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Abstract. In this survey article we shall summarise some of the recent
progress that has occurred in the study of topological games as well
as their applications to abstract analysis. The topics given here do
not necessarily represent the most important problems from the area
of topological games, but rather, they represent a selection of problems
that are of interest to the authors.
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1. Introduction

Although a combinatorial game, in a mathematical form, was described
probably for the first time at the beginning of the 17th century, the notion
of a positional game with perfect information was introduced in the famous
monograph of von Neumann and Morgenstern [37]. In that monograph, the
authors considered finite positional games and proved that each such game
can be reduced to a matrix game, and moreover, if the (finite) positional
game is one with perfect information, then the corresponding matrix game
has a saddle point. However, infinite positional games with perfect infor-
mation were discovered a little earlier. In 1935, Stanistaw Mazur proposed
a game related to the Baire Category Theorem, which is described in Prob-
lem No. 43 of the Scottish Book; its solution, given by Stefan Banach, is
dated August 4, 1935. This game, now known as the Banach-Mazur game,
is the first infinite positional game with the perfect information. Unfortu-
nately, because of World War II, the problems in the Scottish Book were not
widely known until the mid fifties. So although, historically, the Banach-
Mazur game was the first infinite positional game with perfect knowledge
we shall delay its description until Section 2. Instead, we shall begin with
the description of the simpler Choquet game given in [10].

Let (X, τ) be a topological space. The Choquet game Ch(X), played
on (X, τ) is played between two players α and β who, alternately, select
nonempty open subsets of X. Player β goes first (always!) and chooses
a nonempty open subset B1 of X. Player α must respond by selecting a
nonempty open subset A1 ⊆ B1. Following this player β must select another
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nonempty open subset B2 ⊆ A1 ⊆ B1 and in turn the player α must again
respond by selecting a nonempty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1. In
general, β selects any nonempty open subset Bn of the last move An−1 of α
and the latter player answers by choosing a nonempty open subset An of the
set Bn, just chosen by β. Acting in this way, the players α and β “produce”
a sequence of nonempty open sets

B1 ⊇ A1 ⊇ B2 ⊇ A2 ⊇ · · ·Bn ⊇ An ⊇ · · ·
which is called a play and will be denoted by ((An, Bn))n∈N. We shall declare
that the player α wins a play ((An, Bn))n∈N of the Choquet game Ch(X)
if

⋂
n∈N An =

⋂
n∈N Bn 6= ∅. Otherwise, the player β is said to have won

this play. A finite sequence ((Ak, Bk))n
k=1 of pairs of nonempty open sets

consisting of the first n moves of the Choquet game is called a partial play.
It is clear that every partial play can be extended to a play.

By a strategy for the player α we mean a rule that species each move of
the player α in every possible situation. More precisely, a strategy t = (tn :
n ∈ N) for α is a sequence of τ -valued mappings such that

∅ 6= tn(B1, B2, . . . , Bn) ⊆ Bn for all n ∈ N.

The domains of the tn’s are families of finite sequences of nonempty open
sets defined inductively as follows:

Dom(t1) := {(B1) : B1 is a nonempty open subset of X};
Dom(tn+1) := {(B1, ..., Bn, Bn+1) : (B1, ..., Bn) ∈ Dom(tn),

and Bn+1 ⊆ tn(B1, ..., Bn)}.
Each element of

⋃
n∈N Dom(tn) is called a partial t-play and an infinite

sequence (Bn)n∈N of nonempty open subsets of X is called a t-play pro-
vided (B1 . . . , Bn) ∈ Dom(tn) for all n ∈ N. Of course, one can consider
the space of all t-plays P (t) endowed with the Baire metric d, that is, if
p = (Bn : n ∈ N) and p′ = (B′

n : n ∈ N) are two t-plays, then d(p, p′) = 0
if p = p′ and otherwise d(p, p′) = 1/n, where n := min{k ∈ N : Bk 6= B′

k}.
It is clear that (P (t), d) is a complete metric space. A strategy t is called a
winning strategy for the player α if α wins each t-play in Ch(X). Strategies
and winning strategies for the player β in Ch(X) can be defined similarly. A
space X is called weakly α-favourable if α has a winning strategy in Ch(X).

Given two strategies t and σ for the player α in Ch(X), we say that σ
refines t, denoted by t � σ, if each σ-play is a t-play or, alternatively, if for
each n ∈ N, Dom(σn) ⊆ Dom(tn) and σn(B1, . . . Bn) ⊆ tn(B1, . . . Bn) for
each (B1, . . . Bn) ∈ Dom(σn). Note that if t is a winning strategy for the
player α and t � σ then σ is also a winning strategy for the player α. We
shall call a family P of nonempty open subsets of a space X a pseudo-base
(sometimes, π-base) for X if for every nonempty open set U ⊆ X, there is
some P ∈ P with P ⊆ U . It is easy to see that if P is a pseudo-base for
X, then for any strategy t for the player α in Ch(X), there exists a strategy
σ := (σn : n ∈ N) for α such that t � σ and σn(B1, . . . , Bn) ∈ P for all
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(B1, . . . , Bn) ∈ Dom(σn). Based on these observations we shall often restrict
the moves of players in the Choquet game to a pre-chosen pseudo-base (or
base) of a space.

The motivation of Choquet [10] for introducing the Choquet game was to
characterise metric spaces with certain completeness properties and to study
the set of extreme points of a compact convex set in a locally convex linear
space. In the literature, there are many generalisations and extensions of
the Choquet game. For instance, some of the results in [10] were extended
to non-metrizable spaces in [7]. The readers should refer to the excellent
survey articles [46] or [42] for more information. In the next few sections,
we shall explore some modifications of the Choquet game and also some of
their applications to abstract analysis and topology.

2. Applications of games to Baire spaces

In this section, we shall first present a characterisation of Baire spaces in
terms of the Choquet game and then give some of its applications. Also,
we shall present the original setting of the Banach-Mazur game, as well
as, some of its applications. Recall that a space X is a Baire space if the
intersection of any sequence of dense open subsets of X is dense. Further,
if every closed subspace of X is Baire, then X is called a hereditarily Baire
space. Of course, Baire spaces can be defined in terms of sets of the second
category, refer to [14]. Among the known examples of Baire spaces are
complete metric spaces, (locally) compact spaces and Čech complete spaces.

The following theorem, first discovered by Oxtoby [39], and later proved
in [25] and [43] independently, gives a characterisation of Baire spaces in
terms of the Choquet game.

Theorem 2.1 ([25, 39, 43]). A space X is a Baire space if, and only if, the
player β does not have a winning strategy in Ch(X).

It is an immediate consequence of Theorem 2.1 that weakly α-favourable
spaces are Baire spaces. We begin our discussion of applications of Theo-
rem 2.1 with the problem of whether the product of two (or a family of)
Baire spaces is still Baire. This question can be tracked to Sikorski [44].
First of all, by Theorem 2.1 and remarks in Section 1, the product of a
family of Baire spaces is Baire if, and only if, all countable subproducts are
Baire. It is known that the product of a (hereditarily) Baire space with any
complete metric space is (hereditarily) Baire. On the other hand, Oxtoby
[40] showed that CH implies that there is a metric Baire space whose square
is not Baire. Furthermore, Aarts and Lutzer [1] constructed a metric hered-
itarily Baire space whose square is not hereditarily Baire. Finally, in 1978,
Fleissner and Kunen [13] presented a metric Baire space whose square is
not Baire without using any additional hypothesis. Due to a mistake in [11]
it was claimed that Example 1 of [13] gives two metric hereditarily Baire
spaces whose product is not Baire. Recently however, Chaber and Pol [9]



4 J. CAO AND W. B. MOORS

have corrected this error by showing that the product of any family of metric
hereditarily Baire spaces is Baire, and further asked whether the product of
a metric Baire space and a metric hereditarily Baire space must be Baire.
By applying Theorem 2.1, Moors [33] provided an affirmative answer to this
question.

Theorem 2.2 ([33]). The product of a Baire space and a metric hereditarily
Baire space is Baire.

Now, we turn our attention to McCoy’s problem on the Vietoris hyper-
space of a Baire space. Given a space X, let 2X denote the hyperspace
of X consisting of all nonempty closed subsets of X endowed with the Vi-
etoris topology. Recall that a canonical base for this topology is given by
all subsets of 2X \ {∅} having the form

〈U 〉 := {F ∈ 2X : F ⊆
⋃

U , F ∩ V 6= ∅ for any V ∈ U },

where U runs over the finite families of nonempty open subsets of X [28].
The problem of when or whether the hyperspace 2X of a Baire space must
be Baire was first considered by McCoy [26]. He proved that if X is a Baire
space with a countable pseudo-base, then 2X is Baire, but left the general
case as an open question. Recently, Cao et al have considered this question
and proved the following two results with the help of Theorem 2.1.

Theorem 2.3 ([3]). Let X be a Hausdorff space. If 2X is Baire, then Xn

is Baire for all n ∈ N.

Theorem 2.4 ([8]). Let X be a Hausdorff space. If Xω is Baire, then 2X

is Baire.

The above two theorems establish a nice link between the Baireness of
the hyperspace and that of the product spaces. As we mentioned previously,
there is a metric Baire space whose square is not Baire. As a corollary of The-
orem 2.3, there exists a metric Baire space X such that 2X is not Baire, that
is, the general answer to McCoy’s problem is negative. On the other hand,
Theorem 2.4 together with Theorem 1.1 of [9] implies that the hyperspace
2X of a metric hereditarily Baire space is Baire, which answers affirmatively
an oral question of Moors. Further, two examples were provided in [8] to
show that neither of the converses of Theorem 2.3 and Theorem 2.4 hold.

Before we present some more problems and applications we need to in-
troduce a variation of the Choquet game, called the GS(D)-game. Let X
be a topological space and let D ⊆ X be a dense subset of X. The rules
for playing the GS(D)-game are the same as for the Ch(X)-game. The
only distinction between them is in the definition of a win. We shall say
that α wins a play ((An, Bn))n∈N of the GS(D)-game if

⋂
n∈N An 6= ∅, and

each sequence (an)n∈N with an ∈ An ∩ D has a cluster point in X. Oth-
erwise the player β is said to have won this play. The space X is called a
strongly Baire space if it is regular and there is a dense subset D ⊆ X such
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that the player β does not possess a winning strategy in the GS(D)-game
played on X. The motivation to introducing the GS(D)-game and the class
of strongly Baire spaces was to study the problem when a semitopological
group is a (paratopological) topological group. Recall that a semitopological
group (paratopological group) is a group endowed with a topology for which
multiplication is separately (jointly) continuous and a topological group is
a paratopological group whose inversion is also continuous. In [2], Bouziad
improved results of both Montgomery [31] and Ellis [12], and also answered
a question of Pfister in [41] by showing that each Čech-complete semitopo-
logical group is a topological group. Since the Sorgenfrey line is a Baire
paratopological group which is not a topological group, there is no hope to
improve Bouziad’s result by replacing “Čech-complete” with “Baire”. How-
ever, by applying the notion of strongly Baire space, Kenderov et al [18]
improved Bouziad by proving the following result.

Theorem 2.5 ([18]). Let (G, ·, τ) be a semitopological group. If (G, τ) is a
strongly Baire space, then (G, ·) is a topological group.

In a recent paper, Cao et al [4] used the strong Baireness and Baireness of
function spaces to characterise metrizability of a manifold. By a manifold M
it is meant a connected, Hausdorff, locally Euclidean space. The function
space we shall consider is Ck(M), the space of all continuous real-valued
functions defined on M endowed with the compact-open topology.

Theorem 2.6 ([4]). The following are equivalent for a manifold M :
(i) M is metrizable;
(ii) Ck(M) is a strongly Baire space;
(iii) Ck(M) is a Baire space.

In the last part of this section, we shall present the original setting of the
Banach-Mazur game as well as some of its applications. As mentioned in
Section 1, the original version of the Banach-Mazur appeared in the Scottish
Book under problem No. 43, where two players alternately select nonempty
intervals of the real line. A more general setting for the Banach-Mazur game
was given by Oxtoby in [39]. Let X be a topological space and let A ⊆ X.
In the Banach-Mazur game BM(A), two players α and β alternately select
nonempty open sets B1 ⊇ A1 ⊇ B2 ⊇ A2,⊇ · · · just as in the Choquet
game Ch(X). We shall declare that the player α wins a play ((An, Bn))n∈N
if

⋂
n∈N An ⊆ A. Otherwise, the player β is said to have won the play.

Strategies for both β and α in BM(A) are defined in a similar fashion to
those in Ch(X). In contrast to the Choquet game, the Banach-Mazur can
be used to test whether a given subset A is “big” in X, as shown in the next
theorem.

Theorem 2.7 ([39, 17]). Let X be a topological space and let A ⊆ X. Then
player α has a winning strategy in BM(A) if, and only if, A is residual in
X.
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The Banach-Mazur game and Theorem 2.7 have been applied to obtain a
topological closed graph theorem in [32]. Recall that a mapping f : X → Y
from a space X into a space Y is said to be nearly continuous if f−1(U) ⊆
intf−1(U) for each open set U ⊆ Y . A sequence (Vn : n ∈ N) of covers of
a space X is said to be complete if each filter F on X that is Vn-small for
each n ∈ N has

⋂
F∈F F 6= ∅. Moreover, a cover V of X is called exhaustive

provided every nonempty set A of X has a nonempty relatively open subset
of the form A∩V with V ∈ V . Finally, a regular space X is called partition
complete [30] if it has a complete sequence of exhaustive covers.

Theorem 2.8 ([32]). Every nearly continuous mapping f : X → Y with
a closed graph from a Baire space X into a partition complete space Y is
continuous.

3. Several modifications of the Choquet game

In this section we shall describe several variations of the Choquet game.
These modifications will give new characterisations of some known topolog-
ical properties such as fragmentability, the Namioka property and member-
ship in the class of weakly Stegall spaces.

The first of these modifications is the “fragmenting game”. Let τ and τ ′ be
topologies on a set X. On X we shall consider the G(X, τ, τ ′)-game played
between two players α and β. The player β goes first (always!) and chooses
a nonempty subset B1 of X. Player α must then respond by choosing a
nonempty τ -relatively open subset A1 of B1. Following this player β must
select another nonempty subset B2 ⊆ A1 ⊆ B1 and in turn α must again
respond by selecting a nonempty τ -relatively open subset A2 of B2. In
general, β selects any nonempty subset Bn of the last move An−1 of α and
the latter player answers by choosing a nonempty τ -relatively open subset
An of the set Bn, just chosen by β. Acting in this way, the players α and β
“produce” a sequence of nonempty sets

B1 ⊇ A1 ⊇ B2 ⊇ A2 ⊇ · · ·Bn ⊇ An ⊇ · · ·
which is called a play and will be denoted by ((An, Bn))n∈N. The winning
rule is connected with the topology τ ′. The player α is said to have won a
play ((An, Bn))n∈N if the set

⋂
n∈N An is either empty or contains exactly

one point x and for every τ ′-open neighbourhood U of x there exists an
n ∈ N such that An ⊆ U . Otherwise the player β is said to have won. All
other concepts related to this game, such as strategies, winning strategies,
t-plays and partial t-plays etc. are defined in a similar fashion to those
in the Choquet game. In the special case when τ ′ is the trivial topology
(consisting of the empty set and the whole space X) we shall simply denote
the G(X, τ, τ ′)-game by: G(X, τ).

Let X be a topological space and let ρ be some metric defined on it (not
necessarily generating the topology on X). For any ε > 0 we will say that
X is fragmented by ρ down to ε if for every nonempty subset A of X there
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exists a nonempty relatively open subset B of A such that ρ − diam(B) <
ε. Following Jayne and Rogers [16], we say that a topological space X is
fragmentable if there exists a metric ρ defined on X such that for every ε > 0,
X is fragmented by ρ down to ε. In such a case it is said that the metric ρ
fragments X. The next theorem, discovered by Kenderov and Moors in [21]
justifies the name: “fragmenting game”.

Theorem 3.1 ([21, 22]). A topological space (X, τ) is fragmentable if, and
only if, the player α has a winning strategy in the G(X, τ)-game.

A set-valued mapping ϕ : X → P(Y ) is said to be minimal if for every
pair of open subsets U ⊆ X and V ⊆ Y with ϕ(U) ∩ V 6= ∅ there exists
a nonempty open subset W ⊆ U such that ϕ(W ) ⊆ V and a topological
space X is said to be a weakly Stegall space [34] if for every complete metric
M and every nonempty-valued minimal mapping ϕ : M → P(X), ϕ is
single-valued at some point of M . The class of weakly Stegall spaces can be
characterised in terms of the G(X, τ)-game.

Theorem 3.2 ([19, 34]). A topological space (X, τ) is weakly Stegall if, and
only if, the player β does not have a winning strategy in the G(X, τ)-game.

The previous theorem enables us to establish the relationship between
weakly Stegall and fragmentable spaces. Specifically, the distinction be-
tween being fragmentable and being weakly Stegall is precisely the distinc-
tion between the player α having a winning strategy in the G(X, τ)-game
and the player β not having a winning strategy in the G(X, τ)-game.

Theorem 3.2 can also be used to obtain many new facts concerning weakly
Stegall spaces, see [19] and [34].

The following theorem improves Theorem 3.1.

Theorem 3.3 ([20]). A topological space (X, τ) is fragmentable by a metric
ρ whose topology is at least as fine as a topology τ ′ if, and only if, there
exists a winning strategy for the player α in the G(X, τ, τ ′)-game.

Recall that a (single-valued) mapping f : X → Y between two spaces X
and Y is said to be quasicontinuous if for every pair of open subsets U ⊆ X
and V ⊆ Y with f(U)∩V 6= ∅ there exists a nonempty open subset W ⊆ U
such that f(W ) ⊆ V .

Theorem 3.4 ([20]). Let τ , τ ′ be T1 topologies on a set X. Suppose that for
every τ ′-open set U and every point x ∈ U there exists a τ ′-neighbourhood
V of x such that V

τ ⊂ U . Then the following conditions are equivalent:
(i) β does not possess a winning strategy in the G(X, τ, τ ′)-game;
(ii) every quasicontinuous mapping f : Z → (X, τ) from a complete

metric space Z into (X, τ) has at least one point of τ ′- continuity;
(iii) every quasicontinuous mapping f : Z → (X, τ) from an α-favourable

space Z into (X, τ) is τ ′-continuous at the points of a subset which
is of second category in every nonempty open subset of Z.
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Similarly to before we see that the distinction between (X, τ) being frag-
mentable by a metric whose topology is at least as fine as τ ′ and (X, τ)
having the property that: “every quasicontinuous mapping f : Z → (X, τ)
from a complete metric space Z has at least one point of τ ′-continuity”,
is the same as the distinction between α having a winning strategy in the
G(X, τ, τ ′)-game and β not having a winning strategy in the G(X, τ, τ ′)-
game.

A space X (or its topology τ) is said to be sigma-fragmented by a metric
ρ if, for every ε > 0, there exists a countable family (Xε

i )i≥1 of subsets of X
such that:

(i) X =
⋃

i≥1 Xε
i ;

(ii) every Xε
i , i = 1, 2, 3, . . . , is fragmented by ρ down to ε.

Theorem 3.5 ([22]). For a subset X of a Banach space E the following
properties are equivalent:

(i) X admits a metric ρ which fragments the weak topology and whose
topology is at least as fine as the norm topology (i.e., the player α
has a winning strategy in the game G(X,weak,norm));

(ii) X admits a metric ρ which fragments the weak topology and whose
topology is at least as fine as the weak topology (i.e., the player α
has a winning strategy in the game G(X,weak,weak));

(iii) X is sigma-fragmented by the norm.

In order to present some of the applications of this theorem we need
another definition. We say that a subset Y of a topological space (X, τ) has
countable separation in X if there is a countable family {On : n ∈ N} of
open subsets of X such that for every pair {x, y} with y ∈ Y and x ∈ X \Y ,
{x, y}∩On is a singleton for at least one n ∈ N. If we denote by XΣ the family
of all subsets of X with countable separation in X then XΣ is a σ-algebra
that contains all then open subsets of X. Moreover, XΣ is closed under
the Souslin operation. For a completely regular topological space (X, τ) we
shall say that X has countable separation if in some compactification bX, X
has countable separation in bX. It is shown in [22] that if X has countable
separation in one compactification then X has countable separation in every
compactification and so we see that every Čech-analytic space has countable
separation.

Theorem 3.6 ([22]). Let BE denote the closed unit ball of a Banach space
E. If (E,weak) has countable separation then E is sigma-fragmented by the
norm.

Theorem 3.7 ([22]). If a regular Hausdorff space (X, τ) is sigma-fragmented
by a metric ρ whose topology is at least as fine as τ then (X, τ) is fragmented
by some metric d whose topology is at least as fine as τ .

Theorem 3.8 ([22]). Let (X, τ) be a topological space and let ρ be a metric
which sigma-fragments X by means of sets with countable separation in X
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(i.e., the sets (Xε
i )i≥1 involved in the definition is sigma-fragmentability have

countable separation in X). Then X is fragmentable.

Let T denote the class of all Banach spaces E for which every continuous
mapping f : Z → (E,weak) defined on a weakly α-favourable space Z is
norm continuous at the points of a dense subset of Z.

Theorem 3.9 ([20]). A Banach space E is in T if, and only if, the player
β does not have a winning strategy in the G(X,weak,weak)-game.

Yet again we see that games can be used to distinguish between topo-
logical properties. In this case we see that the distinction between a Ba-
nach space E being sigma-fragmented by the norm and being a member
of T is equivalent to the distinction between α having a winning strategy
in the G(X, weak,weak)-game and β not having a winning strategy in the
G(X, weak,weak)-game.

Theorem 3.9 also has many other applications. For example it can be
used to show that:

• T contains all the weakly Lindelöf Banach spaces;
• E = l∞ and E = l∞/c0 do not belong to T . In both cases there

exists a weakly continuous mapping h : Z → E defined on a com-
pletely regular weakly α-favourable space Z which is nowhere norm
continuous.

• T is stable under weak homeomorphisms (i.e., if T contains some
Banach space E, then it contains any other Banach space that is
weakly homeomorphic to E);

• A Banach space E is a member of T if, and only if, every quasi-
continuous mapping f : Z → (E,weak) defined on a complete metric
space Z is densely norm continuous;

• A Banach space E is a member of T if, and only if, every quasi-
continuous mapping f : Z → (E,weak) defined on a complete metric
space Z is weakly continuous at some point of Z.

4. Other games in abstract analysis

In this section we shall consider two more topological games which are
perhaps more esoteric than the games considered previously.

Let X be a space, F a proper filter (or filterbase) in X. We shall consider
the following G(F )-game played in X between players α and β: Player β
goes first (always!) and chooses a point x1 ∈ X. Player α responds by
choosing a member F1 ∈ F . Following this, player β must select another
(possibly the same) point x2 ∈ F1 and in turn player α must again respond to
this by choosing a member F2 ∈ F . Repeating this procedure infinitely, the
players α and β produce a sequence p := ((xn, Fn) : n ∈ N) with xn+1 ∈ Fn

for all n ∈ N, called a play of the G(F )-game. We shall say that α wins a
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play of the G(F )-game if the sequence (xn : n ∈ N) has a cluster point in
X. Otherwise, the player β is said to have won this play.

We shall call a pair (F , σ) a σ-filter (σ-filterbase) if F is a proper filter
(filterbase) in X and σ is a winning strategy for player α in the G(F )-game.
Finally, we say that a space X has property (∗∗) if

⋂
{F : F ∈ F} 6= ∅ for

each σ-filterbase (F , σ) in X. The class of spaces having property (∗∗)
includes all metric spaces [6], all Dieudoné-complete spaces, all function
spaces Cp(X) for compact Hausdorff spaces X, and all Banach spaces in
their weak topologies [6]. Recall that a space X is a q-space if for every
point x ∈ X, there is a sequence (Un : n ∈ N) of neighbourhoods of x such
that if xn ∈ Un for all n ∈ N, the sequence (xn : n ∈ N) has a cluster point
in X (which is not necessarily x itself). All first countable spaces and all
Čech complete spaces are q-spaces.

The G(F )-game can be used to deduce some selection theorems.

Theorem 4.1 ([5]). Let f : X → Y be a closed mapping from a regular
T1-space X with property (∗∗) onto a regular q-space Y . If f−1(y) is closed
for every y ∈ Y , then there exists a quasicontinuous mapping ϕ : Y → X
such that (f ◦ ϕ)(y) = y for all y ∈ Y .

The last game we shall consider is the “Cantor-game” which was used in
[35] to show that there exist Gâteaux differentiability spaces that are not
weak Asplund.

Recall that a Banach space X is a called a weak Asplund space (Gâteaux
differentiability space) if each continuous convex function defined on it is
Gâteaux differentiable at the points of a dense Gδ subset (dense subset) of
its domain.

We will say that a σ-ideal A of subsets on a topological space (X, τ)
is topologically stable if h(A) ∈ A for each homeomorphism h : (X, τ) →
(X, τ) and A ∈ A . In the reminder of this paper, A will always denote a
topologically stable σ-ideal on ({0, 1}N, τp), where τp denotes the topology
of pointwise convergence on N. With this understanding, we can introduce
the following notation.

Given a topological space (X, τ) that is homeomorphic to ({0, 1}N, τp)
and a topologically stable σ-ideal A on ({0, 1}N, τp), we shall denote by
A(X,τ), the induced σ-ideal on X defined by, A(X,τ) := {h−1(A) : A ∈ A }
for some homeomorphism h : (X, τ) → ({0, 1}N, τp). (Note: Since A is
topologically stable, the definition of A(X,τ) is independent of the particular
choice of homeomorphism h : (X, τ) → ({0, 1}N, τp)). When there is no
ambiguity, we shall simply denote A(X,τ) by AX . In terms of this notation
we can introduce a stronger notion of topological stability. A σ-ideal A on
({0, 1}N, τp) is said to be strongly topologically stable if (i) A is topologically
stable and (ii) for each clopen subset Y of {0, 1}N that is homeomorphic to
({0, 1}N, τp), we have that AY ⊆ A .
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Let (M,d) be a complete metric space without isolated points, R be a
subset of M and A be a strongly topologically stable proper σ-ideal on
({0, 1}N, τp). On M we consider the Cantor-game CA (R)-game played be-
tween two players α and β. Player β goes first (always!) and chooses a
family B0 := {Bt

0 : t = ∅} consisting of a nonempty open set B∅
0 with

d-diam(B∅
0 ) < 1/20. Player α must respond to this by choosing a family

A0 := {At
0 : t = ∅} consisting of a nonempty open set A∅

0 of B∅
0 . Fol-

lowing this player β must select another family B1 := {Bt
1 : t ∈ {0, 1}1} of

nonempty open subsets such that; (i) ∅ = B0
1 ∩B1

1 ⊆ B0
1 ∪B1

1 ⊆ A∅
0 and

(ii) d-diam(Bt
1) < 1/21 for all t ∈ {0, 1}1. In turn, player α must again

respond by selecting a family A1 := {At
1 : t ∈ {0, 1}1} of nonempty open

subsets such that At
1 ⊆ Bt

1 for all t ∈ {0, 1}1.
Continuing this procedure indefinitely the players α and β produce a se-

quence {(An, Bn) : n ∈ ω} of ordered pairs of indexed families of nonempty
open subsets with An := {At

n : t ∈ {0, 1}n} and Bn := {Bt
n : t ∈ {0, 1}n}

that satisfy the following conditions; (i) ∅ = Bt0
n+1∩Bt1

n+1 ⊆ Bt0
n+1∪Bt1

n+1 ⊆
At

n ⊆ Bt
n for all t ∈ {0, 1}n and (ii) d-diam(Bt

n) < 1/2n for all t ∈ {0, 1}n.
Such a sequence will be called a play of the CA (R)-game. We shall de-
clare that α wins a play {(An, Bn) : n ∈ ω} of the CA (R)-game if the set
K\R ∈ AK , where K :=

⋂∞
n=0 Kn and Kn :=

⋃
{Bt

n : t ∈ {0, 1}n}. Other-
wise the player β is said to have won this play. By a strategy σ for the
player α, we mean a ‘rule’ that specifies each move of the player α in every
possible situation. More precisely a strategy σ := (σn : n ∈ ω) for α is a se-
quence of functions such that (i) σn(B0, B1, . . . Bn) := {σt

n(B0, B1, . . . Bn) :
t ∈ {0, 1}n}; (ii) ∅ 6= σt

n(B0, B1, . . . Bn) ⊆ Bt
n for all t ∈ {0, 1}n and (iii)

σt
n(B0, B1, . . . Bn) is open for all t ∈ {0, 1}n. The domain of each function σn

is precisely the set of all finite sequences (B0, B1, . . . Bn) of indexed families
Bj := {Bt

j : t ∈ {0, 1}j} of nonempty open subsets that satisfy the following
conditions; (i) ∅ = Bt0

j+1 ∩ Bt1
j+1 ⊆ Bt0

j+1 ∪ Bt1
j+1 ⊆ σt

j(B0, B1, . . . Bj) for all
t ∈ {0, 1}j and 0 ≤ j < n and (ii) d-diam(Bt

j) < 1/2j for all t ∈ {0, 1}j

and 0 ≤ j ≤ n. Such a finite sequence (B0, B1, . . . Bn) (infinite sequence
(Bn : n ∈ ω)) is called a partial σ-play (σ-play). A strategy σ := (σn : n ∈ ω)
for the player α is called a winning strategy if each σ-play is won by α.

This Cantor-game is used to prove the following theorem.

Theorem 4.2 ([35]). There exists a Banach space (X, ‖ · ‖) such that
(X∗,weak∗) is weakly Stegall but (X, ‖·‖) is not weak Asplund. In particular,
(X, ‖ · ‖) is a Gâteaux differentiability space that is not weak Asplund.

There are many other games and applications that are not mentioned
here. For example, games have been successfully used in Optimisation and
in the theory of selections. For an excellent account of this area the reader
is referred to the article [42] by J. Revalski. Topological games (which are
variations on the Choquet game) have also been used extensively in the
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study of separate and joint continuity, see [27] for further information in
this direction.

Finally, let us also mention here that a game very similar to the G(X, τ)
was considered by E. Michael in [29, 30] to characterise the class of partition
complete spaces. The only difference between these games is the definition
of a win. In [29] E.Michael says that the player α wins if the sequence
(An)n∈N is complete. Then he obtains the result that a regular space X is
partition complete if, and only if, the player α has a winning strategy.
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