathbb{C}[G])$ of $\mathbb{C}[G]$:

 $E_i E_j = \delta_{ij} E_i$ and $E_1 + E_2 + \dots + E_r = 1$.

By Fourier inversion we have

$$E_i = \frac{\chi_i(1)}{|G|} \sum_{x \in G} \overline{\chi}_i(x) e_x$$

and the formula $E_i E_j = \delta_{ij} E_i$ is equivalent to

$$\frac{1}{|G|}\sum_{y\in G}\chi_i(xy^{-1})\chi_j(y) = \frac{\chi_i(x)}{\chi_i(1)}\delta_{ij}.$$

The centre of $\mathbb{C}[G]$

The central idempotents E_1, E_2, \ldots, E_r form a basis for $Z(\mathbb{C}[G])$.

If C_1, C_2, \ldots, C_r are the conjugacy classes of G, the elements $\hat{C}_i = \sum_{x \in C_i} e_x$ are another basis. (We always suppose that $C_1 = \{1\}$.)

The restriction of $\tilde{\rho}_i$ to $Z(\mathbb{C}[G])$ is a homomorphism whose image is contained in the scalar matrices of $M_{n_i}(\mathbb{C})$; that is, it defines a homomorphism $\omega_i : Z(\mathbb{C}[G]) \to \mathbb{C}$ such that for $u = \sum_{x \in G} u(x)e_x$ in $Z(\mathbb{C}[G])$ and $n_i = \chi_i(1)$,

$$\omega_i(u) = \frac{1}{n_i} \sum_{x \in G} u(x) \chi_i(x). \quad \frac{1}{n_i} \operatorname{Tr}_{W_i} \rho_i(u)$$

(u is a class function and we proved this in the previous lecture.)

Thus
$$\omega_i(E_j) = \delta_{ij}$$
 and if $C_j = \operatorname{ccl}_G(x_j)$, then $\omega_i(\hat{C}_j) = \frac{|C_j|\chi_i(x_j)}{n_i}$

For $z \in C_k$, define

$$a_{ijk} = |\{(x, y) \in C_i \times C_j \mid xy = z\}|.$$

Then a_{ijk} is independent of the choice of $z \in C_k$.

Theorem

$$\hat{C}_i \hat{C}_j = \sum_{k=1}^r a_{ijk} \hat{C}_k$$
$$\omega_t(\hat{C}_i) \omega_t(\hat{C}_j) = \sum_{k=1}^r a_{ijk} \omega_t(\hat{C}_k)$$

Burnside's formula

Theorem

$$a_{ijk} = \frac{h_i h_j}{|G|} \sum_{t=1}^r \frac{\chi_t(x_i)\chi_t(x_j)\overline{\chi_t(x_k)}}{n_t} \qquad (where \ h_i = |C_i|)$$

Proof.

Expand $\omega_t(\hat{C}_i)\omega_t(\hat{C}_j) = \sum_{\ell=1}^r a_{ij\ell}\omega_t(\hat{C}_\ell).$

$$\frac{h_i\chi_t(x_i)}{n_t}\frac{h_j\chi_t(x_j)}{n_t} = \sum_{\ell=1}^r a_{ij\ell}\frac{h_\ell\chi_t(x_\ell)}{n_t}.$$

Multiply by $n_t \overline{\chi_t(x_k)}$, sum over t, then use the second orthogonality relations.

$$h_i h_j \sum_{t=1}^r \frac{\chi_t(x_i)\chi_t(x_j)\chi_t(x_k)}{n_t} = \sum_{t,\ell} a_{ij\ell} h_\ell \chi_t(x_\ell) \overline{\chi_t(x_k)}$$
$$= \sum_\ell a_{ij\ell} h_\ell |C_G(x_k)| \delta_{k\ell} = a_{ijk} |G|.$$

12/22

Algebraic integers

An element of a commutative ring B is *integral* over a subring A if it is a root of a *monic* polynomial with coefficients from A.

A complex number which is integral over \mathbb{Z} is an *algebraic integer*. If $z \in \mathbb{Q}$ is an algebraic integer, then $z \in \mathbb{Z}$.

Theorem

The following are equivalent:

- $1 x \in B is integral over A.$
- 2 The subring A[x] of B is a finitely generated A-module.
- 3 *A*[*x*] is contained in a subring *C* of *B* such that *C* is a finitely generated *A*-module.

Corollary

The elements of B which are integral over A form a submodule of B.

If χ is a character, $\chi(x)$ is an algebraic integer

14/22

Right eigenvectors of the class matrices

For $1 \le i \le r$ let A_i be the $r \times r$ matrix $(a_{ijk})_{i,k}$. \leftarrow class matrix

Theorem

The eigenvalues of A_i are the quantities $\omega_t(\hat{C}_i)$ for $1 \le t \le r$, hence the $\omega_t(\hat{C}_i)$ are algebraic integers.

Proof.

We may write $\omega_t(\hat{C}_i)\omega_t(\hat{C}_j) = \sum_{k=1}^r a_{ijk}\omega_t(\hat{C}_k)$ as

$$\sum_{k=1}^r \left(\omega_t(\hat{C}_i) \delta_{jk} - a_{ijk} \right) \omega_t(\hat{C}_k) = 0.$$

That is, the column vector $(\omega_t(\hat{C}_1), \dots, \omega_t(\hat{C}_r))^\top$ is an eigenvector of A_i ; it is non-zero because $\omega_t(\hat{C}_1) = |C_1| = 1$.

Thus det $(\omega_t(\hat{C}_i)I - A_i) = 0$ and the $\omega_t(\hat{C}_i)$ are eigenvalues of A_i .

Moreover they satisfy a monic polynomial with integer coefficients; i.e., they are algebraic integers.

Left eigenvectors of the class matrices

We have

$$a_{ijk}|C_k| = \left| \{ (x, y) \in C_i \times C_j \mid xy \in C_k \} \right|$$

and therefore

$$a_{ijk}|C_k| = a_{i'kj}|C_j|$$

where $C_{i'} = \{x^{-1} \mid x \in C_i\}.$

Thus $\omega_t(\hat{C}_{i'})\omega_t(\hat{C}_k) = \sum_{j=1}^r a_{i'kj}\omega_t(\hat{C}_j)$ becomes

$$\sum_{j=1}^{\prime} \chi_t(x_j) \left(\omega_t(\hat{C}_{i'}) \delta_{jk} - a_{ijk} \right) = 0$$

and so $(\chi_t(x_1), \chi_t(x_2), \dots, \chi_t(x_r))$ is a left eigenvector of A_i .

Divisibility

Theorem

The degrees of the irreducible characters of G divide |G|.

Proof.

Suppose that χ_t is an irreducible character of degree n_t and that for $1 \le i \le r$, $C_i = \operatorname{ccl}_G(x_i)$. Then

$$\sum_{i=1}^{r} \omega_t(\hat{C}_i) \overline{\chi}_t(x_i) = \frac{1}{n_t} \sum_{i=1}^{r} |C_i| \chi_t(x_i) \overline{\chi}_t(x_i) = \frac{1}{n_t} \sum_{x \in G} \chi_t(x) \overline{\chi}_t(x)$$
$$= \frac{|G|}{n_t} \langle \chi_t | \chi_t \rangle = \frac{|G|}{n_t},$$

whence $|G|/n_t$ is an algebraic integer. Since this is a rational number it must belong to \mathbb{Z} ; that is, n_t divides |G|.

Further properties of characters

Theorem

Let ρ be a linear representation of G with character χ . For all $x \in G$

- $|\chi(x)| \le \chi(1),$
- 2 $|\chi(x)| = \chi(1)$ if and only if $\rho(x) = \lambda I$ for some $\lambda \in \mathbb{C}^{\times}$,
- **3** $\chi(x) = \chi(1)$ if and only if $\rho(x) = I$.

Proof.

We have $x^d = 1$ for some divisor d of |G|. Thus the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ of $\rho(x)$ are dth roots of unity and

$$|\chi(x)| = |\lambda_1 + \lambda_2 + \dots + \lambda_k| \le k = \chi(1).$$

If $|\chi(x)| = \chi(1)$, then $\lambda_1 = \lambda_2 = \cdots = \lambda_k$. If $\chi(x) = \chi(1)$, then $\lambda_i = 1$ for all *i*. The minimal polynomial of $\rho(x)$ divides $X^d - 1$ and therefore has distinct roots, whence $\rho(x) = I$. The converse implications of **2** and **3** are clear.

The kernel of a character

From 2 of the theorem $\{x \in G \mid \chi(x) = \chi(1)\} = \ker \rho$ and for convenience we also refer to it as $\ker \chi$.

The character χ is said to be *faithful* if ker $\chi = 1$.

(Recall that the *centre* of a group H is $Z(H) = \{x \in H \mid xy = yx \text{ for all } y \in H\}.$)

If $N \leq G$, define $Z(G \mod N) = \{x \in G \mid xN \in Z(G/N)\}$.

From 3 of the theorem

 $\{x \in G \mid |\chi(x)| = \chi(1)\} \subseteq Z(G \mod \ker \chi).$

and if χ is irreducible it follows from Schur's lemma that equality holds.

Solubility

A group G is *soluble* if there is a sequence of subgroups

 $G_0 = 1 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_\ell = G,$

each normal in the next, such that all G_{i+1}/G_i are abelian.

Lemma

If $G \neq 1$ is a *p*-group, $Z(G) \neq 1$, hence G is soluble.

Proof.

Let $x_1 = 1, x_2, \ldots, x_r$ represent the conjugacy classe of G. Then

$$|G| = 1 + \sum_{i \neq 1} |\operatorname{ccl}_G(x_i)|.$$

Thus there exists $i \neq 1$ such that $|\operatorname{ccl}_G(x_i)|$ is not divisible by p. But then $|\operatorname{ccl}_G(x_i)| = 1$ and hence $G = C_G(x_i)$; that is, $x_i \in Z(G)$. The fact that G is soluble follows by induction.

20/22

A lemma of Burnside

Lemma

Suppose χ is an irreducible character of G and that $gcd(\chi(1), |ccl_G(x)|) = 1$ for $x \in G$. Then either $\chi(x) = 0$ or $x \in Z(G \mod \ker \chi)$.

Proof.

There exist integers *a* and *b* such that $a\chi(1) + b|\operatorname{ccl}_G(x)| = 1$. Thus

$$\frac{\chi(x)}{\chi(1)} = a\chi(x) + b\frac{|\operatorname{ccl}_G(x)|\chi(x)|}{\chi(1)} = a\chi(x) + b\omega_{\chi}(\widehat{\operatorname{ccl}_G(x)})$$

and so $\alpha = \chi(x)/\chi(1)$ is an algebraic integer. Let $\alpha_1, \ldots, \alpha_m$ be the algebraic conjugates of α . Then $\chi(1)\alpha_i$ is a sum of $\chi(1)$ roots of unity and hence $|\alpha_i| \le 1$ and thus $|\prod_i \alpha_i| \le 1$. This is a rational number and therefore it is either 0 or 1. In the first case $\chi(x) = 0$ and in the second case $|\chi(x)| = 1$, whence $x \in Z(G \mod \ker \chi)$.

Burnside's nonsimplicity criterion

Theorem

Suppose that $|\operatorname{ccl}_G(x)| = p^a$ for some $x \in G$, where $x \neq 1$ and p is a prime. If G is a simple group, then G is cyclic of prime order.

Proof.

If a = 0, then $x \in Z(G)$ and the result follows. Let $\chi_1 = 1_G, \chi_2, \ldots, \chi_r$ be the irreducible characters of G. If a > 0 and G is a noncyclic simple group, every nonprincipal character is faithful. From the second orthogonality relations we have

$$1 + \sum_{i \neq 1} \chi_i(1) \chi_i(x) = 0.$$

If for $i \neq 1$, $p \nmid \chi_i(1)$ implies $\chi_i(x) = 0$, the equation becomes $1 + p\alpha = 0$ for some algebraic integer α , which is impossible. Thus for some i, $gcd(|ccl_G(x)|, \chi_i(1)) = 1$ and $\chi_i(x) \neq 0$. Therefore, by the previous lemma, $x \in Z(G)$, contrary to our assumption.

Burnside's $p^a q^b$ theorem

Theorem

Every group of order $p^a q^b$ (p and q primes) is soluble.

Proof.

Let Q be a Sylow q-subgroup of G and choose $x \in Z(Q)$, $x \neq 1$. Then $Q \subseteq C_G(x)$ and thus $|\operatorname{ccl}_G(x)| = p^c$ for some $c \leq a$. By Burnside's non-simplicity criterion G is either of prime order or G has a normal subgroup $1 \neq N \neq G$.

A group of prime order is soluble and by induction N and G/N are soluble. Therefore G is soluble.