Weak compactness of sublevel sets
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Abstract. In this paper we provide a short proof of the fact that if X is a Banach space and
f: X = RU{oc} is a proper function such that f —z* attains its minimum for every a* € X*,
then all the sublevels of f are relatively weakly compact. This result has many applications.
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Recently several authors (see, [1,5,7] to name just a few) have considered the result (or a special
case of it) mentioned in the abstract. In this note we provide a short proof of this result. To
date the only full proof of this result (known to the author) is [7, Theorem 2.4]; which is long and
involved.

Theorem 1 Let X be a Banach space and let f : X — RU{oo} be a proper function on X. If f—x*
attains minimum for every x* € X* then for each a € R, S(a) :={(y,s) € X xR: f(y) < s <a}
1s relatively weakly compact.

Proof: In this proof we will identify the dual of X x R with X* x R. We will also consider X x R
endowed with the norm ||(x,7)||1 := ||=||+]|r| and note that with this norm, (X xR, ||-||1) is a Banach
space. We shall apply James’ theorem, [3, Theorem 5], in X xR. Let H := {(z,r) € X xR : r =0}
and define T : (X x R)\ H — (X x R)\ H by, T(z,r) := r~!(x,—1). Then T is a bijection. In
fact, T' is a homeomorphism when (X x R)\ H is considered with the relative weak topology. Note
that since f is bounded below we may assume, after possibly translating, that 1 = inf,cx f(z).
Our proof relies upon the Fenchel conjugate, p : X* — R of f, which is defined by,
p(z") = supla™(z) = f(z)] = = inf [f(w) = «*(@)] = —mip[f(z) - 2"(z)] = magle" () = f()].

It is routine to check that p is convex on X*. We claim that ©o[T'(epi(f)) U {(0,0)}] is weakly
compact. To show this, it is sufficient, because of James’ theorem, to show that every non-zero

continuous linear functional attains its maximum value over T'(epi(f)) U {(0,0)}. To this end, let
(x*,7r) € (X* xR)\ {(0,0)}. We consider two cases.

Case (I) Suppose that for every 0 < A, p(Az*) < M. Then z*(z) — A~ f(x) <r for all x € X and
all 0 < \. Let (y,s) € epi(f) and let 0 < A. Then,

(@, 1) (T(y.s)) = s (2" (y) =) <57 a™(y) = [2"(y) = X W) = s F AT <A
since f(y) < s. As 0 < A was arbitrary, (z*,7)(T(y,s)) < 0= (z*,r)(0,0). Thus, (z*,r) attains it
maximum value over T'(epi(f)) U {(0,0)} at (0,0).

Case(II) Suppose that for some 0 < A\, Ar < p(Az*). Then, since the mapping, N — p(Nz*),
is real-valued and convex, it is continuous. Furthermore, it follows, from the intermediate value
theorem applied to the function g : [0, A\] — R, defined by,

g(\) == p(Nz*) = Nr for all N € [0, )]



that there exists a 0 < u < A such that g(u) = 0, i.e., p(puz*) = pr, since g(0) = =1 < 0 < g(N).
Thus, p(z*,r) = (px*, p(pz*)). Choose z € X such that p(uz*) = pz*(z) — f(z). We claim that
(x*,7) attains its maximum value over T(epi(f)) U {(0,0)} at T(z, f(2)) = f(2)~ (2, —1). Now,

(@, )T (2, f(2) = &) (@"(x) = 7) = f(2) 7} (@™ (2) = [ "p(ua™)])
[

( =
(2) = [2°(z) — " F(2)]) = L > 0.

F(2)7H(a"(2)
On the other hand, if (y,s) € epi(f) then
(@) (T(y:s) = s (@ (y) —r)=s""(2"(y) = [ p(na")])

< s - ) - e W) =T e < pTh = (@7 n)(T( £(2)
since f(y) < s. Note also that (z*,7)(0,0) = 0 < u~! = (2*,7)(T(z, f(2)). Therefore, by James’
theorem [3, Theorem 5|, o[ (epi(f)) U {(0,0)}] is weakly compact.
Let 1 < a, then T(S(a)) C @[T (epi(f)) U {(0,0)}] N{(z,r) € X x R:7r < —a~!'}; which is weakly
compact. Therefore, S(a) € T~ (co[T (epi(f)) U {(0,0)}] N {(z,7) € X x R : r < —a~'}); which
completes the proof. [

For each a € R, let L(a) :={z € X : f(x) < a}. It follows from Theorem 1 that if X is a Banach
space, f: X — RU{oo} is a proper function on X and f — z* attains minimum for every z* € X*
then, for each a € R, L(a) is relatively weakly compact.

Theorem 1 has many applications, see [1, Section 10.6] and [2,4-7] to name only some of them. It
also recaptures James’ theorem on weak compactness. Indeed, if C' is a closed and convex subset
of a Banach space X that has the property that every continuous linear function on X attains it
maximum value over C, then the function f: X — R U {oco} defined by,

1 ifzeC
f(x)_{ oo ifzxgC
satisfies the hypotheses in Theorem 1. Hence, C' = L(1) is weakly compact.
In the proof of Theorem 1 we exploited the simple, but under utilised fact, that if T': B — B is
a weak-to-weak (not necessarily linear) homeomorphism on a subset B of a Banach space X, then

a subset C' of B is weakly compact in X if, and only if, T'(C) is a weakly compact subset of B,
(endowed with the relative weak topology).
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