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Bridge estimation, as described by Meng and Wong in 1996, is used

to estimate the value taken by a probability density at a point in the

state space. When the normalisation of the prior density is known, this

value may be used to estimate a Bayes factor. It is shown that the multi-

block Metropolis-Hastings estimators of Chib and Jeliazkov (2001) are

bridge sampling estimators. This identification leads to estimators for

the quantity of interest which may be substantially more efficient.

Keywords: Bayes factor, Marginal likelihood, Markov chain Monte

Carlo, Metropolis-Hastings algorithms.

∗Corresponding author: Phone: +39 0332 215363, Fax: +39 0332 21 55 09



1 Motivation

In a recent paper, Chib and Jeliazkov (2001) treat the problem of estimating

marginal likelihoods. Their interest is motivated by the Bayesian model

choice problem, and the estimation of Bayes factors.

Consider Bayesian inference for parameters θ ∈ X given data y, likeli-

hood pY |Θ(y|θ), prior probability density pΘ(θ) and posterior probability

density pΘ|Y (θ|y). The prior and posterior are given in terms of their unnor-

malised densities and corresponding normalisations, so that pΘ = cΘfΘ(θ)

and pΘ|Y (θ|y) = cΘ|Y fΘ|Y , with fΘ|Y = pY |ΘfΘ, as is usual. Now, following

Chib and Jeliazkov (2001), write m(y) = pY (y) for the marginal likelihood.

Fix some state θ∗ ∈ X (Chib and Jeliazkov (2001) give advice on choosing

this state). Bayes rule then yields

m(y) =
pY |Θ(y|θ∗)pΘ(θ∗)

pΘ|Y (θ∗|y)
. (1)

The idea of deriving an estimator for m(y) from this simple relation is at-

tributed, in Raftery (1996), to Julian Besag. If pY |Θ and pΘ can be evaluated

directly, Eqn. (1) gives an estimate for the marginal likelihood in terms of

an estimate for the posterior probability density at a point. The pΘ|Y (θ∗|y)-

estimator given in Chib and Jeliazkov (2001) is convenient, as it is given

in terms of the proposal and acceptance functions of a Metropolis-Hastings

Markov chain Monte Carlo algorithm for pΘ|Y (θ∗|y) itself.
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Chib and Jeliazkov (2001) present estimators for pΘ|Y (θ∗|y) derived from the

components of single and multiple block MCMC algorithms. In single block

MCMC, all the components of θ are updated in a single Metropolis-Hastings

step. In multiple-block MCMC, the parameters are divided into blocks, so

that θ = (θ1, . . . θB). Each block parameter θi may itself be multivariate. At

a MCMC update, a block is chosen, and the parameters in that block are

updated together, while parameters in other blocks are kept fixed.

In the next section we step back from pΘ|Y (θ∗|y)-estimation and the marginal

likelihood. We estimate a probability density p(θ∗) = cf(θ∗) at a point θ∗

in its support. We will see that the single and multiple-block estimators

given for p(θ∗) by Chib and Jeliazkov (2001) belong to the class of bridge

sampling estimators considered in Meng and Wong (1996). This result may

seem surprising given that bridge sampling is usually presented as a method

for estimating normalizing constants. Still, if one considers the fact that the

ratio of the normalized to the unnormalised density, at a given point, is the

normalizing constant, one realizes that bridge sampling is equally useful for

estimating values of a normalized probability density. The bridge in Chib and

Jeliazkov (2001) is a sequence of distributions, defined on spaces of increasing

dimension, running from a trivial distribution on a single atom, and finishing

at the posterior distribution. The bridge sampling estimation theory devel-

oped in Meng and Wong (1996) and by subsequent authors, applies to the
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Chib and Jeliazkov bridge. Efficiency gains are immediate, as we see in Sec-

tion 3, where we compare different estimators on a simple Bayesian example.

Since the Gibbs sampler is a special case of the Metropolis-Hastings algo-

rithm (as proved in Gelman (1992)), the methods proposed by Chib (1995)

are also special cases of bridge sampling (indeed Chib and Jeliazkov 2001 pa-

per was presented as a generalization of Chib 1995 paper). However, unlike

Chib and Jeliazkov (2001) which cites the bridge sampling literature but fails

to make the right connection, Chib (1995) predates Meng and Wong (1996)

and thus its contribution should be acknowledged in that this was one of the

first instances in the literature where the issue of estimating normalizing con-

stants and Bayes factors within a Monte Carlo simulation (a Gibbs sampler

in particular) was brought to the attention of the scientific community and

investigated.

2 Bride estimation of probability density

2.1 Bridge estimation

Meng and Wong (1996) treat the problem of estimating a ratio of normalising

constants. They begin with an identity. For i = 1, 2, let p(i)(θ) be probability

densities defined on spaces X (i). Suppose these probability densities are given
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in terms of known densities f (i) and corresponding unknown normalising

constants c(i), so that p(i)(θ) = c(i)f (i)(θ). Let a function h(θ) be given,

satisfying

0 <

∣

∣

∣

∣

∫

X (1)∩X (2)

h(θ)f (1)(θ)f (2)(θ)dθ

∣

∣

∣

∣

<∞. (2)

Such a function always exists as long as the intersection of the supports for

f 1 and f 2 is non-empty. Let r = c(1)/c(2) and let Ei be an expectation in p(i).

Meng and Wong (1996) estimate r using the identity

r =
E1[f

(2)(θ)h(θ)]

E2[f (1)(θ)h(θ)]
. (3)

They choose h(θ) to minimise mean square error. Suppose that, for i = 1, 2,

sequences S(i) = {θ(i),j}N(i)

j=1 of N (i) iid samples θ(i),j ∼ p(i) are available. The

samples may be correlated, for example, they may be generated by MCMC.

Let S = {S(1), S(2)} and r̂(S) be an estimate of r based on S. The relative

mean square error of r̂(S)

RE2(r̂) =
ES[(r̂(S) − r)2]

r2

depends on h, and on the joint distribution of the samples S on which it is

based. Suppose h = hO minimises RE2(r̂) over all admissible h. Meng and

Wong (1996) show that, for iid sampling, hO = hO(f (1), f (2)) with

hO(f (1), f (2)) =
[

rN (1)f (1)(θ) +N (2)f (2)(θ)
]−1

. (4)
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As those authors explain, the presence of r in the proposed estimator is not

an obstacle: the iteration defined by

r̂t+1(S) =

1
N(1)

∑N(1)

j=1
f (2)(θ(1),j)

r̂t(S)N(1)f (1)(θ(1),j)+N(2)f (2)(θ(1),j)

1
N(2)

∑N(2)

j=1
f (1)(θ(2),j)

r̂t(S)N(1)f (1)(θ(2),j)+N(2)f (2)(θ(2),j)

(5)

converges (usually very rapidly) to an estimator that is asymptotically equiv-

alent to the optimal estimator based on the true r.

When the samples in Si are not iid, the sample size, N (i), is not defined.

Meng and Wong (1996) consider replacing N (i) in Eqn. (5) with the “effective

sample size” parameter of the set Si. There is no one number which gives

the effective sample size of MCMC output, since the serial autocorrelations

in MCMC samples vary from one output parameter to another. However,

as Meng and Wong show, the relative mean square error RE2(r̂) is typically

insensitive to the sample size estimate in a wide neighborhood of the optimal

value. In the Bayesian-MCMC setting of Section 3, with f (2) the posterior

and f (1) the prior, we replace N (2) in Eqn. (5) with N (2)/τY |Θ where τY |Θ

the integrated autocorrelation time of the likelihood in the sequence S (2),

τY |Θ = 1 + 2
∑∞

m=1 ρY |Θ(m), and ρY |Θ(m) is the autocorrelation at lag m of

the likelihood function.
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2.2 The probability density at a point

We now use Eqn. (3) to estimate a probability density, p(θ∗) = cf(θ∗) say,

at a point θ∗ in its support. Suppose we have a Metropolis Hastings MCMC

algorithm, ergodic with unique equilibrium density p(θ) on X , proposal prob-

ability density q(θ, θ′) (normalised over its second argument, θ′) and accep-

tance probability

α(θ, θ′) = min

(

1,
f(θ′)q(θ′, θ)

f(θ)q(θ, θ′)

)

.

Now, referring to Eqn. (3), choose f (1) = f
(1)
CJ , f (2) = f

(2)
CJ and h = hCJ where

f
(1)
CJ (θ) = f(θ)

and

f
(2)
CJ = f(θ∗)q(θ∗, θ),

so that c(1) = c, c(2) = 1/f(θ∗) and hence c(1)/c(2) = p(θ∗). Set

hCJ = α(θ∗, θ)/f(θ), (6)

and use the detailed balance relation for q, α and f to get

p(θ∗) =
E1[α(θ, θ∗)q(θ, θ∗)]

E2[α(θ∗, θ)]
. (7)

In Eqn. (7), E1 is an expectation in p(θ) and E2 is an expectation in q(θ∗, θ).

Let p̂CJ be the estimator derived from Eqn. (7) by replacing the expectations

in that equation with Monte Carlo derived empirical estimates.
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The estimator p̂CJ is given in Eqn. (9) of Chib and Jeliazkov (2001). It is

in the class considered by Meng and Wong (1996). The optimal estimator

in that class, for iid Monte Carlo samples, and given f
(1)
CJ and f

(2)
CJ , takes

h = hO(f
(1)
CJ , f

(2)
CJ ). Let p̂CJMW denote the corresponding iid-optimal p(θ∗)-

estimator. We conjecture that, when the Monte Carlo samples are not iid,

p̂CJMW is always superior to p̂CJ , though we have no proof. In the example

we give in Section 3, and in another unpublished example, the estimated

variance of p̂CJMW is always smaller than that of p̂CJ , as we would expect.

For further empirical evidence in this direction see Meng and Schilling (2002).

2.3 Multiple-block estimators

In the multiple-block setting, the multivariate parameter θ = (θ1, . . . θB) is

divided up into B blocks of parameters. A state θ∗ = (θ∗1, . . . θ
∗
B), θ∗ ∈ X

is chosen. We discuss estimation of probability density p(θ∗) = p(θ∗1, . . . θ
∗
B)

from the component functions of an MCMC algorithm realising θ ∼ p. As

before, p(θ) = cf(θ), with c an unknown normalising constant and f a density

function over X .

Chib and Jeliazkov (2001) set up a ladder of densities, fixing one block of

parameters at each step. Let ψ∗
i = (θ∗1, . . . θ

∗
i−1) and ψi = (θi+1, . . . θB) so

that, for example, (ψ∗
i , θi, ψ

i) = (θ∗1, . . . θ
∗
i−1, θi, θi+1, . . . θB). In multiple-block
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MCMC, just one parameter block is updated at each step of the Markov

chain. The proposal probability density for block i is q(θi, θ
′
i|ψi, ψ

i), and

the acceptance probability is α(θi, θ
′
i|ψi, ψ

i). Chib and Jeliazkov (2001) start

with the identity,

p(θ∗1, . . . θ
∗
B) =

B
∏

i=1

p(θ∗i |ψ
∗
i ). (8)

They estimate each factor on the right side of Eqn. (8) and take a product.

Each of the factors p(θ∗i |ψ
∗
i ) in (8) can be written as a ratio of normalizing

constants as follows. For i = 1, 2, . . . B, let ci normalize p(θi, ψ
i|ψ∗

i ), so that

p(θi, ψ
i|ψ∗

i ) = cif(ψ∗
i , θi, ψ

i).

Then

p(θ∗i |ψ
∗
i ) = ci/ci+1,

a ratio of normalizing constants. The special cases are i = 1 where c1 = c

and i = B where

p(θ∗B|ψ
∗
B) = cBf(θ∗1, . . . θ

∗
B).

Relation (8) is just

p(θ∗1, . . . θ
∗
B) =

c1
c2

×
c2
c3

× . . .
cB−1

cB
× cBf(θ∗1, . . . θ

∗
B).

Now, referring to (3), the choices

f (1) = f(ψ∗
i , θi, ψ

i),
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f (2) = f(ψ∗
i , θ

∗
i , ψ

i)q(θ∗i , θi|ψ
∗
i , ψ

i),

and

h =
α(θ∗i , θi|ψ

∗
i , ψ

i)

f(ψ∗
i , θi, ψi)

,

lead to

ci
ci+1

=
E1[α(θi, θ

∗
i |ψ

∗
i , ψ

i)q(θi, θ
∗
i |ψ

∗
i , ψ

i)]

E2[α(θ∗i , θi|ψ∗
i , ψ

i)]
. (9)

Eqn. (9) determines a ci/ci+1-estimator, which Chib and Jeliazkov (2001)

use to estimate the p(θ∗i |ψ
∗
i )-factors on the right of Eqn. (8). The resulting

multi-block estimator is in the class discussed in Meng and Wong (1996). The

iid-optimal estimator for each factor is given by setting h = hO(f (1), f (2)).

3 Example

3.1 Estimators

In this section we use the p(θ∗)-estimators p̂CJ and p̂CJMW defined in Sec-

tion 2.3, and single-block MCMC simulation, in order to estimate a Bayesian

posterior density pΘ|Y (θ∗|y) and marginal likelihood m(y).

Eqn. (1) determines m(y)-estimates m̂CJ and m̂CJMW using pΘ|Y -estimators

p̂CJ and p̂CJMW respectively. In order to compute m̂CJ and m̂CJMW we

need the prior normalising constant cΘ. Suppose our calculation of cΘ is

out by a constant multiple. The Bayes factor we form as a ratio of m-
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Table 1: The estimators compared in Section 3. Functions f (1), f (2) and h

refer to Eqn. (3). In column one, p∗Y |Θp
∗
Θ ≡ pY |Θ(y|θ∗)pΘ(θ∗).

Estimator f (1) f (2) h

m̂MW = ̂cΘ/cΘ|Y fΘ(θ) fΘ|Y (θ|y) hO(f
(1)
MW , f

(2)
MW )

m̂CJ = p∗Y |Θp
∗
Θ/p̂CJ fΘ|Y (θ|y) fΘ|Y (θ∗|y)q(θ∗, θ) hCJ

m̂CJMW = p∗Y |Θp
∗
Θ/p̂CJMW fΘ|Y (θ|y) fΘ|Y (θ∗|y)q(θ∗, θ) hO(f

(1)
CJ , f

(2)
CJ )

estimates will be out by the same factor. We need an m-estimator which

is not exposed to these errors, something simple, which does not require

model-specific revisions. For that reason we implemented a third m-estimate

obtained directly from Eqn. (3) without the use of Eqn. (1). Following, Meng

and Wong (1996), set

f
(1)
MW (θ) = fΘ(θ),

f
(2)
MW = fY |Θ(y|θ)fΘ(θ),

and h = hO(f
(1)
MW , f

(2)
MW ) in Eqn. (3). Now c(1)/c(2) = cΘ/cΘ|Y = m(y),

so these substitutions determine an m-estimator, m̂MW say. We implement

m̂MW using the iteration given in Eqn. (5). The three estimators we consider

are laid out in Table 1.

The discussion above illustrates an attractive feature of bridge estimation.

We can easily construct several estimators for the same quantity. In partic-
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ular, in our setting, there are at least two natural choices: either bridging

the Metropolis-Hastings proposal with the target or the posterior with the

prior. The latter is usually not efficient since the two are often quite far from

each other but has the advantage of avoiding the calculation of the prior

normalizing constant. In general, the idea is to design estimators with com-

plementary weaknesses. Thus m̂CJMW is relatively precise but (like m̂CJ)

potentially inaccurate, whilst mMW is relatively imprecise, but less exposed

to inaccuracies in implementation. This feature is visible in our example.

See Section 3.2, penultimate paragraph.

3.2 Application

Our example is a posterior density developed by Carlin and Louis (1996) from

the flour-beetle mortality data of Bliss (1935). There are three parameters,

which may be sampled as a block. In experiment i = 1, 2, . . . K = 8, ai

beetles are exposed to a poison dose of magnitude bi resulting in ci deaths.

The observation model for the data yi = (ai, bi, ci), i = 1, . . . K is a modified

logistic model with parameters θ = (µ, σ,m). The likelihood factor pYi|Θ(yi|θ)

can be written

pYi|Θ(yi|θ) = I(bi, θ)
ci

[

1 + I(bi, θ)]
ai−ci

]

,
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where

I(bi, θ) =

[

e
bi−µ

σ

1 + e
bi−µ

σ

]m

.

The prior fΘ(θ) is expressed in terms of prior parameters a0, b0, . . . f0,

µ ∼ N(a0, b
2
0),

σ2 ∼ IΓ(c0, d0),

m ∼ Γ(e0, f0).

The posterior probability density is then

pΘ|Y (θ|y) = cΘ|Y fΘ(θ)
K
∏

k=1

pYi|Θ(yi|θ).

Carlin and Louis (1996) explain why pΘ|Y may not conveniently be Gibbs-

sampled, and give the following Metropolis Hastings algorithm. They make

a change of variables θ = (µ, 1
2
log(σ2), log(m)) and carry out MCMC in the

new variables. The proposal density q(θ, θ′) is multivariate normal about the

current state, θ′ ∼ N(θ, sΣ̂) with Σ̂ the estimated posterior covariance, and

s a free positive parameter.

As we vary s we vary the efficiency of the MCMC. We measure MCMC

efficiency using τY |Θ, the integrated autocorrelation time of the likelihood

statistic output from MCMC simulation of the posterior. Output of length

N updates has an effective sample sizeN/τY |Θ for pY |Θ-estimation. The quan-

tity τY |Θ is equal to the sum of the autocorrelation function of the likelihood

from lag zero up. It is estimated using the monotone sequence estimator of
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Geyer (1992). In Figure 1 we give τ̂Y |Θ as a function of s. The MCMC is

most efficient for s values around one.

3.3 Results

Since m̂CJMW is certainly optimal given f
(1)
CJ , f

(2)
CJ and iid simulation, we

should include inefficient MCMC samplers in our experiment. As we vary

MCMC parameter s in the range 0.05 ≤ s ≤ 20, effective sample size for pY |Θ-

estimation varies by over an order of magnitude. We estimate the variances

of m̂CJ , m̂CJMW and m̂MW using multiple independent estimates at each s

value. For each s value we made K = 30 independent MCMC simulations

of length N = 10000 updates from pΘ|Y (10 s-values so 300 runs each of

length 104). The effective sample size for the likelihood statistic in a single

run varied from about 500 down to about 20. For each of the K simulations

associated with each s-value we compute a m̂MW , a m̂CJ and a m̂CJMW .

The θ∗ value used in computing m̂CJ and m̂CJMW from a given MCMC

run is chosen to be the state of highest posterior density encountered in

that run. N samples from q(θ∗, θ) are drawn independently for each run,

in order to compute m̂CJ and m̂CJMW . Similarly N samples from pΘ are

drawn independently for each run, in order to compute m̂MW . As discussed

at the ends of Sections 2.1 and 3.2, we choose to evaluate Eqn. (5) using

N (2) = N/τ̂Y |Θ. The τ̂Y |Θ-value used for each m̂MW and m̂CJMW estimate is
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formed from the same output used to compute m̂MW and m̂CJMW themselves.

The main results are summarized in Figure 2. The salient features of Figure 2

are, first, the estimator m̂CJMW achieves a lower variance than estimator

m̂CJ . The gain is above an order of magnitude where the MCMC is tuned

so that its updates are efficient. Secondly, m̂CJMW and m̂CJ require the

knowledge of the prior and likelihood normalizing constants. The estimator

m̂MW does not use that information. Unsurprisingly it is less efficient. On

the other hand one is not required to make accurate hand-calculations of

prior normalizations where m̂MW is used. For that reason it is good practice

to compute m̂MW when m(y) is needed in practical applications as a check

on m̂CJMW .

Our MCMC implementation was checked by making comparisons with data

(for example, Σ̂) published in Carlin and Louis (1996). Marginal likelihood

estimates at s = 0.37, combining results from 30 runs, were m̂CJ = (1.518±

0.014)× 10−84, m̂CJMW = (1.521± 0.004)× 10−84 and m̂MW = (1.9± 0.4)×

10−84 at 95% confidence.

4 Conclusions

We have shown that the multi-block Metropolis-Hastings estimators of Chib

and Jeliazkov (2001) are bridge sampling estimators. By choosing the free
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functions in those general bridge estimation identities appropriately we ar-

rive at the identity Chib and Jeliazkov (2001) use to define their estimators.

Results in Meng and Wong (1996) and Chen and Shao (1997) lead to effi-

ciency gains in estimation. Simulation results on very simple single block

problems confirm these gains. We emphasise that the estimates m̂CJ and

m̂CJMW reported in Section 3.3 are computed from exactly the same sample

sets.

We may use different MCMC proposal densities, qSIM and qEST say, in sim-

ulation and estimation. This point is made in Chib and Jeliazkov (2001)

and can be addressed formally via the Hellinger distance. Meng and Wong

(1996) show that, for iid-samples, the variance of ̂c(1)/c(2) is sensitive to the

Hellinger distance between f (1) and f (2), and hence to qEST . What happens

if we switch to MCMC sampling, keep qEST fixed and vary qSIM? Does the

same distance control the variance of ̂c(1)/c(2)? These remain open questions.

Chen and Shao (1997) extend Meng and Wong (1996) to situations in which

f (1) and f (2) do not overlap. They use a transition kernel to link the two

spaces. The estimators in Chib and Jeliazkov (2001) can be expressed in

that setting, with q playing the role of the link. In our presentation the

link function q(θ∗i , θi) is absorbed into f (2), adding the dimensions needed to

put f(ψ∗
i , θ

∗
i , ψ

i)q(θ∗i , θi|ψ
∗
i , ψ

i) on the same space as f(ψ∗
i , θi, ψ

i). The whole

framework can be expressed in terms of distributions and the reversible jump
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Monte Carlo of Green (1995). It should be noted that the usefulness of Chen

and Shao’s (1996) strategy depends on applications. In some cases it would

be better not to try to directly match densities of different dimentions, but

rather match each of them to a convenient approximation on the same space,

estimate the normalizing constants separately using bridge sampling and then

take the ratio. See Section 1 of Meng and Schilling (2002) for a discussion of

this issue.

The comparison made in Section 3 was repeated on a radiocarbon model

comparison of the kind discussed in Nicholls and Jones (2001). Qualitatively

similar results were obtained. m̂CJMW had lower variance than m̂CJ in all

measurements. Where there is high serial correlation in MCMC sample out-

put, there is little to separate m̂CJ and m̂CJMW . As the MCMC was tuned

to become more efficient (or sample spacing increased) the margin in favor of

the iid-optimal m̂CJMW grew. For multi-block problems these gains are likely

to be more strongly marked, since those bridge sampling estimates involve

products. Small efficiency gains accumulate from one factor to the next.
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