
Perfect simulation for sample-based inference

Jesper Møller1 and Geoff K. Nicholls2

August 5, 1999

1Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej
7E, DK-9220 Aalborg Ø, Denmark. Email: jm@math.auc.dk.
2Department of Mathematics, Auckland University, Private Bag 92019 Auckland,
New Zealand. Email: nicholls@math.auckland.ac.nz.

Abstract: Perfect simulation algorithms based on Propp and Wilson (1996) have
so far been of limited use for sampling problems of interest in statistics. We spec-
ify a new family of perfect sampling algorithms obtained by combining MCMC
tempering algorithms with dominated coupling from the past, and demonstrate
that our algorithms will be useful for sample based inference. Perfect tempering
algorithms are less efficient than the MCMC algorithms on which they typically
depend. However, samples returned by perfect tempering are distributed accord-
ing to the intended distribution, so that these new sampling algorithms do not
suffer from the convergence problems of MCMC. Perfect tempering is related
to rejection sampling. When rejection sampling has been tried, but has proved
impractical, it may be possible to convert the rejection algorithm into a perfect
tempering algorithm, with a significant gain in algorithm efficiency.

Keywords: Bayesian inference; Dominated coupling from the past; Exact sam-
pling; Logistic Regression; Markov chain Monte Carlo; Metropolis-Hastings al-
gorithm; Reversible jump MCMC; Simulated sintering; Simulated tempering;
Strauss process.

1 Introduction

Reliable general purpose simulation algorithms play an important role in the
automation of sample based Bayesian inference. Standard Markov chain Monte
Carlo (MCMC) algorithms are very often adequate for this purpose (Gilks et al.,
1996). However a sufficient condition, guaranteeing the distributional properties
of the output, is not usually available.

Propp and Wilson (1996) give an algorithm for exactly sampling the target
distribution of certain MCMC algorithms. Their ideas have been generalised and

1

extended in a number of ways. The resulting algorithms have proven useful in
spatial statistics, stochastic geometry and statistical physics (Propp and Wilson,
1996; Häggström et al., 1999; Häggström and Nelander, 1997; Kendall, 1997a;
Kendall and Thönnes, 1997; Kendall, 1998; Propp and Wilson, 1998; Kendall
and Møller, 1999; Mira et al., 1999; Møller, 1999b; Møller and Schladitz, 1999;
Thönnes, 1999). However, they have so far been of limited use for sampling prob-
lems of general interest in statistics (Fismen, 1997; Hobert et al., 1998; Murdoch
and Green, 1998; Møller, 1999b; Green and Murdoch, 1999). In particular, per-
fect samplers are least likely to be available for just those sampling problems in
which their high cost, in ingenuity and computing, might be overlooked.

The following situation is typical. A MCMC algorithm is given. It is believed
to converge efficiently to its intended target distribution, even though that dis-
tribution is, say, multi-modal. The sampling problem is difficult, and so some
independent check of the MCMC might be called for. However, in order to get
verifiably perfect samples, perfect-sampler updates must satisfy a number of con-
ditions (often related to monotonicity). As a result one cannot, in the perfect
sampler, use the powerful updates one can use in regular MCMC, and so it does
not terminate in any reasonable amount of time.

The family of perfect tempering algorithms we describe may be helpful. They
are built around the simulated tempering algorithms of Marinari and Parisi (1992),
Geyer and Thompson (1995) and Liu and Sabatti (1998), though in Section 2.1
we take a more general setting for the tempering. Also, one may add to a finished
perfect sampler any regular MCMC update, as a fixed-level tempering update,
without disturbing the perfect sampler. It is possible to build good quality for-
ward sampling processes within this setting.

The essentials are as follows. The tempering has N? + 1 levels, labelled
0, 1, . . . , N?, corresponding to a sequence of artificial distributions which inter-
polate between the target distribution at level N? and a distribution on an atom
at level zero. In this way we place the target distribution in a mixture distribu-
tion containing an atom. The tempering process is coupled to a second process,
a simple random walk on the 0, 1, . . . , N? tempering level labels. The random
walk is constructed and coupled so that it dominates the tempering process: if
the random walk is initialised at a tempering level above the tempering process,
then its future level is at or above the level of the tempering process. When
the dominating random walk, initialised in level N?, visits level zero, all coupled
tempering processes coalesce in the atom at level zero. Besides determining coa-
lescence, domination is used in Section 2.2 to study the ergodicity properties of
the tempering process. These ideas are developed in Section 2.3 where a perfect
simulation algorithm is given. Kendall and Møller (1999) use domination in a
different fashion toward a similar end.

The property of domination is related to the envelope property of the covering
function in rejection sampling. Indeed, one generic family of perfect tempering
algorithms is derived using this connection. Such perfect tempering algorithms

2

can be far more efficient than the rejection algorithm to which they are closely
related. This relation is made explicit in the final paragraph of Section 3.2.4. The
overhead in programme complexity, compared to rejection, need not be large. The
efficiency of the algorithms we devise are very sensitive to the relative weighting
(the pseudo-prior) of the component distributions in the sequence of temper-
ing distributions. We have an empirically determined recipe for choosing these
weights.

Efficiency comparisons of our perfect sampler, rejection and regular MCMC
are discussed in Section 3.1.1 and later on in Section 2.3. Since our perfect
sampler produces groups of samples, correlated within groups, but independent
between groups, these comparisons are a little more complicated than they might
otherwise be.

Our three examples include two Bayesian sampling problems. In Section 3.2
we study the Flour Beetle Mortality dataset of Bliss (1935), while Section 3.3
treats a radiocarbon calibration problem. In Section 3.4 we simulate a spatial
point process and thereby demonstrate that our perfect simulation algorithm
covers cases with a randomly variable dimension under the target distribution.
Our perfect simulated tempering algorithm has worked for all the problems on
which we have tried it, though in some (unpublished) examples, a fair amount
of ingenuity was needed to get a reasonably efficient algorithm. In Section 3.4.2
we study an alternative perfect simulation algorithm, summarise our experience,
and mention some improvements which can be made to the basic algorithm.

2 Perfect Simulated Tempering

All densities and distributions referred to below are unnormalised. Let G(dx)
be the distribution of a random variable XG, taking values in a space ΩG. Here
XG may be of fixed or variable dimension, since we may wish to sample a posterior
distribution developed from a fixed model, from a finite mixture of models, or
indeed from some general point process. We refer to G as the target distribution:
it is the distribution we wish to sample.

2.1 Tempering process and coupling construction

We begin by describing a tempering distribution and forward sampling process,
following Geyer and Thompson (1995) and Liu and Sabatti (1998). Suppose we
choose to have N? ≥ 1 tempering levels. For each n ∈ {0, 1, . . . , N?} we should
choose a distribution Hn(dx) and a corresponding level-n space, Ωn say. We
impose a couple of conditions on this sequence of distributions. We assume that
HN? = G, and H0 is a distribution on a single atom, 0 say, so that Ω0 = {0}.
This setting can be extended as explained in Remark 2 at the end of Section 2.3.
As a practical consideration, H1 might be a distribution which can be sampled
perfectly by standard means (such as rejection sampling). The distributions

3

Hn interpolate between a distribution H1 from which we can obtain samples,
and a distribution HN? from which we wish to obtain samples. Marinari and
Parisi (1992) and Geyer and Thompson (1995) call Hn at small n the “hot”
distributions and Hn at large n the “cold” distributions. A few of the many
potentially useful tempering transitions are listed in Section 4.2.

We now form a mixture distribution H(dx, n) and a corresponding pair-
variable Z = (X,N), whereN ∈ {0, 1, . . . , N?} andX ∈ ΩN . Let π = (π0, π1, . . . , πN?)
where each πn > 0 is a constant. Distribution H is defined over a space

Ω =
N?⋃
n=0

(Ωn × {n}) ,

and is given as the π-weighted mixture

H(dx, n) = πnHn(dx)

for each (x, n) ∈ Ω. The constants πn control the marginal distribution of Z in
its tempering level variable N , and are referred to as the pseudo-prior. Notice
that

(X|N = N?) ∼ G,

ie if we sample according to H and then thin so that only those samples with
N = N? are kept, the resulting samples are distributed according to G, our target
distribution.

We next specify a reversible MCMC jump algorithm (Green, 1995) which
generates the Markov chain Zt,

Zt ≡ (Xt, Nt), t ∈ Z

with invariant distribution H, which we refer to below as the tempering process.
For ease of exposition we suppose that just three types of update are applied.
When the current state is (x, n), we may propose a move “up” into (x′, n + 1)
with x′ ∈ Ωn+1, or “down” into (x′, n − 1) with x′ ∈ Ωn−1, or we may propose
a “fixed-level” update into (x′, n) with x′ ∈ Ωn. For each state (x, n) ∈ Ω, let
p ∈ (0, 1) be the probability a move up is proposed, and let q ∈ (0, 1 − p] be
the probability a move down is proposed, so that 1− p− q is the probability for
a fixed-level update to be proposed (we interpret “move up” as “do nothing” if
n = N?; and similarly “move down” as “do nothing” if n = 0). We suppose that
p = p(x, n) and q = q(x, n), which might be state functions, are constants and
that p = q. These assumptions may be removed without difficulty.

The reversible jump MCMC algorithm is a Metropolis-Hastings algorithm
specified by a proposal distribution and an acceptance probability as follows.
When the current state is (x, n), and a transition to level n′ is proposed as
described above, let fn,n′(x, dx

′) be the proposal distribution for candidate states
x′ ∈ Ωn′ . The proposal distribution fn,n′(x, dx

′) must satisfy Green’s dimension
matching condition (Green, 1995),

4

(C1) The distribution H(dx, n)fn,n′(x, dx
′) has a density

F((x, n), (x′, n′)) =
H(dx, n)fn,n′(x, dx

′)

ξ(dx, n), (dx′, n′))
,

with respect to a symmetric measure ξ((dx, n), (dx′, n′)) on Ω× Ω.

The acceptance probability is now

α((x, n), (x′, n′)) = min{1, r((x, n), (x′, n′))}

where

r((x, n), (x′, n′)) =
F((x′, n′), (x, n))

F((x, n), (x′, n′))
(1)

is Hastings’ ratio. We take 0
0

= 0 in Eq. (1). By Green’s condition (C1), Zt will
be reversible with respect to H. When we design algorithms, we substitute r into
the detailed balance relations, and check reversibility under H without explicitly
constructing ξ. A simulation algorithm for Zt is given in Figure 1.

We will be interested in only those forward simulation processes Zt which
can, in the sense of Section 2.2, be dominated by a coupled random walk, Dt ∈
{0, 1, . . . , N?}. We impose conditions on Zt, which will allow Zt to be dominated:

(C2) Suppose the following conditions are satisfied for all (x, n) ∈ Ω
with n < N? and fn,n+1(x, ·)-almost all x′ ∈ Ωn+1:
(a) there is symmetry and positivity in Hastings’ ratio,

r((x, n), (x′, n+ 1)) = 1/r((x′, n+ 1), (x, n)) > 0,

(b) there exist upper bounds Kn ∈ (0,∞) satisfying

Kn ×
πn+1

πn
≥ r((x, n), (x′, n+ 1)).

Remark: Taking (C2a) and (C2b) together, we see that acceptance ratios for
downward transitions must be bounded away from zero. We impose condition
(C2a) in order to avoid giving too much attention to special cases, while condition
(C2b) is analogous to local stability for point processes under point addition, used
in Geyer (1999) and Kendall and Møller (1999), and related also to the envelope
condition of a rejection algorithm. It will sometimes be convenient to relax these
conditions. Refer to Remark 1 at the end of Section 2.3.

We can now complete the specification ofDt. We define proposal probabilities,
which coincide with those of Nt, and acceptance probabilities

α̃(n, n+ 1) = min

{
1, Kn

πn+1

πn

}
(2)

α̃(n, n− 1) = min

{
1,

1

Kn−1

πn−1

πn

}
(3)

α̃(n, n) = 1 (4)

5

for candidate states in the simulation of Dt. The process Dt is a random walk,
which moves from n to n+ 1 with probability p α̃(n, n+ 1) (if 0 ≤ n < N?) and
from n to n− 1 with probability q α̃(n, n− 1) (if 0 < n ≤ N?); otherwise it stays
in n. A simulation algorithm for Dt is given in Figure 2.

2.2 Domination and ergodicity

In this section we couple the two chains Zt andDt, define the domination property
and show that Zt is uniformly ergodic. In order to use the general results for
Markov chains considered below, we assume, as in (Meyn and Tweedie, 1993),
that the σ-field on Ω is separable.

Following Propp and Wilson (1996) and later authors, it is convenient to
specify a coupling of Zt andDt in terms of a so-called stochastic recursive sequence
(SRS). Let U1

t , U
2
t , t ∈ Z be independent U(0, 1)-variates. We set

Zt+1 = STupdate(Zt;U
1
t , U

2
t), (5)

and
Dt+1 = RWupdate(Dt;U

1
t , U

2
t), (6)

where the functions STupdate and RWupdate are given in Figure 1 and Fig-
ure 2. Notice that extra random variables are needed to generate candidate
states, x′ ∼ fn,n′(x, dx

′), in the Zt → Zt+1-update; these extra random vari-
ables play no role in the coupling between STupdate and RWupdate. This is
convenient, since it follows that rejection sampling may be used to simulate from
fn,n′(x, dx

′) without otherwise complicating the coupling. Perfect simulation al-
gorithms which simulate Zt more than once over the same t-values must store
and re-use these extra random numbers. This will not be necessary in our case.

Propp and Wilson (1996) give a perfect simulation algorithm in which mono-
tonicity is used to detect coalescence. We give a similar algorithm in which
coalescence is determined using a dominating process, following Kendall and
Møller (1999).

(P1) Using the coupling construction in Eq. (5) and Eq. (6), the Dt

process dominates the Zt process in the sense that

Pr{Nt+1 ≤ Dt+1|Nt = n,Dt = m} = 1 whenever n ≤ m.

This property of algorithms STupdate and RWupdate follows immediately using
Eqs. (2) – (4) with condition (C2).

We turn now to the ergodicity properties of the two chains. We consider
first Dt, the dominating process. This random walk is ergodic on the finite state
space {0, 1, . . . , N?}. Furthermore, by construction as a Metropolis algorithm,
Dt is reversible with invariant distribution QD ≡ (QD

0 , . . . , Q
D
N?) where

QD
n+1 = QD

n Kn
πn+1

πn
. (7)

6

We refer below to QN ≡ (QN
0 , . . . , Q

N
N?) also, the equilibrium distribution for Nt

over {0, 1, . . . , N?}, for which we have in general no closed form.
Consider next the tempering process. Condition (C2) distinguishes Zt from a

general reversible jump MCMC algorithm, for which ergodicity properties cannot
in general be established (Green, 1995; Geyer, 1999).

(P2) Tempering process Zt is uniformly ergodic with equilibrium H.

We now show that property (P2) holds. By construction, Zt is reversible with
respect to H and so H is an invariant distribution for Zt. By property (P1), for
any measurable A ⊆ Ω and any state z ∈ Ω,

Pr{Zt+N? ∈ A|Zt = z} ≥ εI(0,0)∈A,

where
ε = Pr{Dt+N? = 0|Dt = 0}.

Since Dt is an ergodic random walk, ε satisfies ε > 0. Hence, in the terminology
of Meyn and Tweedie (1993), the state space Ω is a small set for the chain Zt.
This is equivalent to uniform ergodicity, ie

sup
z∈Ω
||Pr{Zt ∈ ·|Z0 = z} −H(·)|| → 0 as t→∞,

where || · || denotes the total variation norm (Theorem 16.0.2 in Meyn and
Tweedie, 1993).

2.3 Perfect sampling

We now describe how dominated tempering may be used to estimate expectations
under the target distribution G. First of all, suppose we can initialise Zt so that
Z0 ∼ H. It would then be straightforward to estimate expectations under G: Let
a fixed integer L > 0 be given; simulate Zt forwards from t = 0 to t = L generating
a realization {(xt, nt)}Lt=0 of Zt. Samples xt in the set {xt;nt = N?, 0 ≤ t ≤ L}
may be used to estimate expectations, since, for real functions f with EG|f | <∞,

EGf =
EH{

∑L
t=0 f(Xt)INt=N∗}

EH{
∑L

t=0 INt=N∗}
.

See Section 3.1.1 and the discussion in Geyer and Thompson (1995) for further
information. Note that, if we set τ? = inf{t ≥ 0 : Nt = N?}, the random variable
Xτ? does not in general follow G. We warn against this curiously attractive error.

The problem then is to generate Z0 ∼ H. A perfect simulation algorithm
PWperfect is specified in Figure 3. It works as follows. A realization u =
((u1
−1, u

2
−1), (u

1
−2, u

2
−2), . . .) of the sequence (U1

−1, U
2
−1), (U1

−2, U
2
−2), . . . of random

number pairs is fixed. Using these fixed random numbers, we make a sequence

7

of simulations of Dt running forwards from negative times. Let a = 0, 1, 2, . . . la-
bel these simulations. The “T” argument of PWperfect determines how far back
the first simulation starts. At each simulation we start one step further back,
initialising D

(a)
−T−a = N?, and simulating forward using

D
(a)
t+1 = RWupdate(D

(a)
t ; u1

t , u
2
t).

Simulation “a” runs forward in time until one of three events occurs: (A) the

event D
(a)
t = 0 occurs, or (B) D

(a)
t couples with the previous simulation, so that

D
(a)
t = D

(a−1)
t , or (C) the simulation reaches t = 0 without (A) or (B) occurring.

When the simulation is terminated by events (B) or (C), we take a step back in

time and repeat the calculation for D
(a+1)
t starting from D

(a+1)
−T−a−1 = N?. When

the simulation is terminated by event (A), the algorithm moves to a second phase.
Let a0 be the index of this final sequence, so that a0 is the smallest a > 0 such
that (A) occurs. Given a0, let

−τ? = inf{−T − a0 < t ≤ 0;D
(a0)
t = 0}

so that −τ? is this first hitting time for the D
(a0)
t simulation. Every tempering

path, simulated from times t ≤ −τ? using the fixed random numbers u, is in state
(0, 0) at time t = −τ? (using the domination property (P2), and irrespective of
the coupling adopted for the numbers used to simulate candidate states in the Zt
simulation). We therefore set Z−τ? = (0, 0) and simulate forward from t = −τ?
up to t = −1, using

Zt+1 = STupdate(Zt; u
1
t , u

2
t).

It is the value Z0 determined by this final forward simulation of Zt which is the
useful sample from H.

(P3) With probability one the perfect simulated tempering algorithm
PWperfect terminates and returns τ? <∞ and Z0 ∼ H.

A proof of the above result follows the proof of Theorem 2 in Propp and
Wilson (1996) closely, and is therefore omitted.

Remarks:

1. In some applications it may be useful to relax condition (C2) and observe
that the following properties establish (P3): the domination property (P1)
holds, 0 is an ergodic atom for Dt, Zt converges in distribution towards H
as t → ∞, and we have the coupling construction of Eqs. (5) and (6). A
similar setting is used in Kendall and Møller (1999).

2. The assumption that Ω0 is a singleton can be relaxed. We can replace Ω0 by
a general measurable set provided that, for example, the tempering process

8

regenerates whenever it visits Ω0 × {0}. The simulated tempering chain
would then regenerate whenever the dominating random walk has a 0→ 1
transition. Since Z−τ?+1 does not depend on Z−τ?, we can set Z−τ? = (x, 0)
with x ∈ Ω0 arbitrary. Properties (P1)–(P3) hold as before.

3. A more efficient algorithm is described in Section 4. Our examples use
PWperfect as it is more easily implemented from STupdate, the forward
tempering update.

We conclude this section with three further points of explanation related to
PWperfect. First, we consider the event (B) for the following reason. ¿From the

point at which the path ofD
(a+1)
t couples to the path of D

(a)
t , the further evolution

of D
(a+1)
t is given (ie, D

(a+1)
t = D

(a)
t if D

(a+1)
s = D

(a)
s and −T − a ≤ s < t ≤ 0)

and since, in the algorithm, we know that that future evolution does not contain
the interesting event (A), we terminate the simulation and step back once again.

Readers may find it instructive to sketch possible paths of the D
(a)
t processes and

observe the further sandwiching property, D
(a+1)
t ≤ D

(a)
t for −T − a ≤ t ≤ 0.

Second, for simplicity, we call PWperfect with T = 1, but any integer T ≥ 1
is correct. Third, notice that when a run is terminated by event (B) or (C),
PWperfect calls itself with T → T+1. In practice event (B) terminates all but the

first few and the last D
(a)
t -simulations after just a few steps. If event (B) occurs

after b steps on average then the number of Dt-update computations is 2bτ?, or
thereabouts. One may replace the main loop of PWperfect by something like

repeat

t← t+ 1

D← RWupdate(D; u1
t , u

2
t)

if t = [T/2]

return PWperfect(u, 2T)

until D=0

(where [T/2] is the greatest integer less than T/2, and we call PWperfect(u, T)
with T > 0). The starting time then doubles at each step back, as in Propp and
Wilson (1996). Notice that event (B) no longer terminates a forward simulation.
If τ ′? is the hitting time returned under this doubling rule then τ ′? ≥ τ? for u given:
so one step back gives a shorter hitting time. This is worth something when the
simulation of Zt is expensive. However, the doubling rule has its advantages. The
number of Dt-updates computed under the doubling rule is not more than 2τ?
(so long as the simulated path of D(a0)

t crosses no times t = 2dT , for d positive
integer). Also, the code above is simpler than that given in Figure 3.

9

3 Examples

3.1 Introduction to the examples

3.1.1 Comparing simulation algorithms

We follow Sokal (1989). Suppose we wish to estimate µf = EGf for some real
function f satisfying EG|f | <∞. Let µ̂f be the sample mean of f determined from
the output of a simulation taking M updates in total (so M is not the number
of sample values in the output, but the number of updates used to generate that
output - this is explained in more detail below). Let σ2

f = varG(f) be the variance
of f in G and let σ2

µf
= var(µ̂f) be the variance of our estimate for µf . Then

σ2
f/σ

2
µf

(the inverse integrated autocorrelation) estimates the number of “effective

independent samples” in the output and E = σ2
f/[σ

2
µf
M] may be thought of as

the number of effective independent samples generated per update of work done
(when M is measured in updates). We will call E the efficiency of the algorithm
generating the output under consideration, and use EP , ER, and EM to denote
the efficiency of our perfect simulation, rejection and regular MCMC algorithms
respectively. In the estimation of σ2

µf
/σ2

f , Geyer’s monotone sequence estimator

(Geyer, 1992) was used.
Simple updates, computed rapidly, may reduce estimator variance at a rate

which is greater, in CPU-seconds, than sophisticated updates, requiring more
time to compute. In such cases it is sensible to measure M in CPU-seconds
(on fixed hardware). This, however, compares computer programmes and not
algorithms. If one implementation is either clumsy and inefficient, or highly
optimised, the comparison is not useful.

We assume it is understood what we mean by “output” and “update” for
regular MCMC. In rejection sampling, an update is one rejection or acceptance
operation, and the output is the sequence of accepted samples. Consider a se-
quence of calls to PWperfect. The result of the i’th such call is a sample Z

(i)
0 say,

and a backwards simulation time, τ
(i)
? say. The sample Z

(i)
0 is used to initialise

simulation of an ordered set of samples s(i) = {x(i)
t ;n

(i)
t = N?, 0 ≤ t ≤ L}. If

B such sets are produced then the output is defined to be the sequence of se-
quences s = (s(1), s(2), . . . , s(B)). Let Mi = τ

(i)
? + L be the number of tempering

updates needed to simulate s(i). Then M =
∑
Mi is the number of updates used

to simulate s. Note that we are counting, in the the cost M , perfect simulations
yielding no samples (clearly, s(i) may be empty). We are not allowing for the cost
of simulating Dt in M , as Dt-updates are generally trivial by comparison with
Zt-updates. We compensate by presenting CPU-time based efficiencies, in which
M is measured in CPU-seconds, including the time to simulate Dt, alongside the
update-based efficiency. We gather together our efficiency estimates in Table 1.

10

3.1.2 Pseudo-priors and forward simulation

How should we specify the pseudo-prior π? These numbers control the distribu-
tion of Dt and Nt over {0, 1, . . . , N?}. They may be set to any positive values
without biasing our perfect samples. However, the efficiency, E , just defined,
depends on the pseudo-prior, and it is natural to choose π so that independent
samples are returned at the highest possible rate. This calculation is beyond our
reach. Consider, however, the following.

For π = πD specified by πD,n+1 = πD,n/Kn, for n = 0, . . . , N − 1, the equi-
librium distribution QD for D is a uniform distribution on {0, 1, . . . , N?}, by
Eq. (7). In this case, Dt soon hits Dt = 0, so τ? is small, and a Zequi

0 -value is
quickly returned by PWperfect. However, downward proposals with n′ = n−1 in
the Zt simulation of Figure 1 are always accepted as r((x, n), (x′, n− 1)) ≥ 1 by
condition (C2), so QN

0 � QN
N? is typical under pseudo-prior πD. Hence, events

Nt = N? are rare, and we typically get no samples for reasonable simulation
lengths L from t = 0.

An alternative pseudo-prior, πN say, makes QN uniform. The weighting is
πN,n = c/cn where c > 0 is an arbitrary constant and

cn =

∫
Ωn

Hn(dx). (8)

Geyer and Thompson (1995) discuss how the cn can be estimated up to pro-
portionality using some preliminary forward simulations of the Zt process (we
used their Robbins-Monro estimation). Since Hn is typically more dispersed
than Hn+1, we generally find πN,N? � πN,0 and consequently QD

0 � QD
N? under

π = πN (refer to the last sentence of Section 3.4.1 for an explicit example). This
time tempering events with Nt = N? are common, so the simulation of G given
Z0 ∼ H is quick. However, Dt rarely visits Dt = 0, so that τ? can be very large,
and the return time of PWperfect is unacceptable.

We found empirically that a geometric average pseudo-prior π̄, with π̄n =√
πD,nπN,n, is a useful starting point, as it balances these two extremes. Geyer

and Thompson (1995) estimate the number of distributions and the spacing of
the distributions most efficient for forward sampling of the target. We have not
attempted to optimise our schedules in this respect.

The efficiency of perfect simulation clearly depends on L. In principle, E ,
measured as a rate in CPU-time, gives a basis for adjusting L to increase effi-
ciency. In practice we choose L so that the random set s(i) above is non-empty
with some probability around one half.

11

3.1.3 Density notation

In the examples considered later G is given in terms of an unnormalised density
g(x) and a measure νG of ΩG, so that

G(dx) = g(x)νG(dx).

Moreover, for each n ∈ {0, 1, . . . , N?} the distribution Hn has an unnormalised
density hn(x) with respect to some measure νn(dx) of Ωn, so

Hn(dx) = hn(x)νn(dx).

In particular we set h0 = 1, ν0(dx) = I0∈dx, ΩG = ΩN? , hN?(x) = g(x), and νG =
νN?. Hence the distribution H has an unnormalised density h(x, n) = πnhn(x),

H(dx, n) = h(x, n)ν(dx)

with respect to the measure ν, defined for all measurable subsets A of Ω by

ν(A) =
N?∑
n=0

∫
I(x,n)∈Aνn(dx).

Here ‘measurable’ means with regard to some suitable σ-field on Ω, which is
typically generated by some σ-fields defined for each space Ωn, n = 0, 1, . . . , N? —
these measure theoretical details are rather obvious and left out in the examples
considered below.

3.2 Flour Beetle Mortality dataset

3.2.1 Introduction

Carlin and Louis (1996) describe the following sampling problem. It arises from
the data set containing K = 8 items, shown in Table 2, extracted from Bliss
(1935). We abbreviate the motivation. In terms of a three-component parameter
vector x = (x1, x2, x3) ∈ R3 and data ω, y and a given above, the unnormalised
posterior (target) density of x is

g(x) = P (x)
K∏
i=1

`(ωi, yi, ai|x).

Here
`(ωi, yi, ai|x) = I(ωi, x)yi [1 + I(ωi, x)]ai−yi ,

is a likelihood factor,

I(ωi, x) =

{
exp(ωi−x1

exp(x2)
)

1 + exp(ωi−x1

exp(x2)
)

}exp(x3)

12

is a threshold function,

P (x) = exp(ã0x3 − 2e0x2) exp

[
−1

2

(
x1 − c0

d0

)2

− b0 exp(x3)− f0 exp(−2x2)

]

is an unnormalised prior density and

ã0 = 0.25, b0 = 0.25, c0 = 2, d0 =
√

10, e0 = 2.000004, f0 = 0.001

are constants. Here νG(dx) = dx1dx2dx3, with dxi Lebesgue measure of R.
In this problem x are related to parameters (µ, σ,m) as x1 = µ, exp(x2) = σ

and exp(x3) = m, and the form of the prior density P (x) reflects a choice of
independent priors µ ∼ N(c0, d

2
0), σ2 ∼ IΓ(e0, f0) (where IΓ is the inverse Gamma

distribution) and m ∼ Γ(ã0, b0), along with a Jacobian factor.

3.2.2 Tempering sequence

We now specify the tempering sequence. In this problem we use a sequence of
densities distinguished by the value of the inverse temperature βn in a tempering
schedule β = (β1, . . . , βN?). Here βi+1 > βi and βN? = 1. In choosing hn, an
important observation is that `(ωi, yi, ai|x) reaches its maximum value at

`∗i ≡ (yi/ai)
yi(1− yi/ai)ai−yi,

as would be the case in a regular logistic regression. We therefore take as our
sequence of tempering densities

hn(x) =

[
K∏
i=1

`(ωi, yi, ai|x)/`∗i

]βn
× P (x), Ωn = R3, νn = νG

for n = 1, 2, . . . , N?. When we change the tempering level we do not otherwise
change the state, ie for |n − n′| = 1 we let fn,n′(x, dx

′) = Ix∈dx′. We therefore
have

r((x, n), (x, n+ 1)) =
πn+1

πn
×
[
K∏
i=1

`(ωi, yi, ai|x)/`∗i

]βn+1−βn

for 1 ≤ n < N?. If a transition from n = 0 to n = 1 is proposed then we sample
the proposal x′ ∼ H1 directly by sampling the prior and rejecting with remaining
factors. We have r((0, 0), (x′, 1)) = π1/π0. Condition (C2a) is thereby satisfied.
Because r((0, 0), (x′, 1)) is independent of x and x′, and the πn may be set to any
positive values without biasing our perfect samples, we are free to set π0 = π1 and
so obtain r((0, 0), (x′, 1)) = 1. Since `(ωi, yi, ai|x) ≤ `∗i and βn+1 > βn, condition
(C2b) is satisfied under the choice Kn = 1 for each n = 0, 1, . . . , N? − 1.

13

3.2.3 Regular MCMC

In this section we describe a regular MCMC update for g(x). We use the same
type of update at fixed level n = n′ > 0 in the tempering algorithm STupdate of
Figure 1.

Carlin and Louis (1996) note that there is no closed form available for any
of the three posterior conditional distributions needed to implement a Gibbs
sampler for g. They go on to show that a Metropolis random walk algorithm,
with proposal covariance matrix

Σ =

 0.000292 −0.003546 −0.007856
−0.003546 0.074733 0.117809
−0.007856 0.117809 0.241551

gives an effective sampling process for g.

Suppose (x, n) is the current state and that p < u1
t < 1 − q in STupdate.

Three independent standard normal variates w = (w1, w2, w3), wi ∼ N(0, 1), are
generated and used to determine a candidate state, x′ = x + wchol(Σ) where
chol(Σ) is the Cholesky matrix of Σ. The candidate is accepted with probability
min{1, hn(x′)/hn(x)} at level n of our tempering. Set hn = g(x) to obtain the
acceptance probability for the regular MCMC update.

3.2.4 Results from experiments

After a little experimentation we found a tempering schedule withN? = 3, β1 = 0,
β2 = 0.06 and β3 = 1 to be reasonably effective. We set p = q = 1/3 throughout
our simulations as the tempering is less efficient when fixed level updates are
excluded. Constants πN , which give Nt a uniform distribution on {0, 1, . . . , N?},
were estimated. Sample output from forward tempering is shown in Figure 4.
Perfect simulation was then carried out using π̄, the geometric average pseudo-
prior. Sample output from a perfect simulation run is shown in Figure 5.

How does the perfect sampler compare with regular MCMC and rejection
sampling? A comparison based on CPU-time is preferred to one based on up-
dates, since the perfect tempering updates are cheaper to compute on average
than regular MCMC updates, in any reasonable implementation. Referring to
Table 1, our perfect sampling process was about 50 times less efficient than our
regular MCMC, and around 100 times more efficient than our rejection sampler.
Note that greater ingenuity will uncover better rejection and standard-MCMC
algorithms. However, these lead directly to a more efficient dominated tempering
algorithm.

We wish to make the connection with rejection explicit here. Consider a
tempering schedule with N? = 2, β1 = 0 and β2 = 1, and pseudo-prior πD. In the
perfect tempering algorithm, α((x, 1), (x, 2)) = h2(x)/h1(x) (since K1 = 1 and
πD,1 = πD,2, so r((x, 1), (x, 2)) < 1). Consider the rejection sampler with envelope

14

function h1: this algorithm accepts x ∼ h1 with probability h2(x)/h1(x); in case
of acceptance, x ∼ h2; otherwise we repeat over until we obtain acceptance. The
two algorithms are essentially the same, though the tempering process wastes time
on transitions such as (x, 1)↔ (0, 0). Referring to Eq. (8), the expected number
of rejection/acceptance operations in the rejection algorithm is c1/c2 ' 250000
(the inverse of the Bayes factor for the prior P (x)). The efficiency of rejection
in updates is thus ER = 4 × 10−6 (as in Table 1). We improve on rejection by
replacing pseudo-prior πD by π̄, the geometric average pseudo-prior. Under π̄,
the event r((x, 1), (x, 2)) ≥ 1 may occur. At EP = 2×10−4, our perfect tempering
is fifty times more efficient than the rejection to which it is closely related. It has
the efficiency of Metropolised independent sampling (Liu, 1996), but gives perfect
samples, as a rejection algorithm would do. Basing the comparison on CPU-time
leads to the same factor (the update work is comparable). The implementation
overheads in a perfect sampler of this kind, compared to rejection, are slight.
However, we do even better with the tempering schedule with N? = 3, given
above.

3.3 Example: Radiocarbon age calibration

This instance of simulation based Bayesian inference has a couple of related fea-
tures which might be expected to make perfect simulation difficult. The prior
density is integrable but unbounded, and it is not easy to get good convergence
in the usual sense, with mixtures of Metropolis-Hastings updates.

3.3.1 Definitions

The data comprises K = 14 conventional radiocarbon age determinations y =
(y1, . . . , yK) and standard errors σ̃ = (σ̃1, . . . , σ̃K) taken from Anderson et al. (1996)
(the SM/C:Dune terrestrial series). In the format (yn, σ̃n), the data are (580, 47),
(630, 82), (600, 50), (537, 44), (600, 50), (509, 72), (570, 45), (670, 47), (624, 58),
(560, 45), (646, 47), (630, 35), (660, 46), and (787, 72). The observation model for
yn is

yn|Θn ∼ N(µ(Θn), σ̂(Θn)2 + σ̃2
n), (9)

where Θn is the unknown true date (measured in calendar years AD) of the n’th
dated specimen, and µ and σ̂2 are standard, empirically determined (Stuiver
et al., 1998) radiocarbon calibration functions. These functions are available from
http://depts.washington.edu/qil/ in decadal tabulation, which we spline to
arrive at functions µ and σ̂2 piecewise constant by year. A southern hemisphere
correction of 27 and standard deviation 5 (McCormac et al., 1998) was subtracted
from each yn-value in the analysis. Let θn be a trial value for Θn and let `(yn|θn)
denote the normal density function as given in Eq. (9).

In the prior model the date parameters θ1, . . . , θK are independently and uni-
formly distributed between two parameters χ = (χ1, χ2) which are themselves

15

known to lie in a (time) interval [A,B] ⊂ R of length R = B − A, with χ2 > χ1,
but are otherwise unknown. Letting θ = (θ1, . . . , θK) and x = (χ1, χ2, θ), the
state space of the target distribution is

ΩG = {x : A ≤ χ1 < χ2 ≤ B, θ ∈ [χ1, χ2]K}.

See Buck and Litton (1996) for further background. The unnormalised posterior
density g of x is

g(x|y;K) =
1

R− (χ2 − χ1)
× 1

(χ2 − χ1)K
×

K∏
m=1

`(ym|θm)

with νG(dx) = dχ1dχ2dθ1 . . . dθK , the restriction of Lebesgue measure to ΩG.

3.3.2 Tempering sequence and simulation

We begin by specifying the sequence of tempering distributionsHn(dx). We make
a very simple choice: the level-n tempering distributionHn coincides with the pos-
terior distribution which would be appropriate for the subset y = (y1, . . . , yn−1),
σ̃ = (σ̃1, . . . , σ̃n−1) of the data. Let N? = K + 1. The sequence of parameter
spaces have increasing dimension, starting with the parameter pair x = (χ1, χ2),
for x ∈ Ω1, and then adding in turn the parameters θ1 up to θK , so that
x = (χ1, χ2, θ1, . . . , θn−1) for x ∈ Ωn. The parameter vectors and parameter
spaces are

Ωn = {x : A ≤ χ1 < χ2 ≤ B, (θ1, . . . , θn−1) ∈ [χ1, χ2]n−1}, 1 ≤ n ≤ N?

with Ω1 = {x : A ≤ χ1 ≤ χ2 ≤ B}. The densities are chosen to be hn(x) =
g(x|y;n− 1) so that

h1(x) =
1

R− (χ2 − χ1)

and, for 2 ≤ n ≤ N?,

hn(x) =
1

R− (χ2 − χ1)
× 1

(χ2 − χ1)n−1
×

n−1∏
m=1

`(ym|θm).

Finally ν1(dx) = dχ1dχ2, and for 2 ≤ n ≤ N?, νn(dx) = dχ1dχ2dθ1dθ2 . . . dθn−1,
in both cases the restriction of Lebesgue measure to Ωn (1 ≤ n ≤ N?).

For 1 ≤ n < N?, the tempering transition from Nt = n to Nt+1 = n + 1
is a “birth” transition for parameter θn. Since we have χ1 ≤ θn ≤ χ2 and x =
(χ1, χ2, θ1, . . . , θn−1) for x ∈ Ωn, the candidate state is x′ = (χ1, χ2, θ1, . . . , θn−1, θn),
with

θn ∼ `(yn|θn)× Iθn∈[χ1,χ2]

16

The unnormalised densities `(yn|·) are multi-modal but otherwise fairly smooth,
and bounded in domain and range. They may be sampled straightforwardly by
rejection sampling, or by numerical integration and inversion.

When 1 < n ≤ N?, the tempering transition from Nt = n to Nt+1 = n− 1 is
a “death” transition for parameter θn−1. If x = (χ1, χ2, θ1, . . . , θn−1) ∈ Ωn, then
the candidate state is x′ = (χ1, χ2, θ1, . . . , θn−2).

The tempering transition from Nt = 0 to Nt+1 = 1 is a birth transition
for the pair (χ1, χ2). Since we can sample according to H1 directly, we simply
set f0,1(x, dx′) = H1(dx′). This direct sampling is accomplished by taking r ∼
U(0, R), χ1 ∼ U(A,A+ (R− r)) and χ2 = χ1 + r. The transition from Nt = 1 to
Nt = 0 is a death transition for the pair (χ1, χ2).

With these operations generating candidate states in the MCMC, it follows
that

r((x, n), (x′, n+ 1)) =

∫ χ2

χ1
`(yn|z) dz
χ2 − χ1

× πn+1

πn
,

for 1 ≤ n < N?, and for n = 0,

r((0, 0), (x′, 1)) = Rπ1/π0.

Condition (C2a) is seen to hold.
We now turn to the dominating process and condition (C2b). As in Sec-

tion 3.2.2 we are free to set π0 = Rπ1 so that r((0, 0), (x′, 1)) = 1. Letting
`∗(yn) equal the largest value taken by `(yn|z) for z ∈ [A,B], we satisfy con-
dition (C2b) taking K0 = R and Kn = `∗(yn) for 1 ≤ n < N?. Note that
α̃(0, 1) = α((0, 0), (x′, 1)) = 1 independent of x′ in Figure 1. Such perfect cou-
pling of Nt and Dt in the neighbourhood of n = 0 will often be possible when a
variable dimension tempering sequence is used, as it is often possible to generate
IID samples from fixed univariate and bivariate distributions.

3.3.3 Regular MCMC

As in Section 3.2.3 we use the same updates in our regular MCMC algorithm and
at fixed-level updates in our tempering algorithm.

Suppose the current state is (x, n) and n ≥ 1; set n = N? in the case of the
regular MCMC algorithm. We have:

1. a Metropolis adjusted random walk update acting on a randomly chosen
parameter; this gives ergodicity in principle, but is insufficient in practice;

2. a Metropolis adjusted random walk update of fixed scale ∆ applied to
all dates; a number δ ∼ U(−∆,∆) is generated; the candidate state is
x′i = xi + δ for each i = 1, 2 . . . n+ 1;

17

3. a Metropolis-Hastings adjusted centred random scaling; two random num-
bers η ∼ U(0, 1) and ρ ∼ U(η, 1/η) are generated; the candidate state is
x′i = ρxi − ρ−1

n+1

∑
j xj for each i = 1, 2 . . . n+ 1, and Hastings’ ratio is

r((x, n), (x′, n)) =
1

ρ
× R− (χ2 − χ1)

R− (χ′2 − χ′1)
×

n−1∏
m=1

(
`(ym|θ′m)

`(ym|θm)

)
.

At each update in the regular MCMC, with probability 1/3 each, one of these
three moves is chosen. In our tempering, we take p = q = 1/3: when p < u1

t <
1− q in STupdate, Figure 1, these same moves are used as fixed-level updates, in
the same proportions.

3.3.4 Results from experiments

Sample output from a forward run is plotted in Figure 6, and from a perfect
simulation in Figure 7. Posterior distributions for radiocarbon calibration with
up to about ten dates are readily sampled by rejection. However, referring to
Table 1, the efficiency of our best rejection algorithm for the posterior density of
the full set of fourteen dates was around a tenth (per update) or a fiftieth (per
CPU-second) that of our perfect simulation. We regard the CPU-time comparison
as more representative, as our rejection update was intrinsicly more expensive to
compute than a tempering update. Our rejection algorithm took advantage of
the conditional independence of the θn given χ1 and χ2.

Referring to Table 1, our perfect simulation is competitive with regular MCMC
in this problem (regular MCMC is about fifty times more efficient per update, but
only nine times more efficient per CPU-second, in comparable implementations).
Our regular MCMC suffers here from correlation in equilibrium, despite having
three carefully tailored move types. Radiocarbon calibration is a hard sampling
problem for regular MCMC: tempering might be appropriate, independent of its
role in perfect sampling.

The rejection algorithm suggested a number of improvements to the perfect
tempering algorithm. These were not exploited for the following reason. The
perfect simulation algorithm presented here is intended to illustrate variable di-
mension style tempering, or “sintering” (Liu and Sabatti, 1998). More efficient
rejection or regular MCMC algorithms might be given, however, as discussed in
Section 3.2.4, such improvements will in general lead directly to more efficient
dominated tempering algorithms.

3.4 The Strauss process

3.4.1 Distribution and tempering

We wish to emphasise that target distributions G of random variables XG of
randomly variable dimension may be sampled perfectly within the family of al-

18

gorithms we have outlined. As an example we consider a Strauss point pro-
cess (Strauss, 1975; Kelly and Ripley, 1976) below. Perfect simulation (Kendall,
1997b; Kendall, 1998; Häggström et al., 1999; Thönnes, 1999; Møller and Schla-
ditz, 1999; Kendall and Møller, 1999) and regular MCMC algorithms (Geyer and
Møller, 1994; Geyer, 1999; Møller, 1999a) have been given for a wide range of
spatial point processes.

Let ΩG denote the set of all finite subsets of the unit square S = [0, 1]2; thus
an element x ∈ ΩG is a point configuration of the form x = {x1, . . . , xk} ⊂ S
with 0 ≤ k <∞; if k = 0 then x = ∅ is the empty point configuration. Let νG be
the Poisson process of rate β > 0 on S. In other words, if XP ∼ νG then, firstly,
the number of points in XP (the count) follows a Poisson distribution with mean
β and, secondly, conditional on this count, points in XP are IID and uniformly
distributed on S. We specify a Strauss process by down-weighting the density for
point configurations of XP by a factor γsR(x), where sR(x) is the number of pairs
of points in x ∈ ΩG within a distance R of one another (“R-close”), and R > 0
and 0 ≤ γ ≤ 1 are parameters of the process. Then our target Strauss density
becomes

g(x) = γsR(x).

In this problem we use a sequence of densities distinguished by the value of
the interaction parameter γn in a tempering schedule using 1 = γ1 > γ2 > · · · >
γN? = γ. Our tempering sequence interpolates between the distributions of XP

and XG (varying R instead of γ, from R1 = 0 to RN? = R gives an awkward
implementation). We choose

hn(x) = γsR(x)
n , Ωn = ΩG, νn = νG

for n = 1, . . . , N?, and let p = q = 1/3. When a fixed level tempering transition
is selected (ie p < u1

t < 1− q in STupdate, Figure 1), we update the state using
Metropolis-Hastings updates of the kind described in Geyer and Møller (1994).
We propose a change to the tempering level whenever u1

t < p or u1
t > 1 − q in

STupdate, Figure 1, and when we do this, we do not otherwise change the state,
(a point configuration which could contain any number of points). We therefore
have

r((x, n), (x′, n+ 1)) =
πn+1

πn
× (γn+1/γn)sR(x)

for 1 ≤ n < N?. At the transition from n = 0 to n = 1, we sample x ∼ H1 di-
rectly, since (X|N = 1) is a Poisson point process. It follows that r((0, 0), (x′, 1)) =
π1/π0 for this transition. Condition (C2a) is satisfied. We set π0 = π1, to obtain
r((0, 0), (x′, 1)) = 1, as in Section 3.2.2. Finally (γn/γn+1)

sR(x) ≤ 1 so condition
(C2b) is satisfied with Kn = 1 for each n = 0, 1, . . .N? − 1.

For what parameter values does the proposed simulation scheme fail? Let

ρ = EGsR/EP sR .

19

This is a strictly increasing function of γ ∈ [0, 1] for fixed β, R and S; the
limiting case γ = ρ = 0 is a hard core point process, while γ = ρ = 1 is the
Poisson process νG. The particular method described here fails when ρ is small,
so that the average number of R-close pairs in the Strauss state is significantly
smaller than the number in the Poisson state. However, it is possible that other
sequences of tempering distributions, interpolating distributions from a lattice
process, or some other spatial hierarchy, will be more effective; see, for example,
Mase et al., (1999).

Finally, for the tempering distributions as specified above, the normalising
constants cn of Eq. (8) satisfy 1 = c0 = c1 < c2 < · · · < cN?, and so πN,0 = πN,1 >
πN,2 > · · · > πN,N? as discussed in Section 3.1.2.

3.4.2 Results from experiments

A perfect sampler for the Strauss process was implemented, by modifying an ear-
lier implementation of a rejection sampler. The existence of this code motivated
a tempering schedule with N? = 2, γ1 = 1 and γ2 = γ. The return time of
our program is sensitive to ρ. Perfect simulation and rejection approach regular
MCMC in efficiency as ρ grows. We took parameter values γ = 0.75, β = 100
and R = 0.1 in a unit square with periodic boundary conditions, giving ρ ' 0.3.
This is about the smallest ρ-value we can treat with this particular tempering
schedule, in a reasonable amount of time, on available hardware. A simulated
state is shown in Figure 8.

The connection between this algorithm and the related rejection algorithm
(rejecting from a Poisson point process) has been covered in Section 3.2.4. In
particular, c1/c2 is the average number of trial states the rejection sampler gen-
erates per returned sample. We measured c1/c2 ' 2.4 × 1010 so we calculate
that ER ' 4 × 10−11; we measured EP ' 5× 10−8 so perfect sampling is around
2000 times more efficient than rejection, per update. Rejections cost more than
tempering updates since a proportion of tempering updates are single point op-
erations, and null operations. However, we factorise the rejection in the following
way: we generate a Poisson candidate x and put the points xi into place one
at a time; at the insertion of the i + 1’th point sR(xi+1|x1 . . . xi) is the number
of new R-close pairs; accept the new point with probability γsR(xi+1|x1...xi); if the
new point is rejected, reject the whole state x and start over; if we get to the
last point in x and it is accepted, accept x. The probability to accept x by this
process is γsR(x), as required.

In the perfect tempering run which we report, two out of three forward simu-
lations generated zero samples. This suggests we might obtain larger efficiencies,
for our perfect sampler, with a little further experimentation with L, π and N?

parameters. As a result of these features of our implementations, rejection catches
up a little: our perfect simulation is 1000 times more efficient than our rejection
when we measure efficiency in CPU-time units.

20

On the other hand, regular MCMC is around 100, 000 times more efficient
than our perfect simulation, measuring in updates. Perfect simulation might be
used as a check on regular MCMC here, but it would not replace it.

4 Discussion

4.1 Another perfect simulated tempering algorithm

A perfect tempering algorithm, simulating Z0 ∼ H more efficiently than PWper-
fect, may be given. Let V 2

t , t ∈ Z be U(0,1)-variates independent of each other
and all other details of the random walk and tempering chains. We modify the
joint simulation of Dt and Zt, coupling

Dt+1 = RWupdate(Dt;U
1
t , U

2
t)

with
Zt+1 = STtight(Zt;Dt, Dt+1, U

1
t , V

2
t).

The function STtight is given in Figure 9.
Figure 9 should be compared with Figure 1. The random number U2

t = u2

is replaced by V 2
t = v2, but the Zt-process is updated using STupdate as before

both when Dt strictly dominates Zt and when a fixed-level update is proposed at
the Dt → Dt+1-transition. Call this Case I. Suppose in contrast that Dt = Nt,
and a move up or down is proposed at the Dt → Dt+1-transition. This is Case
II. We use the random numbers in a different way in Case II, so that domination
is retained. The Zt-acceptance is, in Case II, determined by two events, the Dt

accept-reject event, which uses U2
t , and the Zt accept-reject event, which uses

V 2
t and is conditional on the outcome of the Dt accept-reject event. The Markov

chain (Zt, Dt) has the same distribution and domination properties as before (see
Section 2.2).

Our new tempering update STtight allows us to use a more efficient perfect
simulation procedure. We simulate the random walk in reverse from its equilib-
rium at time zero until it hits the atom; the tempering is simulated forwards from
that time up to time zero, conditional on events in the first simulation. More
precisely, we begin by drawing D0 from its equilibrium distribution. We then
simulate the random walk backwards in time t ≤ 0. By reversibility, we can use

D−t = RWupdate(D−t+1; 1− U1
−t, U

2
−t), t = 1, 2 . . .

We stop this generation at time −τ = inf{t ≥ 0 : D−t = 0} (by ergodicity, τ <∞
almost surely). By property (P1), we know that Z−τ = 0. Conditional on the
path D−τ , . . . , D0 together with the “marks” U1

−τ , . . . , U
1
0 , we now simulate Zt

forwards in time from Z−τ = (0, 0):

Z−t+1 = STtight(Z−t;D−t, D−t+1, U
1
−t, V

2
−t), t = −τ , . . . , 1.

21

The return state Z0 follows the distribution H (this is easily verified modifying
the proof of Theorem 3.1 in Kendall and Møller (1999)).

This perfect simulation algorithm looks like rejection sampling as in Fill’s
perfect simulation algorithm (Fill, 1998). However, it is not, as τ is random. The
algorithm may be extended to the case where N? = ∞ without difficulty. It is
not clear whether this is possible for PWperfect.

4.2 Useful tempering transitions

Consider some target distribution G given in terms of a product measure and
a density which is a product over interacting cliques. How should we modify G
in order to determine the tempering sequence H0, H1, . . . , HN?? There is also
the question of how we might choose the candidate generation distributions,
fn,n′(x, dx

′). Below we present a list of tempering transitions which we have
found useful.

Without loss of generality, let Kn = 1 for each 0 ≤ n < N?. We are aiming
to find fn,n′(x, dx

′) so that πN,n ' πN,n+1 for each 0 ≤ n < N?, so we are looking
for a transition rule (x, n)→ (x′, n′) which leads to an acceptance ratio α which
is close to one for all the pairs of states the rule connects. We may

1. modify the clique interactions in Hn without altering the space of states,
so that Ω1 = . . . = ΩN? ; as in temperature-indexed tempering, we flat-
ten G towards a simple tractable distribution H1; we might sample the
affected variables according to their new conditional distribution, or if this
is not convenient (as in Section 3.2 and Section 3.4), we have the option to
determine the candidate state by setting x′ = x;

2. add (or remove) a variable and some or all of its clique interactions; in
a variable birth operation we are obliged to sample a value for the new
variable; fn,n′ must be chosen so that acceptance ratios are bounded well
away from zero;

3. add (remove or move) atoms in the state space of one of the variables; in
this way continuously distributed variables may be discretised, or assigned
a value at an atom;

4. jump from H0 to a distribution H1 which has more random variables than
G (but simpler interactions), and proceed to remove the extra variables as
the tempering level n increases towards N?.

4.3 Conclusions

As always, hard sampling problems are solved using good MCMC update strate-
gies, in which case-specific details make a difference. We have given a framework

22

within which such effective updates can be embedded, to obtain provably per-
fect simulation. Because we do not require the existence of a partial ordering
on the state space Ω (rather, our domination is based on a simpler complete
ordering in {0, 1, . . . , N?}) there exist families of perfect tempering algorithms,
based on standard tempering schemes, which generalise fairly easily. Thus the
modified logistic regression of Section 3.2 and the Strauss spatial point process
of Section 3.4 are both sampled perfectly using temperature-based tempering of
the kind described in Marinari and Parisi (1992). Existing MCMC and rejection
programmes may be used to suggest good tempering schedules, as well as con-
tributing components to a perfect tempering computer programme. Algorithm
components RWupdate, STupdate and PWperfect can be implemented once and
reused for different problems.

We expect that, for difficult sampling problems in which regular MCMC algo-
rithms are unreliable, perfect tempering will approach regular MCMC in efficiency
(all things considered). We see evidence of this in the example of Section 3.3.
However, perfect tempering does not need to be as efficient as regular MCMC in
order to be useful.

Perfect tempering might be used as a quality test for a given tempering
scheme. If coalescence is obtained in the perfect tempering, in a reasonable
number of updates, forward tempering may be used to gather samples, without
reinitialising the tempering using dominated coupling from the past. We expect
that samples obtained in this way will, for all practical purposes, have the same
quality as our perfect samples, in many problems.

Acknowledgement: JM was supported by the European Union’s research net-
work “Statistical and Computational Methods for the Analysis of Spatial Data,
ERB-FMRX-CT96-0096”, by the Centre for Mathematical Physics and Stochas-
tics (MaPhySto), funded by a grant from the Danish National Research Foun-
dation. GKN was supported by the the Stochastic Centre of Chalmers Univer-
sity, Sweden and by the Center for Archaeological Research at the University of
Auckland. We acknowledge advice and encouragement from Martin B. Hansen
of MaPhySto and the Department of Mathematics, Aalborg University.

References

Anderson, A. J., Smith, I. W. G., and Higham, T. F. G. (1996). Shag river
mouth: the archaeology of an early Southern Maori village. In Anderson, A. J.,
Allingham, B., and Smith, I. W. G., editors, Shag River Mouth, volume 27,
pages 61–69. ANH Publications, RSPAS, ANU, Canberra.

Bliss, C. I. (1935). The calculation of the dosage-mortality curve. Annals of
Applied Biology 22, 134–167.

23

Carlin, B. P. and Louis, T. A. (1996). Bayes and Empirical Bayes methods for
Data analysis. Chapman and Hall, London.

Fill, J. (1998). An interruptible algorithm for exact sampling via Markov Chains.
Annals of Applied Probability 8, 131–162.

Fismen, M. (1997). Exact sampling using Markov chains. Diploma thesis, De-
partment of Mathematical Sciences, Norwegian University of Technology and
Science, Trondheim.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion).
Statist. Sci. 7, 473–511.

Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Barndorff-
Nielsen, O., Kendall, W., and van Lieshout, M., editors, Stochastic Geome-
try: Likelihood and Computation, pages 79–140, Boca Raton. Chapman and
Hall/CRC.

Geyer, C. J. and Møller, J. (1994). Simulation and likelihood inference for spatial
point processes. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo
with applications to ancestral inference. J. Amer. Statist. Assoc. 90, 909–920.

Gilks, W., Richardson, S., and Spiegelhalter, D., editors (1996). Markov Chain
Monte Carlo in Practice. Chapman and Hall.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika 82, 711–732.

Green, P. J. and Murdoch, D. J. (1999). Exact sampling for Bayesian infer-
ence: towards general purpose algorithms. In Bernardo, J., Berger, J., Dawid,
A., and Smith, A., editors, Bayesian Statistics 6. Oxford University Press.
Presented as an invited paper at the 6th Valencia International Meeting on
Bayesian Statistics, Alcossebre, Spain, June 1998.

Häggström, O. and Nelander, K. (1997). Exact sampling from anti-monotone
systems. Research Report 1997-03, Department of Mathematics, Chalmers
University. Statistica Neerlandica (to appear).

Häggström, O., van Lieshout, M. N. M., and Møller, J. (1999). Characterisation
results and Markov chain Monte Carlo algorithms including exact simulation
for some spatial point processes. Bernoulli 5, 641–659 (to appear).

Hobert, J. P., Robert, C. P., and Titterington, D. M. (1998). On perfect simula-
tion for some mixtures of distributions. Statistics and Computing (to appear).

Kelly, F. P. and Ripley, B. D. (1976). A note on Strauss’s model for clustering.
Biometrika 63, 357–360.

Kendall, W. S. (1997a). On some weighted Boolean models. In Jeulin, D.,
editor, Advances in Theory and Applications of Random Sets, pages 105–120,
Singapore. World Scientific Publishing Company.

Kendall, W. S. (1997b). Perfect simulation for spatial point processes. In Proc.

ISI 51st session, Istanbul (August 1997), volume 3, pages 163–166.
Kendall, W. S. (1998). Perfect simulation for the area-interaction point process.

24

In Accardi, L. and Heyde, C., editors, Probability Towards 2000, pages 218–
234, New York. Springer.

Kendall, W. S. and Møller, J. (1999). Perfect Metropolis-Hastings simulation of
locally stable point processes. Technical Report R-99-2001, Department of
Mathematics, Aalborg University.

Kendall, W. S. and Thönnes, E. (1997). Perfect simulation in stochastic geom-
etry. Research report 323, Department of Statistics, University of Warwick.
J. Pattern Recognition (to appear).

Litton, C. and Buck, C. (1996). An archaeological example: radiocarbon dating.
In Gilks, W., Richardson, S., and Spiegelhalter, D., editors, Markov Chain
Monte Carlo in Practice, pages 466–486. Chapman and Hall, London.

Liu, J. S. (1996). Metropolized independent sampling. Statistics and Computing
6, 113–119.

Liu, J. S. and Sabatti, C. (1998). Simulated sintering: Markov chain Monte Carlo
with spaces of varying dimension. In Bernado, J., Berger, J., Dawid, A., and
Smith, A., editors, Bayesian Statistics 6. OUP.

Marinari, E. and Parisi, G. (1992). Simulated tempering: a new Monte Carlo
scheme. Europhys. Lett. 19, 451–458.

Mase, S., Møller, J., Stoyan, D., Waagepetersen, R., and Döge, G. (1999). Pack-
ing densities and simulated tempering for hard core Gibbs point processes.
Technical Report R-99-2002, Department of Mathematical Sciences, Aalborg
University.

McCormac, F. G., Hogg, A. C., Higham, T. F. G., Baillie, M. G. L., Palmer,
J. G., Xiong, L., Pilcher, J. R., Brown, D., and Hoper, S. T. (1998). Variations
of radiocarbon in tree-rings: Southern hemisphere offset preliminary results.
Radiocarbon 40, 1153–1162.

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability.
Springer Verlag, New York.

Mira, A., Møller, J., and Roberts., G. O. (1999). Perfect slice samplers. In
preparation.

Møller, J. (1999a). Markov chain Monte Carlo and spatial point processes. In
Barndorff-Nielsen, O., Kendall, W., and van Lieshout, M., editors, Stochas-
tic Geometry: Likelihood and Computation, number 80 in Monographs on
Statistics and Applied Probability, pages 141–172, Boca Raton. Chapman
and Hall/CRC.

Møller, J. (1999b). Perfect simulation of conditionally specified models. Journal
of Royal Statistical Society B 6, 251–264.

Møller, J. and Schladitz, K. (1999). Extensions of Fill’s algorithm for perfect
simulation. Journal of the Royal Statistical Society B 61, (to appear).

Murdoch, D. J. and Green, P. J. (1998). Exact sampling from a continuous state
space. Scandinavian Journal of Statistics 25, 483–502.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled markov
chains and applications to statistical mechanics. Random Structures and Al-

25

gorithms 9, 223–252.
Propp, J. G. and Wilson, D. B. (1998). How to get a perfectly random sample

from a generic Markov chain and generate a random spanning tree of a directed
graph. Journal of Algorithms 27, 170–217.

Sokal, A. (1989). Monte Carlo methods in Statistical Mechanics. In Cours de
Troisième Cycle de la Physique en Suisse Romande, Lausanne.

Strauss, D. J. (1975). A model for clustering. Biometrika 63, 467–475.
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A.,

Kromer, B., McCormac, F. G., d. Plicht, J., and Spurk, M. (1998). Intcal98
Radiocarbon Age Calibration, 24,000-0 cal BP. Radiocarbon 40, 1041–1083.

Thönnes, E. (1999). Perfect simulation of some point processes for the impatient
user. Advances in Applied Probability 31, 69–87.

26

Rejection Perfect Tempering Regular MCMC
Experiment ER EP EM

UPD−1 SEC−1 UPD−1 SEC−1 UPD−1 SEC−1

Flour Beetle 4× 10−6 8× 10−4 1× 10−4 1× 10−1 9× 10−2 5.3

Radiocarbon 2× 10−6 2× 10−4 2× 10−5 1× 10−2 1× 10−3 9× 10−2

Strauss 4× 10−11 2× 10−6 5× 10−8 2× 10−3 7× 10−3 4× 103

Table 1: Efficiency results, estimated for the examples of Section 2.3, according
to the definition for E given in Section 3.1.1. Subscripts R, P and M denote re-
jection, perfect tempering and regular MCMC respectively. Columns UPD−1 and
SEC−1 give independent samples per update and per CPU-second respectively.
Rows correspond to the sampling problems of Sections 3.2, 3.3 and 3.4.

Dosage ωi 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.8610 1.8839
killed yi 6 13 18 28 52 53 61 60

exposed ai 59 60 62 56 63 59 62 60

Table 2: Flour Beetle Mortality data, extracted from Bliss (1935), used in the
example of Section 3.2.

27

z =STupdate((x, n);u1, u2)

z ← (x, n)

if u1 < p

n′ ← n+ 1

else if u1 > 1− q

n′ ← n− 1

else

n′ ← n

if 0 ≤ n′ ≤ N?

draw x′ ∼ fn,n′(x, dx
′)

if u2 ≤ α((x, n), (x′, n′))

z ← (x′, n′)

return z

Figure 1: Algorithm evaluating STupdate((x, n);u1, u2), where (x, n) ∈ Ω is the
current state of the simulated tempering chain and z is the next state, while
u1 and u2 are U(0, 1), independently realised, random numbers. The notation
x′ ∼ fn,n′(x, dx

′) indicates a simulation of x′ according to fn,n′(x, dx
′) using an

independent stream of random numbers.

28

d =RWupdate(m; u1, u2)

d← m

if u1 < p

m′ ← m+ 1

else if u1 > 1− q

m′ ← m− 1

else

m′ ← m

if 0 ≤ m′ ≤ N?

if u2 < α̃(m,m′)

d← m′

return d

Figure 2: Algorithm evaluating the function RWupdate(m; u1, u2), where m ∈
{0, 1, . . . , N?} is the current state of the random walk and d is the next state,
while the random numbers u1 and u2 are the same as in Figure 1.

29

[Zequi, τ?] = PWperfect(u, T):

t← −T
D← N?

D′ ← N?

repeat

D← RWupdate(D; u1
t , u

2
t)

t← t+ 1

if D = D′ or (t = 0 and D 6= 0)

return PWperfect(u, T + 1)

D′ ← RWupdate(D′; u1
t , u

2
t)

until D=0

τ? ← −t

Zequi ← (0, 0)

for t = −τ? to −1

Zequi ← STupdate(Zequi; u1
t , u

2
t)

return [Zequi, τ?]

Figure 3: Algorithm evaluating PWperfect(u, T) using a stream of pairs of IID
U(0, 1) random numbers u = ((u1

−1, u
2
−1), (u

1
−2, u

2
−2), . . .) associated with times

−1,−2,−3 . . ., and T > 0 a given integer. The return value Zequi is distributed
according to H.

30

0 4000 8000 12000 16000 20000
0

1

2

N*=3

 D
t

 Flour Beetle Mortality Example

0 4000 8000 12000 16000 20000
0

1

2

N*=3

 MCMC tempering updates t

 N
t

Figure 4: Flour Beetle Mortality example of Section 3.2. Forward simulation of
the dominating process Dt (upper graph) with tempering process Zt = (Xt, Nt),
(Nt, lower graph) for geometric average pseudo-prior, π̄ =

√
πNπD. Notice that

Dt ≥ Nt at each MCMC update. At top tempering level N? = 3, the tempering
distribution coincides with that of the target distribution G.

31

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

1

2

N*=3
 Perfect simulation for Flour Beetle Mortality model

 MCMC tempering updates t

 N
t,

D
t

Figure 5: Flour Beetle Mortality example of Section 3.2. Typical perfect sim-
ulation, with the dominating process (Dt, - -, at left) and tempering pro-
cess Zt = (Xt, Nt), (Nt, solid, at right) for geometric average pseudo-prior,
π̄ =

√
πNπD with L = 8000. The Xt with Nt = N? and t ≥ 0 are distributed

according to G.

32

0 10000 20000 30000 40000 50000
0

5

10

N*=15

 D
t

 Radiocarbon dating Example

0 10000 20000 30000 40000 50000
0

5

10

N*=15

 MCMC tempering updates t

 N
t

Figure 6: Radiocarbon dating example, Section 3.3. Forward simulation of the
dominating process Dt (upper graph) with tempering process Zt = (Xt, Nt) (Nt,
lower graph) for geometric average pseudo-prior, π̄ =

√
πNπD. At top tempering

level N? = 15, the distribution has the full set of variables of the target distribu-
tion, whilst distributions at lower tempering levels have some subset of the full
variable set.

33

-15000 -10000 -5000 0 5000 10000 15000 20000 25000
0

5

10

N*=15
 Perfect simulation for Radiocarbon calibration

 MCMC tempering updates t

 N
t,

D
t

Figure 7: Radiocarbon calibration example, Section 3.3. Typical perfect sim-
ulation, with the dominating process (Dt, - -, at left) and tempering pro-
cess Zt = (Xt, Nt), (Nt, solid, at right) for geometric average pseudo-prior,
π̄ =
√
πNπD and L = 25000.

34

Figure 8: Realisation of the Strauss process, generated by perfect tempering with
repulsion parameter γ = 0.75, Poisson intensity β = 100 and interaction radius
R = 0.1 in a unit square with cylindrical boundary conditions. R-close pairs are
joined by a line segment.

35

z =STtight((x, n);m, d, u1, v2)

if m > n or p < u1 < 1− q /* Case I */

z ←STupdate((x, n);u1, v2)

else /* Case II */

z ← (x, n)

if u1 < p and d = n+ 1

draw x′ ∼ fn,n+1(x, dx
′)

n′ ← n+ 1
if v2 < α((x, n), (x′, n′))/α̃(n, n′)

z ← (x′, n′)

else if u1 > 1− q and n > 0

draw x′ ∼ fn,n−1(x, dx
′)

n′ ← n− 1
if v2 < (α((x, n), (x′, n′))− α̃(n, n′))/(1− α̃(n, n′))

z ← (x′, n′)

return z

Figure 9: Algorithm evaluating STtight((x, n);m, d, u1, v2), where
d =RWupdate(m; u1, u2), (x, n) ∈ Ω, m ∈ {n, n + 1, . . . , N?} and u1, u2

and v2 are U(0, 1), independently realised, random numbers. The notation
x′ ∼ fn,n′(x, dx

′) indicates a simulation of x′ according to fn,n′(x, dx
′) using an

independent stream of random numbers.

36

