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Abstract. In this paper we provide a short proof of the fact that if X is a Banach space and
f : X → R∪ {∞} is a proper function such that f − x∗ attains its minimum for every x∗ ∈ X∗,
then all the sublevels of f are relatively weakly compact. This result has many applications.
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Recently several authors (see, [1, 5, 7] to name just a few) have considered the result (or a special
case of it) mentioned in the abstract. In this note we provide a short proof of this result. To
date the only full proof of this result (known to the author) is [7, Theorem 2.4]; which is long and
involved.

Theorem 1 Let X be a Banach space and let f : X → R∪{∞} be a proper function on X. If f−x∗

attains minimum for every x∗ ∈ X∗ then for each a ∈ R, S(a) := {(y, s) ∈ X × R : f(y) ≤ s ≤ a}
is relatively weakly compact.

Proof: In this proof we will identify the dual of X ×R with X∗ ×R. We will also consider X ×R

endowed with the norm ‖(x, r)‖1 := ‖x‖+|r| and note that with this norm, (X×R, ‖·‖1) is a Banach
space. We shall apply James’ theorem, [3, Theorem 5], in X×R. Let H := {(x, r) ∈ X×R : r = 0}
and define T : (X × R) \H → (X × R) \ H by, T (x, r) := r−1(x,−1). Then T is a bijection. In
fact, T is a homeomorphism when (X ×R) \H is considered with the relative weak topology. Note
that since f is bounded below we may assume, after possibly translating, that 1 = infx∈X f(x).
Our proof relies upon the Fenchel conjugate, p : X∗ → R of f , which is defined by,

p(x∗) := sup
x∈X

[x∗(x)− f(x)] = − inf
x∈X

[f(x)− x∗(x)] = −min
x∈X

[f(x)− x∗(x)] = max
x∈X

[x∗(x)− f(x)].

It is routine to check that p is convex on X∗. We claim that co[T (epi(f)) ∪ {(0, 0)}] is weakly
compact. To show this, it is sufficient, because of James’ theorem, to show that every non-zero
continuous linear functional attains its maximum value over T (epi(f)) ∪ {(0, 0)}. To this end, let
(x∗, r) ∈ (X∗ ×R) \ {(0, 0)}. We consider two cases.

Case (I) Suppose that for every 0 < λ, p(λx∗) ≤ λr. Then x∗(x)− λ−1f(x) ≤ r for all x ∈ X and
all 0 < λ. Let (y, s) ∈ epi(f) and let 0 < λ. Then,

(x∗, r)(T (y, s)) = s−1(x∗(y)− r) ≤ s−1(x∗(y)− [x∗(y)− λ−1f(y)]) = s−1f(y)λ−1 ≤ λ−1

since f(y) ≤ s. As 0 < λ was arbitrary, (x∗, r)(T (y, s)) ≤ 0 = (x∗, r)(0, 0). Thus, (x∗, r) attains it
maximum value over T (epi(f)) ∪ {(0, 0)} at (0, 0).

Case(II) Suppose that for some 0 < λ, λr < p(λx∗). Then, since the mapping, λ′ 7→ p(λ′x∗),
is real-valued and convex, it is continuous. Furthermore, it follows, from the intermediate value
theorem applied to the function g : [0, λ] → R, defined by,

g(λ′) := p(λ′x∗)− λ′r for all λ′ ∈ [0, λ],
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that there exists a 0 < µ < λ such that g(µ) = 0, i.e., p(µx∗) = µr, since g(0) = −1 < 0 < g(λ).
Thus, µ(x∗, r) = (µx∗, p(µx∗)). Choose z ∈ X such that p(µx∗) = µx∗(z) − f(z). We claim that
(x∗, r) attains its maximum value over T (epi(f)) ∪ {(0, 0)} at T (z, f(z)) = f(z)−1(z,−1). Now,

(x∗, r)(T (z, f(z)) = f(z)−1(x∗(z)− r) = f(z)−1(x∗(z)− [µ−1p(µx∗)])

= f(z)−1(x∗(z)− [x∗(z)− µ−1f(z)]) = µ−1 > 0.

On the other hand, if (y, s) ∈ epi(f) then

(x∗, r)(T (y, s)) = s−1(x∗(y)− r) = s−1(x∗(y)− [µ−1p(µx∗)])

≤ s−1(x∗(y)− [x∗(y)− µ−1f(y)]) = s−1f(y)µ−1 ≤ µ−1 = (x∗, r)(T (z, f(z))

since f(y) ≤ s. Note also that (x∗, r)(0, 0) = 0 < µ−1 = (x∗, r)(T (z, f(z)). Therefore, by James’
theorem [3, Theorem 5], co[T (epi(f)) ∪ {(0, 0)}] is weakly compact.

Let 1 ≤ a, then T (S(a)) ⊆ co[T (epi(f)) ∪ {(0, 0)}] ∩ {(x, r) ∈ X × R : r ≤ −a−1}; which is weakly
compact. Therefore, S(a) ⊆ T−1(co[T (epi(f)) ∪ {(0, 0)}] ∩ {(x, r) ∈ X × R : r ≤ −a−1}); which
completes the proof. �

For each a ∈ R, let L(a) := {x ∈ X : f(x) ≤ a}. It follows from Theorem 1 that if X is a Banach
space, f : X → R∪ {∞} is a proper function on X and f − x∗ attains minimum for every x∗ ∈ X∗

then, for each a ∈ R, L(a) is relatively weakly compact.

Theorem 1 has many applications, see [1, Section 10.6] and [2,4–7] to name only some of them. It
also recaptures James’ theorem on weak compactness. Indeed, if C is a closed and convex subset
of a Banach space X that has the property that every continuous linear function on X attains it
maximum value over C, then the function f : X → R ∪ {∞} defined by,

f(x) :=

{

1 if x ∈ C

∞ if x 6∈ C

satisfies the hypotheses in Theorem 1. Hence, C = L(1) is weakly compact.

In the proof of Theorem 1 we exploited the simple, but under utilised fact, that if T : B → B is
a weak-to-weak (not necessarily linear) homeomorphism on a subset B of a Banach space X, then
a subset C of B is weakly compact in X if, and only if, T (C) is a weakly compact subset of B,
(endowed with the relative weak topology).
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