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Abstract. We provide a short proof of the following fact: If X is a Banach space, A and B are
bounded, closed and convex sets with dist(A,B) > 0 and every x∗ ∈ X∗ with the property that
sup(x∗, B) < inf(x∗, A) attains its infimum on A and its supremum on B, then both A and B

are weakly compact.
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The result mentioned in the abstract was first proved in [1, Theorem 2] for Banach spaces whose
dual ball is weak∗ convex block compact. In this short paper we prove this result for arbitrary
Banach spaces. For any nonempty bounded subset A of a Banach space X and any x∗ ∈ X∗ we
shall denote by, sup(x∗, A) := sup{x∗(a) : a ∈ A} and by inf(x∗, A) := inf{x∗(a) : a ∈ A}.

Lemma 1 Let (Y, ‖ ·‖) be a Banach space and C be a nonempty bounded subset of Y ×R, endowed
with the norm ‖(y, r)‖1 := ‖y‖ + |r|. If for every x∗ ∈ Y ∗, max{(x∗,−1)(y, s) : (y, s) ∈ C} exists
then C is relatively weakly compact.

Proof: Let π : Y ×R → Y be defined by π(y, r) := y, A := π(C) and f : Y → R∪ {∞} be defined
by,

f(y) :=

{

inf{s ∈ R : (y, s) ∈ C} if y ∈ A

∞ if y 6∈ A.

Then f is a proper function on Y and x∗ − f attains it maximum for every x∗ ∈ Y ∗. Therefore,
by [2, Theorem 1], (or [4, Theorem 2.4]) for each a ∈ R, S(a) := {(y, s) ∈ Y ×R : f(y) ≤ s ≤ a} is
relatively weakly compact. Since C is bounded there exists an a ∈ R such that C ⊆ S(a). �

Theorem 1 Let X be a Banach space and let A and B be bounded, closed and convex sets with
dist(A,B) > 0. If every x∗ ∈ X∗ with sup(x∗, B) < inf(x∗, A) attains its infimum on A and its
supremum on B, then both A and B are weakly compact.

Proof: To show that both A and B are weakly compact it is sufficient (and necessary) to show
that B − A is weakly compact. This will be our approach. From the hypotheses it follows that
if C := B −A, then C is a bounded nonempty closed and convex subset of X with 0 6∈ C.
Furthermore, it follows that each x∗ ∈ X∗ with sup(x∗, C) < 0 attains it supremum on C. Choose
y∗ ∈ X∗ such that sup(y∗, C) < 0. Note that such a functional exists by the Hahn-Banach theorem.
Let Y := ker(y∗) and choose x0 ∈ C. Define S : Y × R → X by, S(y, r) := y + rx0 and let us
consider Y ×R endowed with the norm ‖(y, r)‖1 := ‖y‖+ |r|. Then S is an isomorphism and there
exists an 0 < ε such that S−1(C) ⊆ {(y, r) ∈ Y × R : ε ≤ r}. Moreover, each (x∗, r) ∈ (Y × R)∗

with sup((x∗, r), S−1(C)) < 0 attains its supremum over S−1(C). Let π : Y × R → Y be defined
by π(y, r) := y, A := π(S−1(C)) and f : Y → R ∪ {∞} be defined by,

f(y) :=

{

inf{s ∈ R : (y, s) ∈ S−1(C)} if y ∈ A

∞ if y 6∈ A.
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Next, we define T : Y × (R \ {0}) → Y × (R \ {0}) by T (y, s) := s−1(y,−1). Then T is a bijection.
In fact, T is a homeomorphism when Y × (R \ {0}) is considered with the relative weak topology.
Let p : Y ∗ → R be defined by,

p(x∗) := sup
y∈Y

[x∗(y)− f(y)] = sup((x∗,−1), S−1(C)).

It is routine to check that p is real-valued and convex on Y ∗. To show that C is weakly compact
it is sufficient to show that T (S−1(C)) is a relatively weakly compact subset of Y ×R. To achieve
this we appeal to Lemma 1. So let x∗ ∈ Y ∗. We consider two cases.

Case (I) Suppose that for every 0 < λ, p(λx∗) ≤ −λ. Then x∗(y) − λ−1f(y) ≤ −1 for all y ∈ Y

and all 0 < λ. In particular, −λ−1f(0) ≤ −1 for all 0 < λ, i.e., λ ≤ f(0) for all 0 < λ. On the
other hand, S(0, 1) = x0 ∈ C, i.e., (0, 1) ∈ S−1(C) and so f(0) ≤ 1. Thus, Case (I) does not occur.

Case(II) Suppose that for some 0 < λ, −λ < p(λx∗). Then, since the mapping, λ′ 7→ p(λ′x∗),
is real-valued and convex, it is continuous. Furthermore, it follows from the intermediate value
theorem applied to the function g : [0, λ] → R, defined by,

g(λ′) := p(λ′x∗) + λ′ for all λ′ ∈ [0, λ],

that there exists a 0 < µ < λ such that g(µ) = 0, i.e., p(µx∗) = −µ, since

g(0) = p(0x∗) = − inf
y∈Y

f(y) ≤ −ε < −0 = 0 < g(λ).

Thus, µ(x∗,−1) = (µx∗, p(µx∗)) and so p(µx∗) = sup((µx∗,−1), S−1(C)) = −µ < 0.

Choose (z, s) ∈ S−1(C) such that (µx∗,−1)(z, s) = sup((µx∗,−1), S−1(C)) = p(µx∗). Note that
z ∈ A and s = f(z). We claim that (x∗,−1) attains its maximum value over T (S−1(C)) at
T (z, f(z)) = f(z)−1(z,−1). Now,

(x∗,−1)(T (z, f(z))) = f(z)−1(x∗(z) + 1) = f(z)−1(x∗(z)− [µ−1p(µx∗)])

= f(z)−1(x∗(z)− [x∗(z)− µ−1f(z)]) = µ−1.

On the other hand, if (y, s) ∈ S−1(C) then

(x∗,−1)(T (y, s)) = s−1(x∗(y) + 1) = s−1(x∗(y)− [µ−1p(µx∗)])

≤ s−1(x∗(y)− [x∗(y)− µ−1f(y)]) = s−1f(y)µ−1 ≤ µ−1 = (x∗,−1)(T (z, f(z)))

since f(y) ≤ s. This completes the proof. �

Remark 1 It might be interesting to note the following: If X is a Banach space, A and B are
bounded, closed and convex sets such that every x∗ ∈ X∗ with inf(x∗, A) < sup(x∗, B) attains
its infimum on A and its supremum on B, then both A and B are weakly compact. To see this,
note that C := co[{0} ∪B −A] is a closed and bounded convex subset of X with the property that
every continuous linear function attains it supremum over C. Let us also recall that the problem
in Theorem 1 was first considered in L1(Ω,F , P ), where (Ω,F , P ) is a probability space. In this
setting there is a very elementary proof of James’ theorem, see [3] (which is used within the proof
of Lemma 1), since L1(Ω,F , P ) is weakly compactly generated.
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[1] B. Cascales, J. Orihuela and A. Pérez, One-sided James’ compactness theorem, J. Math. Anal. Appl.
445 (2017), 1267–1283.

[2] W. B. Moors, Weak compactness of sublevel sets, to appear in Proc. Amer. Math. Soc. (2 pages).

[3] W. B. Moors and S. J. White, An elementary proof of James’ characterisation of weak compactness II,
to appear in Bull. Aust. Math. Soc. (4 pages).

[4] J. Saint-Raymond, Weak compactness and variational characterisation of the convexity, Mediterr. J.
Math. 10 (2013), 927–940.

3


