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From yesterday: the essentials

First orthogonality relations

1 1 i=j
<Xi|Xj>:_ZXi(x)Xj(x):{0 . ]

Gl xeG

Second orthogonality relations

|Cg(x)| x is conjugate to y

Y xi0x; () ={
i=1

0 X is not conjugate to y
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Orthogonality revisited

Let xi, x2, ..., x, represent the conjugacy classes of G and define
h; =|cclg(x;)| for1<i=<r.

Because characters are constant on conjugacy classes, the first
orthogonality relations can be written as

i
> i ey (xx) = 851Gl.
k=1

In matrix form this is XDX ' = |GII, where X = (y;(x;)) is the
character table and D = diag(h, hy, ..., h;).

Consequently
X XxD=X (XDX )X ' =|G|I

=T . . .
and therefore X X =|G|D~!, which is the matrix form of the second
orthogonality relations.
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Summary

In the character table

Class | C1 ... C]' Cr
Size | 1 ... hj h;
il 1 .. 1 .. 1
Xi | mio ..o xilxj) oo xr(xy)
Xr | By ... Xr(xj) cee Xr(xy)

we have

> 3oy hieXi ()X (xk) = 1Gl6
> Y X)X (xr) = 1Ce(x)10 jk
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The group algebra C[G]

The group algebra C[G] is the vector space of dimension |G| with basis
(ex) xec and multiplication such that e.e, = e..

Let p;: G— GL(W;) for 1 =i <r be the distinct (up to isomorphism)
irreducible representations of G, and put 7; = dim(W;) so that the
algebra End(W;) of endomorphisms of 1W; is isomorphic to M, (C), the
algebra of all 7; x n; complex matrices..

The map p; : G— GL(W;) extends by linearity to an algebra
homomorphism p; : C[G] — End(W;) such that p;(e,) = p;(x) and the
family (;) defines a homomorphism

p:CIG]l — [ End(W;) = [ | My, (©).
i=1 i=1
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Decomposition of C[G]

p:CI[G] — [ | End(W;) =
=1

1

)
M, (C).
=1

l

Theorem
The homomorphism p is an isomorphism.

Proof. [d'aprés J.-P. Serre].

Claim: p is surjective. Suppose that f is a linear functional defined

on [[; M,,(C), which is zero on the image of p. This gives a linear

(i

relation between the functions a'”, where (a;.i]z(x)) . is the matrix
Jik

jk’
of p;(x). It follows from the Schur relations that f =0 and hence p is
surjective.
On the other hand, C[G] and []; M,,.(C) both have dimension
Gl =%, ”12 and since p is surjective it is bijective. ]
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The inverse of p

Theorem (Fourier inversion)

Let (1;),_,_, € [I;End(W;) and u =}, u(x)ey € C[G] be such that
0i(u)=u; for all i. Then

1 r
— Z n; Try, (p,-(x_l)ui), where n; = dim W;.

u(x) = Gl &

Proof.

By linearity it suffices to take =y in G. Then u(x) =0, and hence
Tryw, (pi(x 'up) = yi(x~'y), where y; is the character of p;. This reduces us
to proving

1 r

-1
5xy = ﬁ iZIHiXi(x ),

which is a consequence of the orthogonality relations (equivalently 7). [
4
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Central idempotents in C[G]

An element E € C[G] is idempotent if E* = E. ldempotents E and E’
are orthogonal it EE'=0=FE'E.

The identity transformations /; € End(1/;) are idempotents and their
inverse images F; = p ' (I;) are orthogonal idempotents in the centre
Z(CIG)) of C[GI:

EiEjzéijEi and Eit+E+---+E.=1.

By Fourier inversion we have

_ xi(1)
|G

Y Xi(xex

xeG

and the formula E;E; = 6;,E; is equivalent to

Xz() B
|G|y€ZGX’ VMW= G0
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The centre of C[(]

The central idempotents £, E», ..., E, form a basis for Z(C[G]).

If C;, Cs, ..., C, are the conjugacy classes of G, the elements
Ci =Y cec, ex are another basis. (We always suppose that C; = {1}.)

The restriction of p; to Z(C[G]) is a homomorphism whose image is
contained in the scalar matrices of M, (C); that is, it defines a
homomorphism w; : Z(C[G]) — C such that for =) ccu(x)ey in
Z(CIGD) and n; = x; (1),

w;i(u) = — Z u(x)yi(x). =— (u)

n; xeG \. r

(u is a class function and we proved this in the previous Iecture )
A~ 1Cjlxi(x;)

Thus LU,'(E]') :5ij and if Cj =Cclg(x]'), then a)i(C]-) = o
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Products of class sums

For z € Cy, define
Ajjk = |{(x,y)€Ci><Cj|xy:z}|.
Then a; . is independent of the choice of z € Cy.

Theorem

;
CiCj =) aijxCr
k=1

.
w(Cw(Cj) =) a;jrw(Cp)
k=1
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Burnside's formula

Theorem

hih; I xe(x)xe(x)xe(xg)
it = inj Xt X)X e(Xj) Xt (X (where h; = |C;)
Gl = ng

Proof.
Expand w,(Cw,(C)) =% _ a;jrw(Co).

hixe(xi) hjxe(xj) _ i 1o hey(xp)

ng ng /=1 ng

Multiply by 7,y :(xr), sum over ¢, then use the second orthogonality relations.

hih; i Xe(xXi) xe(xj)xe(xg)

=1 ng

= Z aijohexe(xe) ¥ e(xg)
t,l

=Y a;ijche|Co(xp)|8 ke = aijilGl.
7
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Algebraic integers

An element of a commutative ring B is integral over a subring A if it is a
root of a monic polynomial with coefficients from A.

A complex number which is integral over 7 is an algebraic integer. If z€ ) is
an algebraic integer, then z€ 7.

Theorem
The following are equivalent:
Q x< B is integral over A.
© The subring Alx] of B is a finitely generated A-module.

© A[x] is contained in a subring C of B such that C is a finitely generated
A-module.

v

Corollary

The elements of B which are integral over A form a submodule of B.

If ¥ is a character, x(x) is an algebraic integer
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Right eigenvectors of the class matrices

For 1<i<r let A; be the r x r matrix (a,-jk)j . <~ Class matrix

Theorem

The eigenvalues of A; are the quantities w;(C;) for 1 < t < r, hence the
w(C;) are algebraic integers.

v

Proof.

We may write »(C/)w,(C;) = >, a; jxw(Cr) as
r a A
Y (w(C)é i — aiji) w: (Cy) = 0.
k=1

That is, the column vector (w;(Cy),...,w,(C,))" is an eigenvector of A;;
it is non-zero because w;(C;) =|C;| = 1.

Thus det(w,(C;)I — A;) =0 and the w,(C;) are eigenvalues of A;.

Moreover they satisfy a monic polynomial with integer coefficients;
i.e., they are algebraic integers. ]




15/22

Left eigenvectors of the class matrices

We have
aijx|Cil = [{(x,y) € Ci x Cj | xy € C}

and therefore
aijk|Ckl = ajrgj1Cjl

where C; = {x"'|xe C;}.
Thus w(Ci)w(Cy) = P aiejw¢(Cj) becomes
r A
Z Xe(x;) (wt(ci’)5jk - aijk) =0
i=1

and so (y;(x1), x:(x2),..., x+(x,)) is a left eigenvector of A;.
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Divisibility

Theorem
The degrees of the irreducible characters of G divide |G]|.

Proof.

Suppose that y; is an irreducible character of degree 7, and that for
l1<i<r, C;=cclg(x;). Then

Z Cx,(xi) = P Z 1Cilxe(x)x (X)) = — Z Xe(X) ¥, (X)

Nt xeG
|G | |Gl
=— Xl xe)=—,
ng n

r

whence |G|/ n; is an algebraic integer. Since this is a rational number
it must belong to Z; that is, n, divides |G]|. ]

v
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Further properties of characters

Theorem
Let p be a linear representation of G with character y. For all x€ G

Q Y=y,
@ |y(x)|=y(1) ifand only if p(x) = AI for some L€ C*,

© y(x)=y() ifand only if p(x) = 1.

Proof.
We have x? =1 for some divisor d of |G|. Thus the eigenvalues
A, Ao, ..., A of p(x) are dth roots of unity and
Y| = A+ Ap+--+ A < k= y(1).
If |y(x)|=x(1), then A=Ay =---= 1.

If y(x)=y(1), then 1; =1 for all i. The minimal polynomial of p(x) divides
X% ~1 and therefore has distinct roots, whence p(x) = I.
The converse implications of @ and @ are clear. O

v
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The kernel of a character

From @ of the theorem {xe G| y(x) = y(1)} =kerp and for
convenience we also refer to it as kery.

The character y is said to be faithful if kery = 1.

(Recall that the centre of a group H is
Z(H)={xe H|xy=yx forall ye H}.)

If NG, define Z(Gmod N)={xe G|xNe Z(G/N)}.

From @ of the theorem
{xeG|lxy(x)|=xM)}< Z(Gmod kery).

and if y is irreducible it follows from Schur’'s lemma that equality
holds.
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Solubility

A group G is soluble if there is a sequence of subgroups

Go=1<G1 <G «q---<1Gy =G,

each normal in the next, such that all G;,,/G; are abelian.

Lemma
If G#1 is a p-group, Z(G) # 1, hence G is soluble.

Proof.

Let x; =1, x2, ..., x, represent the conjugacy classe of G. Then
IGl=1+ ) lcclg(x;)l.
i#1

Thus there exists i # 1 such that |cclg(x;)| is not divisible by p. But then
lcclg(x;) =1 and hence G = Cq(x;); that is, x; € Z(G).
The fact that G is soluble follows by induction. ]
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A lemma of Burnside

Lemma

Suppose y is an irreducible character of G and that
gcd(y(1),|cclg(x))) =1 for x € G. Then either y(x) =0 or
x € Z(G mod kery).

Proof.
There exist integers a and b such that ay(1) + b|cclg(x)| =1. Thus

x(x) |cclg (X)) y (x) —
W =ay(x)+b ) = ay(x) + bw, (cclg(x))
and so @ = y(x)/y(1) is an algebraic integer. Let a, ..., @, be the

algebraic conjugates of @. Then y(1)a; is a sum of y(1) roots of unity
and hence |a;| =1 and thus |[]; @;| = 1. This is a rational number and
therefore it is either 0 or 1. In the first case y(x) =0 and in the second
case |y(x)| =1, whence x € Z(G mod kery). ]

y
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Burnside's nonsimplicity criterion

Theorem

Suppose that |cclg(x)| = p® for some x € G, where x #1 and p is a
prime. If G is a simple group, then G is cyclic of prime order.

Proof.
If =0, then xe€ Z(G) and the result follows.
Let y1 =1, ¥2, ..., ¥, be the irreducible characters of G. If a>0

and G is a noncyclic simple group, every nonprincipal character is
faithful. From the second orthogonality relations we have

1+ xi(yi(x) =0.
i#1
If for i #1, p{y;(1) implies y;(x) =0, the equation becomes 1+ pa =0
for some algebraic integer a, which is impossible. Thus for some 1,
ged(|cclg(x)], xi(1)) =1 and y;(x) #0. Therefore, by the previous
lemma, x € Z(G), contrary to our assumption. ]

v
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Burnside's p“q"” theorem

Theorem

Every group of order p“q” (p and q primes) is soluble.

Proof.

Let Q be a Sylow ¢g-subgroup of G and choose x€ Z(Q), x# 1. Then
Q < Cg(x) and thus |cclg(x)| = p© for some ¢ < a.

By Burnside's non-simplicity criterion G is either of prime order or G
has a normal subgroup 1 # N # G.

A group of prime order is soluble and by induction N and G/N are
soluble. Therefore G is soluble. o

v




