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The Arak process is a solvable stochastic process which generates coloured pat-
terns in the plane. Patterns are made up of a variable number of random non-
intersecting polygons. We show that the distribution of Arak process states is
the Gibbs distribution of its states in thermodynamic equilibrium in the grand
canonical ensemble. The sequence of Gibbs distributions form a new model pa-
rameterised by temperature. We prove that there is a phase transition in this
model, for some non-zero temperature. We illustrate this conclusion with sim-
ulation results. We measure the critical exponents of this off-lattice model and
find they are consistent with those of the Ising model in two dimensions.
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1 Introduction

The Widom-Rowlinson model, with two species of discs and hard-core interac-
tions between discs of unlike species, is sometimes referred to as the “continuum
Ising model”. However there is another continuum model which might share the
title. In 1982 Arak [1] presented a stochastic process in the plane with realisa-
tions of the kind shown in Figure 1A. States are composed of a variable number
of coloured non-intersecting random polygons. Remarkably, the normalising
constant is available as an explicit function of the area and boundary length of
the region in which the process is realised. We present rigorous results and sim-
ulation based measurements related to critical phenomena in a two dimensional
“continuum Ising model” derived from the Arak process.

There are few rigorous results for continuum models of interacting extended
two dimensional objects. Moreover, relatively few Monte Carlo simulation stud-
ies have been made, perhaps on account of the complexity of the simulation
algorithms required. The Widom-Rowlinson model has a phase transition [2].
Its critical exponents have been measured and put it in the Ising universality
class [3]. Critical phenomena are known to occur in a range of related mod-
els with q ≥ 2 species and certain soft-core interactions [4, 5]. Where critical
exponents have been measured [6] the universality class seems to be the class
of the corresponding q−species Potts model. For single-species models rigorous
existence results for phase transitions have been given only in certain restricted
models having area interactions [7, 8].

In the model we consider the interface between black and white regions
summarises the state in the same way that Peierls’ contours parameterise an
Ising system. The energy associated with a state is proportional to the length
of the interface. In contrast to the Ising model, the vertices of the polygon
forming the interface take positions in the plane continuum. At a temperature
T = 1, the model we consider corresponds to the Arak process. For this value
of the temperature the partition function equals the normalising constant of the
corresponding Arak process. At smaller values of the temperature we are no
longer dealing with an Arak process. We no longer have a closed form for the
partition function. However the model remains well defined, and two phases
coexist at temperatures bounded away from zero.

Besides this result, which we prove, we estimate the critical exponents of the
temperature-modified Arak model, using Markov chain simulation to generate
realisations of the process. Values (obtained by “data-collapsing”) are consistent
with the corresponding critical exponents of the Ising model. This is in accord
with what we expect from the hypothesis of universality, since the ground state
of the temperature-modified Arak model is two-fold degenerate, and states are
two dimensional.

Although there is no high temperature limit for polygonal models (a class of
models including the Arak process) consistent polygonal models might play this
role (this point is made in [9]). We give no rigorously determined upper bound
on the critical temperature, although it is clear, from our simulations, that the
consistent Arak process has a single phase.
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2 The Arak process

We now define the Arak process, following [10]. A state is a colouring map
χ : D → J from each point in an open convex set D ⊂ <2, onto a set J
of possible colours. See Figure 1A. We write ∂D for the set of points in the
boundary of D. We consider the simplest case, J = {black, white}, of two
colours.

Let XD be the class of all finite subsets x of D ∪ ∂D. For each n ≥ 0, let
X

(n)
D be the set of point-sets x = {x1, x2, . . . xn} composed of n points, so that

XD = ∪∞n=0X
(n)
D , with X

(0)
D = {∅} the subset x = ∅ of D ∪ ∂D containing no

points. In the processes we define below, the number of points n in x will vary
randomly from one realisation to another. Let dxi be the element of area in
D and length on ∂D. For each n ≥ 0, the element of volume at some point
x ∈ X(n)

D is equal to dν(x) where

dν(x) = dx1dx2 . . . dxn

and dν(∅) = 1. Thus dν(x) is the measure, in XD, of an independent pair of
Poisson point processes of unit intensity, on the boundary and interior.

Let ΓD(x) be the set of all “polygon graphs” γ which can be drawn on the
point-set x, ie the set of all graphs which can be drawn in D with edges non-
intersecting straight lines, with the points in x as vertices. All interior vertices
must have degree 2 (they are V -vertices), and all boundary vertices degree 1
(I-vertices). γ is composed of a number of separate polygons which may be
chopped off by the boundary. See Figure 1B.

The space of all allowed polygon graphs is the union over vertex sets x of
the polygon graphs of x:

ΓD ≡
⋃

x∈XD

ΓD(x).

We define a measure on ΓD by

dλ(γ) = κ(γ) dν(x(γ)), (1)

κ(γ) =
∏

<i,j>

1
eij

n∏
i=1

sin(ψi), (2)

for a polygonal graph γ ∈ ΓD with vertices at x(γ) = (x1, x2 . . . xn). In Equa-
tion (1), ψi is the smaller angle at vertex i for vertices in D, and the smaller
angle made with the boundary tangent at xi for vertices on ∂D. The prod-
uct over < i, j > runs over vertex pairs i, j connected by an edge in γ, with
eij = |xi − xj | the length of the edge between vertices i and j. A counting
measure is taken on ΓD(x). The significance of κ is sketched at the end of this
section.

Arak’s probability measure on ΓD is

PD{dγ} =
1
ZD exp(−2L(γ)) dλ(γ), (3)

with L(γ) the summed length of all edges in γ, and ZD a normalising constant.
Remarkably, ZD has a simple closed form [1, 10] (ie the model is solvable),

ZD = exp(L(∂D) + πA(D)),
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where L(∂D) and A(D) are respectively the perimeter length and area of D.
Certain expectation values have been calculated (see [10, 11]). Some examples
are given in Table 1.

A colouring map χ : D → J is a function assigning a colour, black or white,
to each point in D. See Figure 1A. Let a colouring map χ be given and let
Bχ be the set of points x ∈ D with a black point, ie some y ∈ D such that
χ(y) = black, in every ε-neighbourhood. Let Wχ be similarly defined for white
points. Let γ(χ) = Bχ ∩Wχ denote the discontinuity set of this colouring. For
each polygon graph γ we consider two colouring maps χ : D → J each having
discontinuity set γ(χ) = γ. The two distinct colourings of a given polygon graph
are assigned equal probability, so the probability measure for colour maps is just
PD{dγ(χ)}/2.

The probability measure (3) has a number of beautiful properties, besides
solvability. Striking are consistency and the Markov property. Consider an
open region S of D with ε-neighbourhood (S)ε ⊂ D; the probability measure
for events in S, given full information about χ on (∂S)ε, is independent of any
further information about the state in D \ S. That is the Markov property.
Next, let S be an open convex region S ⊂ D and let γS ∈ ΓS denote the
restriction of a state γ ∈ ΓD to S. The probability measure for events simulated
in D from PD{dγ} but observed in the subset S is equal to PS{dγ}, in other
words PS{dγ} = PD{dγS}. That is consistency. The Arak process shares
these properties with a much larger family of probability measures called the
consistent polygonal models. See [10] for the general picture.

We will now explain in brief how κ(γ) arises, following [10] closely. Consider
a number of straight lines drawn in the plane. Let li = (ρi, φi) where ρi is the
perpendicular distance from the line to an origin and φi is the angle the line
makes to the x-axis. The parameter space of li is L = [0,∞) × [0, π). Let LD

be that subset of L consisting of all lines intersecting D. Let dl = dρ dφ be
Lebesgue measure of LD. Let Ln

D be the set of all line sets ` = {l1, l2 . . . ln}
made up of n lines, each in LD. In this parameterisation LD = ∪nL

n
D is the set

of all sets of lines in the plane intersecting D, and

dν̃(`) = dl1dl2 . . . dln

is the element of measure of a line process in D, corresponding to a Poisson point
process of unit intensity in LD. Referring to Figure 2, we define an admissible
graph on a line set ` to be a graph with edges coinciding with lines in `, such
that each line in ` contributes a single closed segment of non-zero length to the
graph. All interior vertices are V vertices, all boundary vertices are I vertices.
The set of all admissible graphs which can be drawn on some line set in LD is
identical to ΓD. Let γ be some legal graph drawn on the line set `. Define a
measure dλ̃(γ) = dν̃(`) in ΓD using the line process as our base measure, and
taking counting measure over the legal graphs of a line set. We now have two
parameterisations of the graph: from its line set `, or from its vertex set x. The
authors of [10] have shown that dλ̃(γ) = dλ(γ), ie, κ(γ) arises as the Jacobian
of the transformation between x and `.
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3 Properties of a temperature modified Arak

process

We choose to modify the measure (3), and consequently loose solvability. Con-
sider a system of non-overlapping polygonal chains of fluctuating number, length
and vertex composition, confined to a planar region D. The chains may be at-
tached in some places to the boundary of D. The state is described by a graph
γ ∈ ΓD. Micro-states are associated with elements of volume dλ̃(γ) in ΓD, so
that in the Gibbs ensemble edge segments are isotropic in orientation (a rather
unnatural choice). However, the Gibbs distribution QD{dγ} of this system is
just the Arak distribution above, modified by the addition of a temperature
parameter, as we now show.

The Gibbs distribution QD{dγ} has a density, g(γ) say, with respect to
dλ̃(γ), the line measure. The Shannon entropy of the system is

H [g] =
∫

ΓD
g(γ) ln(g(γ)) dλ̃(γ)

In the grand canonical ensemble, the energy and dimension of the system state
fluctuate about fixed average values. We suppose that the state energy E(γ) is
given by the total length of the chains, E(γ) = cL(γ), with c a positive constant.
The dimension of the vertex position vector x is dim(x) = 2ni +nb with ni (nb)
the number of interior (boundary) vertices in γ. Maximising the entropy subject
to constraints on the mean energy and mean dimension of the state, we obtain
the distribution of systems of chains,

QD{dγ} =
1

ZDT

exp(−cL(γ)/T ) q−nedλ(γ),

where T and q are Lagrange multipliers, and ne is the number of edges in γ
(ne = ni + nb/2). Under the change of scale xi → q̂xi, the measure transforms
as dλ(γ) → q̂nedλ(γ). We therefore set q = 1 without loss of generality. Setting
c = 2 we obtain a “temperature-modified” Arak process

PT,D{dγ} =
1

ZDT

exp(−2L(γ)/T ) dλ(γ). (4)

The function 2L(γ)/T is a potential, (ie ZDT is finite), at least when 0 ≤ T ≤ 1,
and, by Theorem 8.1 of [12], the temperature-modified measure keeps the spatial
Markov property of the Arak measure.

Let µB
D(T ) be the mean proportion of D coloured black (and µW

D (T ) white),

µB
D(T ) = ET,D {A(Bχ)/A(D)} .

The magnetisation of a state

m(χ) = |A(Bχ)−A(Wχ)|/A(D)

measures the colour asymmetry in that state. In our simulations (reported
below) we see a qualitatively Ising-like temperature dependence in the mean
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magnetisation. We prove, in an Appendix, that there is long range order (ie
phase coexistence) in magnetisation, at all sufficiently small temperatures. We
have translated Griffiths’ version [13] of Peierls’ proof of phase coexistence in
the Ising lattice model to this continuum case.

Let µB|W
D (T ) be the expected proportion of D coloured black given that the

boundary is white, that is

µ
B|W
D (T ) = ET,D {A(Bχ)/A(D) ∂D ∩Bχ = ∅} .

Theorem For the temperature modified Arak process in an open convex region
D ⊂ <2 there exists a temperature Tcold, 0 < Tcold < 1 and a constant a, a > 0,
such that

µ
B|W
D (Tcold) ≤ 1

2 − a

independent of the area A(D) of the region.

Surgailis [9] has shown that, for an open convex set S ⊂ D, the thermo-
dynamic limit D ↗ <2 of PT,D{dγS} exists, for a class of measures including
PT,D{dγ}, for all temperatures below some small fixed positive value. With the
theorem above,

µB|W (T ) = lim
D↗<2

µ
B|W
D (T )

exists and satisfies µB|W (Tcold) < 1/2− a for some a > 0. Hence, there is phase
coexistence at all temperatures T < Tcold.

In fact it follows from the result stated in the Appendix that

µB|W (T ) ≤ 1
4π2

(
1
z3

+
4
z2

+
8
z

)
, (5)

where z = (1/(πT )− 1). Sketching the function of T on the right hand side of
Equation (5), we see that Tcold > 0.18, though this bound is not at all sharp.
Simulation (see below) shows that the model has a phase transition with critical
temperature very close to T = 2/3.

The proof of the theorem is in two parts. We are after an upper bound
on the expected area coloured black. The area of black in a state with white
boundaries is not more than the summed area of the polygons it contains, and
is maximised when they are not nested. This observation leads to a simplified
bound on the expected area coloured black, Equation (10). This first result is
obtained by an obvious translation of the Griffiths calculation into the terms of
a continuum process. In that case the next step, bounding the number ways a
polygon can be drawn on a lattice of fixed size, using a fixed number of links,
is straightforward. In the continuum, the analogous problem is to bound the
volume of the parameter space of a polygon of fixed length, where volume is
measured using λ̃, the line-based measure. The main difficulty lies in the fact
that there are unbounded, but integrable, functions in the measure which arise,
for example, when an edge length goes to zero; these would be absent if there
were no polygon closure constraint; as a consequence the closure constraint may
not be relaxed as simply as it is in the Ising case.
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4 Simulation Results

The probability measure PT,D{dγ}may be sampled using the Metropolis-Hastings
algorithm, and Markov chain Monte Carlo. In our simulations we take D to be a
square box of side length d. Note that the number of vertices is not fixed. Since
the dimension of a state depends on the number of vertices in it, the Markov
chain must make jumps, corresponding to vertex addition and deletion, between
states of unequal dimension. Simulation algorithms of this kind are widely used
in physical chemistry [14, 15] and statistics [16, 17]. Although there exist ver-
tex birth and death moves sufficient for ergodicity, we allow a number of other
moves in order to reduce the correlation time of the chain. See Figure 3. At
each update we generate a candidate state γ′, by selecting one of the moves,
and applying it to a randomly selected part of the graph. The candidate state
becomes the current state (ie it is accepted) with a probability given by the
Metropolis-Hastings prescription. Otherwise it is rejected and the current state
is not changed. In this way a reversible Markov chain is simulated. The chain
is ergodic, with equilibrium measure PT,D{dγ}. Full details of our algorithm,
including explicit detailed balance calculations for all the Markov chain updates,
are given in [11].

The sampling algorithm is quite complex, but because the model is solvable
at T = 1, it is possible to debug the code, by comparing a range of estimated
expectations with predicted values. In Table 1 we present a selection of system
statistics at T = 1. Quantities in brackets are one standard deviation in the
place of the last quoted digit. The analytically derived expectation values given
in the second line of the table come from [11]. They are derived using the particle
representation of the Arak process given in [10]. Let f̂ equal the average of some
statistic f(χ) over an output sequence of lengthN , let ρf (t) equal the normalised
autocorrelation (or ACF) of f at lag t and, for M > 0, let τf = 1 + 2

∑M
t=1 ρ(t)

estimate the normalised autocorrelation time of f(χ) in the output, so that the
variance of f̂ is estimated by τfvar(f)/N . We used Geyer’s initial monotone
indicator [18] to determine M , the lag at which the ACF is truncated. The
asymptotic variance σ2

ρ of the ACF as t → ∞ was estimated and used as a
consistency check on each measurement: the estimated ACF should fall off to
zero smoothly, and at large lag should stay within 2σρ bounds of zero. As usual
we cannot show the Markov simulation process has converged, but it is at least
stationary.

Run parameters for the measurements at T < 1 are summarised in Ta-
ble 2. Autocorrelations reported are for T = 0.66, near the critical temperature.
We estimate the integrated autocorrelation time τm of the state magnetisation,
along with its standard error [19] and present these alongside the total run
length. Referring to Table 2, the autocorrelation time is fitted within standard
error by τm ∝ d4.6. Our Metropolis Hastings algorithm is a local update algo-
rithm and this places practical limits on the size of the largest system we can
explore.

We now report our measurements of the mean magnetisation, m̄d(T ) =

5



f(γ) L(γ) ne(γ) ni(γ)

ET=1,d{f(γ)} πd 4d+ 4πd2 4πd2

d L̂ n̂e n̂i

0.5 1.571(6) 5.13(2) 3.13(2)

1 3.14(1) 16.46(7) 12.47(6)

2 6.27(2) 58.1(3) 50.1(2)

4 12.55(2) 216.7(4) 200.6(4)

8 25.14(2) 836.2(5) 804.2(5)

χ2
5 1.1 4.0 5.1

Table 1: Listed are a selection of estimates made from output at T = 1. Here d
is the box side, and for a state γ, L(γ) is the total edge length, ne(γ) equals the
number of edges, and ni(γ) equals the number of interior vertices. Quantities in
brackets are one standard deviation and in the place of the last quoted digits.

ET,d{m(χ)}, and the Binder parameter

Ud(T ) = 1− ET,d{m(χ)4}
3ET,d{m(χ)2}2 .

Under the scaling hypothesis, the various curves Ud(T ) indexed by d all intersect
at a single T -value, the critical temperature [20], T = Tc say. A Bayesian
estimate T̂c may be given for the intersection point. Let Û denote the ordered
set of independent U -measurements we made (43 in all), let TU denote the
ordered set of T values at which measurements were made, and let Σ̂U denote
the ordered set of estimated standard errors for the measurements in Û . These
data are represented by the error bars in Figure 4. Each measurement is an
independent measurement. For each d = 6, 8, 12, 16, we model the unknown
true curve Ud(T ) using a cubic

U∗d (T ) = U∗ + (T − T ∗)
2∑

p=0

a(d)
p T p.

The parameterisation constrains the regression in such a way that the four curves
intersect at a point (T ∗, U∗). We simulate the joint posterior distribution of the
random variables

a(6), a(8), a(12), a(16), T ∗, U∗|Û , TU ,ΣU ,

conditioning the slope to be negative in the region containing the data, and
conditioning the lines to intersect at a point, but otherwise taking an improper
prior equal to a constant for all vectors of parameter values. Again MCMC
simulation was used. The marginal posterior distribution of T ∗ is very nearly
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d # Updates τ̂m
×106 ×106

1 16 0.00181(7)

2 40 0.018(1)

4 6400 0.41(1)

6 16000 2.4(3)

8 128000 9.2(2)

12 300000 59(3)

16 300000 240(40)

Table 2: Listed are run parameters for simulations at T = 0.66, a temperature
close to the measured critical temperature. An update is a single pass through
the Metropolis-Hastings propose/accept simulation sequence. Measurements
made at the same d value, but different temperatures, are based on the same
number of updates.

Gaussian. Our estimate of the critical temperature is then

T̂c = 0.6665(5).

The quoted standard error is the standard deviation of T ∗ in its marginal pos-
terior distribution.

The Bayesian inference scheme used to estimate Tc above is attractive for
several reasons. Above all it quantifies the uncertainty in our estimate of Tc,
taking full account of the complex constraints applying in the regression (though
taking no account of possible errors due to violations of scaling). The sensitiv-
ity of the outcome to the orders of the regressing polynomials was explored.
The chosen orders were the smallest that gave an acceptable likelihood. The
posterior mode, which is the maximum likelihood estimate for Tc, on account
of our flat prior, occurs at T ∗ = 0.6663. Metric factors weight the mass of
probability in the posterior distribution only slightly away from the maximum
of the likelihood.

Because the energy has a discrete two-fold symmetry, and states are two
dimensional, we expect the model to lie in the universality class of the Ising
model. Finite size scaling under the scaling hypothesis leads to a system size
dependence of the form [20]

m̄d(τ) = d−β/νg(d1/ντ)
Ud(τ) = f(d1/ντ)

with f and g unknown functions, τ the reduced temperature (T/Tc − 1), and
β and ν critical exponents. If we plot Ud(τ) or dβ/νm̄d(τ) against d1/ντ , we
expect to see no significant dependence on system size d for τ near zero. Using
the Ising critical exponents ν = 1 and β = 0.125 and our estimate T̂c for the
critical temperature, we show, in Figures 5 and 7, the maximum likelihood fit
to the transformed data. The transformed Ud-data lies on a smooth curve. The
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transformed m̂d-data does not give a satisfactory χ2 (all of the misfit comes from
points at T > Tc), but this is to be expected: we are seeing scaling violations (a
satisfactory fit to a quartic can be obtained (χ2

29−5 = 30) by dropping points at
large T from the d = 6 and d = 8 data). If this is so, then the critical exponents
of the Ising model the temperature dependent Arak process are equal at the
precision of our simulation analysis.

Sample realisations from the model, taken at temperatures around the crit-
ical temperature are shown in Figure 8.
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Appendix

Here is the proof of the Theorem stated in Section 3. Condition on a white
boundary. There can be no boundary vertices. Let ΓWD be the subspace of ΓD
of polygon graphs with no boundary vertices. Let ΘD be the subspace of ΓWD
of graphs made up of just one polygon. Each point in ΘD corresponds to a single
polygon, lying wholly in D. We begin by proving the inequality Equation (10)
below.

Among states built from a given set of polygons, with no edge connected
to the boundary, the black area is largest when the polygons are arranged so
that none are nested. It follows that the area of black in a state χ with a white
boundary is less than or equal to the sum of the areas of all the polygons in
that state. The area of a polygon θ of perimeter length L(θ) is smaller than the
area of a circle with the same perimeter, so A(θ) < L(θ)2/4π and

A(Bχ) ≤
∑

θ⊂γ(χ)

L(θ)2

4π
. (6)

We want to take expectations of either side of Equation (6) so we clear γ from
the domain of the sum, using∑

θ⊂γ(χ)

f(θ) ≡
∫

ΘD
f(θ) δ(θ ⊂ γ(χ)) dν(x(θ)).

δ(θ ⊂ γ(χ)) puts a delta function at each point in Θ corresponding to a polygon
in γ. Each of these is a product of delta functions in D for the vertices of θ to
coincide with those of γ, with an indicator function for the edge connections to
coincide. x(θ) is the set of vertex coordinate variables of the polygon θ.

Now take the expectation of A(Bχ)/A(D) over patterns χ in ΓWD. We have

µ
B|W
D ≤

∫
ΘD

L(θ)2

4πA(D)
E{ δ(θ ⊂ γ(χ)) | ∂D ∩Bχ = ∅ } dν(x(θ)).
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The expectation of the delta function is by definition

E{ δ(θ ⊂ γ) | ∂D ∩Bχ = ∅ } =

∫
ΓWD

δ(θ ⊂ γ)× e−2L(γ)/T dλ(γ)∫
ΓWD

e−2L(γ)/T dλ(γ)
. (7)

Simplify the denominator by restricting the integral to those graphs to which
the polygon θ could be added without intersecting an edge of a polygon already
in place. That is, if

Γθ
WD ≡ {γ ∈ ΓWD : γ ⊃ θ}

is the set of polygon graphs containing the polygon θ, then

Γ̃θ
WD ≡

⋃
γ∈Γθ

WD

{γ \ θ}

is the sub-domain of interest. We have∫
ΓWD
e−2L(γ)/Tdλ(γ) ≥

∫
Γ̃θ

WD

e−2L(γ)/Tdλ(γ) (8)

We now turn to the numerator of Equation (7). Carrying out the integration
over vertices in θ using the δ-function,∫

ΓWD
δ(θ ⊂ γ)× e−2L(γ)/Tdλ(γ) =

∫
Γθ

WD

e−2L(γ)/Tκ(θ) dλ(γ\ θ)

= κ(θ) e−2L(θ)/T

∫
Γ̃θ

WD

e−2L(γ)/Tdλ(γ), (9)

since γ does not contain θ in the second line. Substituting with (8) and (9) in
(7), and cancelling,

E{ δ(θ ⊂ γ) | ∂D ∩Bχ = ∅ } ≤ κ(θ) e−2L(θ)/T ,

and consequently,

µ
B|W
D ≤ 1

4πA(D)

∫
ΘD
L(θ)2e−2L(θ)/Tdλ(θ).

In close analogy with Griffiths’ proof, we obtain

µ
B|W
D ≤ 1

4πA(D)

∫ ∞

0

b2e−2b/T

[∫
ΘD
δ(b− L(θ)) dλ(θ)

]
db (10)

The integral over b is an integral over polygon perimeter lengths. The problem
is now to bound the integral over ΘD without introducing more than one factor
of A(D), or too rapidly growing a function of b. This is done by the following
Lemma. Let Θ(n)

D be the subset of ΘD of polygons with n vertices.

Lemma Let
Jn ≡

∫
Θ

(n)
D

δ(b − L(θ)) dλ(θ) (11)
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so that ∫
ΘD
δ(b− L(θ)) dλ(θ) =

∞∑
n=3

Jn

in (10). Then

Jn ≤ A(D)n2(n− 1)
(2π)n−1bn−3

(n− 2)!
,

and consequently∫
ΘD
δ(b− L(θ)) dλ(θ) ≤ (2π)2A(D)(4 + 2πb)2e2πb. (12)

Proof of the Lemma: Start with Jn defined in Equation (11). Use a
standard labelling with x1 the variable corresponding to the vertex in θ with
the smallest x-coordinate, (smallest y-coordinate in case of ties) and vertex
number increasing clockwise around θ. In the first step we break the polygon
at x1 to make a chain. Consider the set Θ̃(n)

D of distinct non-intersecting chains
θ̃ of n edges linking n + 1 vertices, labeled with variables x1 to xn+1. All the
vertices in a chain lie entirely to the right of the first vertex (or directly above).
Polygons are chains, Θ(n)

D ⊂ Θ̃(n)
D , since the first and last vertices in a chain

may coincide. Transform variables from {xi}n
i=1 to {x1, {ei}n

i=1}, where ei is
a Cartesian vector with origin xi corresponding to the edge from the i’th to
the (i+ 1)’th vertex. When we switch to integrating over chains, we constrain
e1 + e2 + . . .+ en to be zero, so that the polygon closes. Equation (11) becomes

Jn ≤
∫

Θ̃
(n)
D

δ(b− L(θ̃)) δ(2)(Σkek)
de1de2 . . . den

e1e2 . . . en
dx1,

with ei ≡ L(ei) and using sin(ψi) ≤ 1.
The integrand is unbounded. We partition the space into regions, and impose

the constraints b = L(θ̃) and e1 + e2 + . . .+ en = 0 by integration over different
variables in each region. For any particular region, the variables eliminated by
the constraints are chosen so that the integrand is bounded in that region.

Our second step then is to fix, by an integration in some dei, the closure
constraint. We will need to be able to bound below the length of at least one
edge of the chain. So define

Θ̃(n)
D,−ε = { θ̃ ∈ Θ̃(n)

D | abs(L(θ̃)− b) ≥ ε }
Θ̃(n,i)
D,ε = { θ̃ ∈ Θ̃(n)

D | abs(L(θ̃)− b) < ε, ei ≥ (b − ε)/n },

with i ∈ {1, 2, . . . , n}, and ε a small positive constant, 0 < ε < b, depending
on b. Each chain in Θ̃(n,i)

D,ε has the property that its ith edge has length at
least (b − ε)/n. Any chain, with n edges and a total length differing from b by
not more than ε, must have such an edge. The sets Θ̃(n,i)

D,ε , i = 1, 2 . . . n are

not disjoint, but combine with Θ̃(n)
D,−ε to cover Θ̃(n)

D . Chains in Θ(n)
D,−ε will not

10



contribute to the integral. It follows that

Jn ≤
n∑

i=1

∫
Θ̃

(n,i)
D,ε

δ(b − L(θ̃)) δ(2)(Σkek)
de1de2 . . . den

e1e2 . . . en
dx1

≤ n

(b − ε)

n∑
i=1

∫
Θ

(n,i)
D,ε

δ(b− L(θ))
de1de2 . . . de−i . . . den

e1e2 . . . e−i . . . en
dx1. (13)

where a −i subscript indicates that element is left out of a product or sum.
Θ(n,i)
D,ε is the set of polygons with a long ith edge (that is, the set of chains in

Θ̃(n,i)
D,ε with xn+1 = x1). We have carried out the integral deiδ

(2)(Σkek) and
used the bound on ei.

The third step is to eliminate an edge length parameter, using b = L(θ̃), the
length constraint. Let φi denote the angle made by edge ei to a fixed direction
in the plane. In polar coordinates Equation (13) is

Jn ≤ n

(b− ε)

n∑
i=1

∫
Θ

(n,i)
D,ε

δ(b − L(θ)) de1dφ1 . . . de−idφ−i . . . dendφndx1. (14)

For the polygon to close

ei sin(φi) = −
n∑

k=1
k 6=i

ek sin(φk), (15)

ei cos(φi) = −
n∑

k=1
k 6=i

ek cos(φk), (16)

and consequently

b− L(θ) = b−
n∑

k=1
k 6=i

ek − ek cos(φk − φi).

Integrating dej for some j may lead to an unbounded integrand. In order to
control this, we partition Θ(n,i)

D,ε on its angle variables. Let

Θ(n,i,j)
D,ε = { θ ∈ Θ(n,i)

D,ε | π
2
< |φj − φi| < 3π

2
}

A polygon in Θ(n,i,j)
D,ε has the property that the jth edge “turns back” from the

direction of the long ith edge. There must be at least one such edge for the
polygon to close. The sets Θ(n,i,j)

D,ε , j = 1, 2 . . . n, j 6= i are not disjoint but their

union covers Θ(n,i)
D,ε . From Equation (14)

Jn ≤ n

(b− ε)

n∑
i=1

n∑
j=1
j 6=i

∫
Θ

(n,i,j)
D,ε

δ(b− L(θ)) de1dφ1 . . . de−idφ−i . . . dendφndx1.

11



We may now apply the integral dej to the delta-function δ(b − L(θ)). We
transform from e, φ to e′, φ′ where φ′k = φk and e′k = ek for 1 ≤ k ≤ n, k 6= j,
and φ′j = φj and

e′j = ej − ej cos(φj − φi).

The Jacobian of the full transformation e, φ→ e′, φ′ is just

J−1(e, φ→ e′, φ′) =
∂e′j
∂ej

= 1− cos(φj − φi)− ej sin(φj − φi)
∂φi

∂ej
. (17)

Repeated use of Equations (15) and (16) gives

∂φi

∂ej
=
− sin(φj − φi)

ei
,

in Equation (17) and then using π/2 < |φj − φi| < 3π/2, we have J−1 >
1. The angle partition was needed to control this function. We can replace
δ(b−L(θ)) dej by one, and restrict the integration domain to polygons of length
b, ie set ε = 0. We obtain the simplified bound

Jn ≤ n

b

n∑
i=1

n∑
j=1
j 6=i

∫
Θ

(n,i,j)
D,ε=0

de1dφ1 . . . de−jdφj . . . de−idφ−i . . . dendφndx1. (18)

The last step is to bound the integral in Equation (18). Enlarge Θ(n,i,j)
D,ε=0 to

allow each variable to range independently over its full domain, keeping only the
bound on total edge length, L(θ) = b, and requiring x1 to remain in D. This will
include polygons with crossing edges and allow the polygon to overlap the border
of D. The integral dx1 gives a factor A(D). Each angle variable ranges over 0
to 2π contributing (2π)n−1. The edge integrals are over the (n− 2)-dimensional
tetrahedron

e1 + e2 + . . . e−j + . . . e−i + . . .+ en ≤ b− b/n

of volume less than bn−2/(n − 2)!. Combining these factors with a factor of
(n − 1) from the sum over j, we obtain the bound on Jn given in the Lemma.
This is the end of the proof of the Lemma.

Equation (5) is obtained by evaluating the integral over b in Equation (10)
with the bound from Equation (12), and the Theorem follows directly from
Equation (5).
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A B

Figure 1: (A) A state χ of the Arak process (B) The discontinuity set γ of (A).

14



BA C

Figure 2: (A) A set of lines ` intersecting D (B) an admissible graph drawn on
the set ` (C) one of the two colourings of D with discontinuity set given by the
graph in (B).

A B C

Figure 3: Updates in the Markov Chain Monte Carlo. Dashed and solid edges
are exchanged by the moves, which are reversible. (A) Interior vertex birth
and death (B) move a vertex, and (C) recolour a region by swapping a pair of
edges. In an extra move, not shown, a small triangle may be created or deleted.
Further move types are used to update boundary structures.
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Figure 4: Binder parameter Ud (see text), regressed with cubic polynomials.
Curves correspond to distinct box-side lengths d. The maximum likelihood fit,
constrained to intersect at a point, is shown. Error bars in this and all other
graphs are 1σ.
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Figure 5: The Binder parameter data of Figure 4 rescaled with Ising critical
exponents. The regression is a cubic polynomial. χ2

43−4 = 38.5 for the fit is
acceptable.
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Figure 6: The magnetisation m̄d(T ), regressed with cubic polynomials.
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Figure 7: The magnetisation data of Figure 6 rescaled with Ising critical ex-
ponents. The regression is a quartic polynomial. The value of the χ2 statistic
shows that the fit is a poor one.
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Figure 8: A selection of states equilibrated in a box of side d = 12 at tempera-
tures below and above the estimated critical temperature Tc ' 0.6665(5).
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