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1 Introduction

For many years J. M. Borwein had an interest in questions concerning Chebyshev sets and some
other related problems to do with proximinal and almost proximinal sets. During his life time
Jon published many interesting papers on these topics, including the papers [3–6]. One of Jon’s
favourite problems in this area was whether every Chebyshev subset of a Hilbert space is convex.
In recent years little significant progress has been made on this topic, apart from some counter-
examples in (incomplete) inner product spaces. The first was in [14], but this contained several
errors, some of which were subsequently corrected in [13]. Later, a geometric construction was
given in [2]. Unfortunately, this example is very difficult to read. At Jon’s insistence the author of
the current paper carefully, along with his masters student James Fletcher, read the proof of the
counter-example given in [2]. They then wrote out a long complete proof of the construction of the
counter-example and convinced themselves that it was correct. This became the basis of James’
masters thesis and later, a survey article [11]. So in a concrete way the paper [11] was initiated by
Jon himself.

In this paper, we intend to look further into the problem of the convexity of Chebyshev sets and
the related problem of uniquely remotal sets. In keeping with Jon, we will try to obtain a new
perspective on this topic rather than just going over old ground again. We will take a “quantitative
look” at the Chebyshev problem, with the hope that it might give rise to some new insights that
were previously concealed in the classical study of Chebyshev sets. In particular it will reveal the
precise relationship between the size of the sets of nearest points relative to the degree of convexity
of the underlying set.

We will start by considering a quantitative version of the notion of a uniquely remotal set (called an
ε-uniquely remotal set) and show that such sets have a diameter of at most 2ε. Uniquely remotal
sets are directly related to Chebyshev sets via the paper [1] which shows that there exists a non-
convex Chebyshev subset of a Hilbert space if, and only if, there exists a non-trivial set (i.e., a
non-singleton set) that is uniquely remotal, also see [11, Theorem 3.22] for details.

Secondly, we will show that under suitable circumstances “nearly” Chebyshev sets (i.e., ε-Chebyshev
sets) are “nearly” convex (i.e., ε-convex). This then raises the question of whether there exists an
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ε-Chebyshev set that is not ε-convex. Constructing such a counter-example should be easier than
constructing a Chebyshev set that is not convex, see [11, Section 4]. However, it may serve as
a stepping stone towards the construction of a non-convex Chebyshev subset of a Hilbert space.
Finally, we will end with some open problems regarding ε-uniquely remotal sets and ε-Chebyshev
sets.

Notation: In this paper all normed linear spaces will be over the field of real numbers (denoted R).
The closed unit ball in a normed linear space (X, ‖ · ‖) will be denoted by BX and the norm closed
convex hull of a subset K of a normed linear space (X, ‖ · ‖) will be denoted by, co(K). The set of
all subsets of a set K will be denoted by P(K). If X is a set and f : X → R ∪ {∞} is a function
then Dom(f) := {x ∈ X : f(x) < ∞} and we say that f is a proper function if Dom(f) = ∅. We
shall call a proper function f : X → R∪{∞}, defined on a vector space X, (over the real numbers)
a convex function if for each x, y ∈ Dom(f) and 0 < λ < 1, f(λx+ (1−λ)y) ≤ λf(x) + (1−λ)f(y).

2 Uniquely remotal sets

This paper is a first attempt at considering a quantitative version of the Chebyshev set problem. We
have opted for simplicity (of presentation) over full generality, but hope that the ideas introduced
here can be extended to more general situations. We also hope that the quantitative approach
presented here highlights the role that the geometry of the norm plays in all our consderations.

We begin with some introductory notions.

Let (X, ‖·‖) be a normed linear space and K be a nonempty bounded subset of X. For any point
x ∈ X, we define r(x,K) := supy∈K ‖x− y‖. We refer to the map x 7→ r(x,K) as the radial
function for K, [11, page 187].

Proposition 1 ([11, Proposition 3.11]) Let K be a nonempty bounded subset of a normed lin-
ear space (X, ‖·‖). Then the radial function for K is convex and nonexpansive (and hence contin-
uous).

Let (X, ‖·‖) be a normed linear space and let K be a subset of X. We define a set valued mapping
FK : X → P(K) by FK(x) := {y ∈ K : ‖x− y‖ = r(x,K)}, if K is nonempty and bounded and by
FK(x) = ∅ otherwise. We refer to the elements of FK(x) as the farthest points from x in K.

We say that K is a remotal set if FK(x) is a nonempty for each x ∈ X. Furthermore, we say that
K is a uniquely remotal set if FK(x) is a singleton for each x ∈ X, [11, page 187].

Remark 1 ([11, Remark 3.13]) It follows from the definition that every remotal set is nonempty
and bounded.

In this section we will also consider the following “quantitative” version of these notions. Let ε > 0,
then we shall say that K is an ε-uniquely remotal set if K is remotal and diam(FK(x)) ≤ ε for each
x ∈ X.

A special case of Ekeland’s variation principle, [9], which is sufficient for our purposes, is given
next.

Proposition 2 ([11, Theorem 3.33]) Let (X, d) be a complete metric space and let f : X → R
be a bounded below, lower semi-continuous function on X. If ε0 > 0 then there exists x∞ ∈ X such
that:

−ε0 <
f(x)− f(x∞)

d(x, x∞)
for all x ∈ X \ {x∞}.
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For our first theorem we will need to call upon the following elementary result that relates the
radial function to the farthest point mapping.

Proposition 3 ([11, Lemma 3.14]) Let K be a non-trivial (i.e., not a singleton) remotal set in
a normed linear space (X, ‖·‖). Let x ∈ X and z ∈ FK(x). If for each λ ∈ (0, 1), xλ := x+λ(z−x),
then

r(xλ,K)− r(x,K)

‖xλ − x‖
≤ −

(
1− ‖z − zλ‖

r(x,K)

)
,

where zλ ∈ FK(xλ) for each λ ∈ (0, 1).

The last ingredient that we need in order to state our first theorem is the notion of “metric upper
semicontinuity”, [15, page 53]. A set-valued mapping Φ from a topological space A into nonempty
subsets of a metric space (X, d) is metric upper semicontinuous at t0 ∈ A if for every ε > 0 there
exists an open neighbourhood U of t0 such that Φ(U) ⊆

⋃
{B(x; ε) : x ∈ Φ(t0)}. If Φ is metric

upper semicontinuous at each point of A then we say that Φ is metric upper semicontinuous on A.

Theorem 1 Let (X, ‖ · ‖) be a Banach space, ε > 0 and K be an ε-uniquely remotal set in X. If
the farthest point mapping, x 7→ FK(x), is metric upper semicontinuous on X, then diam(K) ≤ 2ε.

Proof: Suppose, in order to obtain a contradiction, that 2ε < D := diam(K). Then choose ε′ > ε
such that 2ε′ < D. By applying Proposition 2 to the mapping, x 7→ r(x,K), with ε0 := (1− 2ε′

D ) > 0
we obtain the existence of a point x∞ ∈ X such that

(
2ε′

D
− 1

)
<
r(x,K)− r(x∞,K)

‖x− x∞‖
for all x ∈ X \ {x∞}. (1)

Let us also note that D ≤ 2r(x∞,K) since, K ⊆ B[x∞; r(x∞,K)]. By Proposition 3, we have that
for any λ ∈ (0, 1)

r(xλ,K)− r(x∞,K)

‖xλ − x∞‖
≤ −

(
1− ‖z∞ − zλ‖

r(x∞,K)

)
=

(
‖z∞ − zλ‖
r(x∞,K)

− 1

)
≤
(

2‖z∞ − zλ‖
D

− 1

)
,

where, z∞ ∈ FK(x∞), xλ := x∞ + λ(z∞ − x∞) and zλ ∈ FK(xλ). Since diam(FK(x∞)) ≤ ε and
FK is metric upper semicontinuous at x∞, there exists λ0 ∈ (0, 1) such that, ‖z∞ − zλ0‖ < ε′. To
see this, first note that FK(x∞) ⊆ B[z∞; ε]. Let r := (ε′ − ε)/2 > 0. Then,⋃

{B(z; r) : z ∈ FK(x∞)} ⊆
⋃
{B(z; r) : z ∈ B[z∞; ε] ⊆ B(z∞; ε+ r) ⊆ B(z∞; ε′).

Since FK is metric upper semicontinuous there exists a 0 < δ such that

FK(B(x∞; δ)) ⊆
⋃
{B(z; r) : z ∈ FK(x∞)} ⊆ B(z∞; ε′);

and the result follows. Hence,

r(xλ0 ,K)− r(x∞,K)

‖xλ0 − x∞‖
<

(
2ε′

D
− 1

)
which contradicts Equation (1) since xλ0 6= x∞. k��
In reflexive spaces we can improve upon this result. However, we will need to introduce some more
definitions. A set-valued mapping Φ from a topological space A into subsets of a topological space
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(X, τ) is τ -upper semicontinuous if for each τ -open set W in X, {t ∈ A : Φ(t) ⊆ W} is open in
A. If Φ also has nonempty compact images then we call Φ a τ -usco mapping. Further, if (X, τ)
is a linear topological space then we call an τ -usco mapping whose values are also convex subsets
of X a τ -cusco mapping. An important fixed point theorem for τ -cuscos Φ : C → 2C defined on
a nonempty compact convex subset C of a Hausdorff locally convex space (X, τ) is the Kakutani-
Glicksberg-Fan fixed point theorem, [10,12], which states that there must exist a point x0 ∈ C such
that x0 ∈ Φ(x0). A slightly weaker version of upper semicontinuity is the following, [16, page 218].
A set-valued mapping Φ from a topological space A into nonempty subsets of a linear topological
space (X, τ) is τ -Hausdorff upper semicontinuous at t0 ∈ A if for every τ -open neighbourhood W
of 0 in X, there exists a neighbourhood U of t0 such that Φ(U) ⊆ Φ(t0) +W . If Φ is τ -Hausdorff
semicontinuous at each point of A then we say that Φ is τ -Hausdorff upper semicontinuous on A.
In general, τ -Hausdorff upper semicontinuity is a weaker notion than τ -upper semicontinuity, but
the notions coincide if the mapping Φ has nonempty compact images.

A useful result connecting τ -Hausdorff upper semicontinuity to τ -upper semicontinuity is the fol-
lowing.

Proposition 4 ([17, Lemma 7.12]) Suppose that Φ : A → 2X is a τ -Hausdorff upper semi-
continuous set-valued mapping from a topological space A into nonempty subsets of a Hausdorff
locally convex space (X, τ). If for each t ∈ A, coτΦ(t) is a compact subset of X, then the mapping
Ψ : A→ 2X defined by, Ψ(t) := coτΦ(t) for all t ∈ A, is a τ -cusco on A.

We can now prove our second theorem.

Theorem 2 Let (X, ‖ ·‖) be a reflexive Banach space, let ε > 0 and let K be an ε-uniquely remotal
set in X. If the farthest point mapping, x 7→ FK(x), is weak-Hausdorff upper semicontinuous on
(co(K),weak), then diam(K) ≤ 2ε.

Proof: Since K is a remotal set, K is nonempty and bounded. Therefore, if C := co(K) then C is
weakly compact (and convex). Let G : C → 2C be defined by, G(x) := co(FK(x)) for each x ∈ C.
Then, by Proposition 4, G is a weak-cusco on C. Hence, by the Kakutani-Glicksberg-Fan fixed
point theorem, there exists an x0 ∈ C such that x0 ∈ G(x0), i.e., x0 ∈ co(FK(x0)). Since

diam(G(x0)) = diam(co(FK(x0))) = diam(FK(x0)) ≤ ε

we have that FK(x0) ⊆ G(x0) ⊆ B[x0, ε]. Thus, K ⊆ B[x0, ε] and so diam(K) ≤ 2ε. k��
Corollary 1 Let (X, ‖ · ‖) be a Banach space, and let ε > 0. If K is a compact ε-uniquely
remotal set in X, then diam(K) ≤ 2ε. In particular, every ε-uniquely remotal subset K of a finite
dimensional Banach space has diam(K) ≤ 2ε.

Proof: This result follows from the fact that the mapping FK has a closed graph (and nonempty
images, since K is remotal) and the general fact that a set-valued mapping with a closed graph
and nonempty images that maps into a compact space is an usco mapping. k��
3 Chebyshev sets

Let (X, ‖·‖) be a normed linear space and K be a nonempty subset of X. For any point x ∈ X we
define d(x,K) := infy∈K ‖x− y‖ and call this the distance from x to K. We will also refer to the
map x 7→ d(x,K) as the distance function for K, [11, page 162].
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The key concept underlying the definition of a proximinal set is that of ‘nearest points’. The
following definition makes this idea precise.

Let (X, ‖·‖) be a normed linear space and K be a subset of X. We define a set-valued mapping
PK : X → P(K) by

PK(x) := {y ∈ K : ‖x− y‖ = d(x,K)},

if K is nonempty and by PK(x) := ∅ if K is the empty set. The elements of PK(x) are said to be
the nearest points to x in K).

We say that K is a proximinal set if PK(x) is nonempty for each x ∈ X and that K is a Chebyshev
set if PK(x) is a singleton for each x ∈ X. In the case when K is a Chebyshev set we define the
map pK : X → K as the map that assigns to each x ∈ X the unique element of PK(x). We will
refer to both mappings PK and pK as the metric projection mapping for K, [11, page 163].

In this section we will also consider the following “quantitative” version of these notions. Let ε > 0
then we shall say that K is an ε-Chebyshev set if K is proximinal and diam(PK(x)) ≤ ε for all
x ∈ X. Furthermore, we will say that a set K is ε-convex if, co(K) ⊆ K + εBX .

In order to state and prove our results in this section of the paper we will need to recall some
notions from optimisation theory.

Let (X, ‖ · ‖) be a Banach space and f : X → R ∪ {∞} be a proper function (i.e., not identically
equal to ∞). We say that a sequence (xn)∞n=1 in X is minimising if, lim

n→∞
f(xn) = inf

x∈X
f(x).

Let (X, ‖ · ‖) be a normed linear space and f : X → R∪{∞}. We say that f has a generalised strong
minimum if f has a global minimum and each minimising sequence (xn)∞n=1 in X has a subsequence
(xnk

)∞k=1 that converges to an element x0 ∈ X satisfying the equation f(x0) = infx∈X f(x).

Let (X, ‖ · ‖) be a normed linear space and let f : X → R ∪ {∞} be a proper function that is
bounded below by a continuous linear functional. We define a function co(f): X → R ∪ {∞} by

co(f)(x) := sup{ψ(x) : ψ : X → R is continuous, convex and ψ(y) ≤ f(y) for all y ∈ X}.

It is immediate from this definition that co(f) is convex, lower semicontinuous and co(f)(x) ≤ f(x)
for all x ∈ X. Furthermore, if x∗ ∈ X∗, then

co(f − x∗) = co(f)− x∗. (2)

The final piece of notation that we will require from optimisation theory is the following. For a set
X and a function f : X → R, we define

argmin(f) := {x ∈ X : f(x) ≤ f(y) for all y ∈ X}.

Our first result in this section is an extension of [11, Theorem 3.26].

Lemma 1 Let (X, ‖ · ‖) be a Banach space. Suppose that f : X → R ∪ {∞} and 0 < lim inf
‖x‖→∞

f(x)

‖x‖
.

If f has a generalised strong minimum, then argmin(co(f)) = co(argmin(f)).

Proof: It is easy to see that, argmin(f) ⊆ argmin(co(f)) and since argmin (co(f)) is closed and
convex, it follows that co(argmin(f)) ⊆ argmin(co(f)). Therefore, it is sufficient to show that

argmin(co(f)) ⊆ co(argmin(f)).
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To do this, we will show that for each ε > 0, argmin(co(f)) ⊆ co(argmin(f)) + 2εBX . To this end,
let ε > 0. We claim that for some n ∈ N, the continuous convex function cn : X → R, defined by

cn(x) := min
x∈X

f +
1

n
d(x, co(argmin(f)) + εBX),

satisfies the inequality cn(x) ≤ f(x) for all x ∈ X. Now suppose, in order to obtain a contradiction,
that this is not the case. Then, for each n ∈ N, there will exist an xn ∈ X such that f(xn) < cn(xn).

We claim that (xn)∞n=1 is a bounded sequence. Indeed, if (xn)∞n=1 is not bounded then there exists
a subsequence (xnk

)∞k=1 of (xn)∞n=1 such that k ≤ ‖xnk
‖ for all k ∈ N. On the other hand, it follows

from the triangle inequality that there exists an 0 < M such that

0 ≤ d(x, co(argmin(f)) + εBX) ≤ ‖x‖+M for all x ∈ X.

Therefore,

cn(x) ≤ min
x∈X

f +
1

n
(‖x‖+M) for all x ∈ X.

In particular,

f(xnk
) < cnk

(xnk
) ≤ min

x∈X
f +

1

nk
(‖xnk

‖+M) for all k ∈ N.

Thus,

lim sup
k→∞

f(xnk
)

‖xnk
‖
≤ lim sup

k→∞

cnk
(xnk

)

‖xnk
‖

≤ lim sup
k→∞

[
minx∈X f

‖xnk
‖

+
1

nk

(
1 +

M

‖xnk
‖

)]
≤ lim sup

k→∞

minx∈X f

‖xnk
‖

+ lim sup
k→∞

1

nk

(
1 +

M

‖xnk
‖

)
= 0,

which is impossible since 0 < lim inf‖x‖→∞
f(x)
‖x‖ . Thus, the sequence (xn)∞n=1 is bounded. Hence,

min
x∈X

f ≤ lim inf
n→∞

f(xn) ≤ lim sup
n→∞

f(xn) ≤ lim sup
n→∞

cn(xn) ≤ min
x∈X

f + lim sup
n→∞

1

n
(‖xn‖+M) = min

x∈X
f.

That is, (xn)∞n=1 is a minimising sequence for f . However, as f has a generalised strong minimum
the sequence (xn)∞n=1 has a convergent subsequence (xnk

)∞k=1 such that lim
k→∞

xnk
= x0 for some

x0 ∈ argmin(f). Therefore, for k sufficiently large,

xnk
∈ B[x0, ε] ⊆ co(argmin(f)) + εBX),

and so

f(xnk
) < cn(xnk

) = min
x∈X

f +
1

n
d(xnk

, co(argmin(f)) + εBX) = min
x∈X

f,

which is clearly impossible. This proves the claim. Finally, since cn is continuous and convex
(see, [11, Proposition 2.15]), cn(x) ≤ co(f)(x) for all x ∈ X. This implies that

argmin(co(f)) ⊆ co(argmin(f)) + 2εBX

since, co(f)(x0) = f(x0) = min
x∈X

f < cn(x) ≤ co(f)(x) for all x 6∈ co(argmin(f)) + 2εBX . k��
A subset K of a normed linear space (X, ‖ · ‖) is called approximatively compact, [8], if for every
x ∈ X and sequence (xn)∞n=1 in K such that limn→∞ ‖x−xn‖ = d(x,K) there exists a subsequence
(xnk

)∞k=1 of (xn)∞n=1 and an element x0 ∈ PK(x) such that (xnk
)∞k=1 converges to x0.
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If f : X → R∪{∞} is a convex function defined on a normed linear space (X, ‖·‖) and x ∈ Dom(f),
then we define the subdifferential of f at x to be the set ∂f(x) of all x∗ ∈ X∗ satisfying

x∗(y)− x∗(x) ≤ f(y)− f(x) for all y ∈ Dom(f).

We shall denote by, Dom(∂f(x)), {x ∈ Dom(f) : ∂f(x) 6= ∅}.

The main theorem for this section is given next and is modelled on [11, Theorem 3.27].

Theorem 3 Let (X, 〈·, ·〉) be a Hilbert space and let K be an approximatively compact ε-Chebyshev
set in X. Then K is ε-convex.

Proof: We begin by considering the auxiliary function f : X → R ∪ {∞} defined by

f(x) :=

{
‖x‖2 if x ∈ K
∞ if x 6∈ K.

In order to obtain a contradiction we shall suppose that K is not ε-convex. Then there exists

z ∈ co(K) \ (K + εBX).

Now, since Dom (co(f)) is convex and contains Dom(f) = K, co(K) ⊆ Dom (co(f)). Furthermore,
K + εBX is a closed set (not containing z) because K + εBX = {x ∈ X : d(x,K) ≤ ε}, since
K is proximinal. Therefore, by the Brøndsted-Rockafellar Theorem, [7] there exists a point z0 ∈
Dom (∂ (co(f)))\(K + εBX). Let x∗ ∈ ∂ (co(f))(z0). Now, by Riesz’s Representation Theorem,
(see [18], or [19, page 248]), there exists x ∈ X such that x∗(y) = 〈y, x〉 for all y ∈ X. A simple
calculation now reveals that

(f − x∗)(k) = f(k)− 〈k, x〉 =
∥∥∥k − x

2

∥∥∥2 − ‖x‖2
4

for all k ∈ K.

Thus, f − x∗ has a generalised strong minimum and argmin(f − x∗) = PK

(x
2

)
.

Furthermore, let us also observe that (i) lim inf
‖x‖→∞

(f − x∗)(x)

‖x‖
=∞ and (ii) z0 ∈ argmin (co(f)− x∗)

since in general, for a convex function g, y∗ ∈ ∂g(z0) if, and only if, z0 ∈ argmin(g − y∗).

Putting all of this together we obtain the following:

z0 ∈ argmin (co(f)− x∗) since x∗ ∈ ∂(co(f))(z0)

= argmin (co(f − x∗)) by Equation (2)

= co(argmin(f − x∗)) by Lemma 1

= co
{
PK

(x
2

)}
⊆ K + εBX .

The last line of the expression above follows from the fact that:

diam
(

co
(
PK

(x
2

)))
= diam

(
PK

(x
2

))
≤ ε and ∅ 6= PK

(x
2

)
⊆ co

(
PK

(x
2

))
∩K.

However, this is impossible, since z0 6∈ K + εBX . Hence, K is ε-convex. k��
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Corollary 2 Let (X, 〈·, ·〉) be a Hilbert space and let K be weakly closed ε-Chebyshev set in X,
then K is ε-convex.

Proof: By Theorem 3 it is sufficient to show that K is approximatively compact. To this end, let
x ∈ X and let (xn)∞n=1 be a sequence in K such that limn→∞ ‖x−xn‖ = d(x,K). If x ∈ K then the
result is obvious, so we will consider the case when x 6∈ K. Since X is reflexive and the sequence
(xn)∞n=1 is bounded there exists a subsequence (xnk

)∞k=1 of (xn)∞n=1 and an element x∞ ∈ X such
that (xnk

)∞k=1 converges to x∞ ∈ X with respect to the weak topology on X. Since K is weakly
closed x∞ ∈ K and so d(x,K) ≤ ‖x∞ − x‖. Furthermore, since the norm is lower semicontinuous
with respect to the weak topology on X,

d(x,K) ≤ ‖x∞ − x‖ ≤ lim
k→∞

‖xnk
− x‖ = d(x,K).

In particular, d(x,K) = ‖x∞ − x‖, and so x∞ ∈ PK(x). Since the norm on a Hilbert space is a
Kadec norm (i.e., the relative weak and norm topologies agree on the unit sphere) we have that
(xnk
−x)∞k=1 converges to x∞−x, with respect to the norm topology, too. Thus, (xnk

)∞k=1 converges
to x∞, with respect to the norm topology, and so K is approximatively compact. k��
4 Open problems

We will end this article with some natural questions that have arisen from our study of ε-uniquely
remotal sets and ε-Chebyshev sets.

Question 1 In Theorem 1 can we replace the conclusion that diam(K) ≤ 2ε by, diam(K) ≤ sε
where, 1 ≤ s < 2 ? Does it depend upon the norm ?

Question 2 In Theorem 2 can we replace the conclusion that diam(K) ≤ 2ε by, diam(K) ≤ sε
where, 1 ≤ s < 2 ? Does it depend upon the norm ?

Question 3 Can we prove something like Theorem 3 for other than Hilbert spaces? Of course, the
conclusion that K ε-convex would have to be relaxed to something like “K is f(ε)-convex” for some
function f : (0,∞)→ (0,∞), that only depends upon the norm.

Question 4 Is it true that every approximatively compact 2ε-Chebyshev set in a Hilbert space X
is ε-convex?
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