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1. Introduction

Let T be a completely regular topological space and C(T ) be the set of all
continuous real-valued functions defined on T . By Cp(T ) we denote the set
C(T ) endowed with the pointwise convergence topology on T . For a compact
space T , Eberlein [14] has shown that the closure of every countably compact
subset of Cp(T ) is compact. Grothendieck [16] proved that this result remains
valid for countably compact spaces T . Another generalization was obtained
by Asanov and Veličko [5]:

Theorem 1.1. If A is bounded in Cp(T ) and T is countably compact, then
A is a compact subset of Cp(T ).

Recall that a subset A of a completely regular space X is said to be
bounded in X if every continuous real-valued function defined on X is
bounded on A. If a completely regular space X is bounded in itself, then it
is called pseudocompact. Obviously, every countably compact space T is
pseudocompact. There are many pseudocompact spaces however which are
not countably compact.

The first goal of this article is to extend the validity of Theorem 1.1
to a larger class of spaces T and sets A. There are many indications that
this is possible. As noted by Arhangel’skii ([2], Theorem III.4.9.) the result
of Asanov and Veličko remains valid (with the same proof) for the class of
spaces T that contain a dense subset D with the property that every infinite
subset of D has a cluster point in T . Many other results also point in this
direction (see Pryce [29], Pták [30], Preiss and Simon [28], Haydon [17],
Arhangel’skii [3], Troallic [36] and many others). The limits for the possible
extensions of Theorem 1.1 are set however by an example of Shachmatov
[32] who constructed a pseudocompact space T such that the closed unit
ball B = {x ∈ C(T ) : ‖x‖ = maxt∈T |x(t)| ≤ 1} is pseudocompact but
not a compact subset of Cp(T ). Having Shachmatov’s example in mind, it
is reasonable to look for some subclasses of the class of all pseudocompact
spaces for which Theorem 1.1 is still valid. As will become clear later in this
paper, the following notion provides some opportunities in this direction.

Definition 1.2. A subset A of a topological space X is called strongly
bounded in X, if it contains a dense subset D with the property that for
every infinite subset C of D there exists some separable subspace S of X
such that the set S ∩ C is infinite and bounded in S. A space X which is
strongly bounded in itself is called strongly pseudocompact.
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Countably compact spaces or, more generally, the spaces T that contain
a dense subset D with the property that every every infinite subset of D
has a cluster point in T obviously belong to the class of strongly pseudo-
compact spaces. Separable pseudocompact spaces are also obvious examples
of strongly pseudocompact spaces. Furthermore, Watson [37] has exhib-
ited an example of a separable pseudocompact T without any dense sub-
sets D with the property that every every infinite subset of D has a cluster
point in T . The free union of uncountably many strongly pseudocompact
spaces Tγ, γ ∈ Γ, complemented with an“infinity point” ∞, is an example
of a non-separable strongly pseudocompact space T , if the sets of the form
T \ (∪γ∈FTγ), F a finite subset of Γ, are taken as a base of neighborhoods at
the point ∞.

The role played by strong boundedness and strong pseudocompactness
in the generalizations of the Eberlein theorem is clearly seen from the next
assertion which is a corollary of the results in Section 4 below.

Theorem 1.3. Let T be a strongly pseudocompact (pseudocompact) com-
pletely regular topological space and A be a set which is bounded (strongly
bounded) in Cp(T ). Then A is a compact subset of Cp(T ).

This means that the above mentioned pseudocompact space T of Shachma-
tov is not strongly pseudocompact and the respective closed unit ball B is
bounded but not strongly bounded in Cp(T ).

For a compact space T and a continuous mapping h : X → Cp(T ), defined
on a space X satisfying some mild completeness condition, Namioka proved
in [22] that there exists a dense Gδ-subset of X, at the points of which,
the mapping h is continuous with respect to the much stronger topology
generated by the sup-norm ‖x‖ = maxt∈T |x(t)| in C(T ) (sometimes called
uniform convergence topology). The work of Namioka sparked intensive
research in this direction and many similar results were obtained for different
classes of compacts T and topological spaces X. The second goal of this
paper is to show that some of these results remain valid, if the compactness
of T is weakened to pseudocompactness or to strong pseudocompactness. To
formulate these results for a possibly larger class of spaces X, we consider
two topological games G(X) and G∗(X) where two players (α and β) play as
in some variants of the famous Banach-Mazur game but where the winning
rules (in both games) are changed in such a way that pseudocompact spaces
are α-favorable for the game G(X) and strongly pseudocompact spaces are
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α-favorable for the game G∗(X). The next statement is a corollary from the
results in Section 5.

Theorem 1.4. Let T be a pseudocompact (strongly pseudocompact) space
and let X be a topological space that is β-unfavorable for the game G∗(X)
(for the game G(X)). Then for every continuous mapping h : X → Cp(T )
there exists a dense Gδ subset C ⊂ X, at the points of which, h is continuous
with respect to the sup-norm topology in C(T ).

We provide also sufficient conditions for a space X to be β-unfavorable
for the game G(X) or for the game G∗(X). Given a topological space Y ,
consider the smallest family of subsets of Y which is closed under the Souslin
operation and contains all the closed and all the open subsets of Y . We call
the sets from this family Souslin generated subsets of Y .

Proposition 1.5. If X is a Baire space which is homeomorphic to a dense
and Souslin generated subset of a pseudocompact space Y , then X is β-
unfavorable for the game G(X).

If X is a Baire space which is homeomorphic to a Souslin generated subset
of a countably compact space Y , then X is β-unfavorable for the game G∗(X).

The paper is organized as follows. In section 2 we present the basic
properties of bounded sets needed in the sequel. It should be noted that the
notion of boundedness used here is different from the widely used notion of
boundedness

Sections 3 and 4 contain some generalizations of the Eberlein Theorem
while Section 5 deals with the norm continuity of mappings into C(T ).

2. Sets bounded in a regular topological space

The definition of the notion of “boundedness”.

A subset A of a topological space X is called bounded in X, if for every
locally finite family γ of open subsets in X the subfamily {U ∈ γ : U∩A 6= ∅}
is finite. A set A is bounded in X if, and only if, for any sequence {Wi}i≥1

of open sets satisfying the requirements Wi ∩ A 6= ∅ and Wi+1 ⊆ Wi for
every i ≥ 1, the intersection of the closures

⋂

i≥1
Wi is not empty. In a

completely regular space X this definition is equivalent to the requirement
that every continuous real-valued function defined on X is bounded on A.
If the space X is bounded in itself, then X is called feebly compact. For
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completely regular spaces X the latter notion is equivalent to saying that X
is pseudocompact (Engelking [15], Theorem 3.10.22).

Boundedness is preserved by continuous mappings and by taking the clo-
sure of the set. We present here some other properties of bounded sets which
play a role in our considerations. We say that a mapping f : X −→ Y has
compact fibers if the set f−1(y) is compact for every y ∈ f(X).

Proposition 2.1. Let A be a set that is bounded in a space X and f :
X −→ Y be a continuous mapping, with compact fibers, from the space X
into a space Y , each point of which is a Gδ-point (i.e. each point is the
intersection of countably many open sets). Then

1. f(A) = f(A).
2. The restriction of f on A is a closed mapping (i.e. f sends closed

subsets of A into closed subsets of f(A) = f(A)). In particular, if f is a
one-to one mapping, then its restriction on A is homeomorphism.

3. The space f(A) = f(A) with the topology inherited from Y is first
countable (i.e. each point has a countable neighborhood base).

4. If, in addition, Y is a normal topological space, then A is a countably
compact subset of X.

Proof. 1. Let y0 ∈ f(A) and {Ui}i≥1 be a sequence of open subsets of Y
such that ∩i≥1Ui = {y0}. Without loss of generality we may assume that
Ui+1 ⊂ Ui for every i ≥ 1. Suppose f−1(y0)∩A = ∅. Compactness of f−1(y0)
implies that there is some open subset V of X such that f−1(y0) ⊂ V and
V ∩ A = ∅. The family {Wn = f−1(Un) \ V }n≥1 consists of open sets and
Wn ∩ A 6= ∅ for each n ≥ 1. As A is bounded in X, there exists some
x0 ∈ ∩i≥1Wi. Clearly, x0 6∈ V and therefore f(x0) 6= y0. On the other

hand, continuity of f implies that f(x0) ∈ ∩i≥1f(Wi) ⊂ ∩i≥1Ui = {y0}, a

contradiction. Therefore f−1(y0) ∩A 6= ∅ and f(A) = f(A).

2. Let B be a closed subset of A. Then B is a bounded subset of X and,
by what was already proved, we have f(B) = f(B) = f(B).

3. Let y0 ∈ f(A) and {Ui}i≥1 be a family of open sets in X such that
∩i≥1Ui = {y0} and Ui+1 ⊂ Ui for every i ≥ 1. We will show that the sets
Ui ∩ f(A), i ≥ 1, form a base of neighborhoods at y0. Let U be an open
set containing y0. Since Y is regular, it suffices to show that there exists
some positive integer n such that Un ∩ f(A) ⊂ U . Suppose this is not the
case. Then each of the sets in the family {Ui \ U}i≥1 is open, non-empty

and intersects the set f(A) which is bounded in Y . Then there exists a

5



point y∗ ∈ ∩i≥1Ui \ U ⊂ ∩i≥1Ui = {y0}. It is clear however that y∗ 6∈ U , a
contradiction.

4. In a normal space any closed bounded set is countably compact. The
preimage of a countably compact space under a mapping which is continu-
ous, closed and with compact fibers, is countably compact ([Eng], Theorem
3.10.10).

Corollary 2.2. Let A be a bounded subset of a space X and f : X −→ Y be
a one-to-one continuous mapping from X into a metrizable space Y . Then
A is a compact metrizable subset of X.

Another immediate corollary of Proposition 2.1 is the following statement.

Proposition 2.3. Let ϕ : X → Y be a continuous one-to-one mapping from
a feebly compact space X onto a space Y , each point of which is a Gδ-point.
Then ϕ is a homeomorphism. In particular, if Y is metrizable, then X and
Y are homeomorphic metrizable compact spaces.

The next assertion, for the case when X is a pseudocompact space, could
be derived from the results of [10].

Proposition 2.4. Let ϕ : X → Y be a continuous mapping from a feebly
compact space X onto a space Y , each point of which is a Gδ-point. Let
h : X → R be a continuous real-valued function which is constant on each
fiber ϕ−1(y) = {x ∈ X : ϕ(x) = y}, y ∈ Y . Then the naturally defined
function h′(y) = h(ϕ−1(y)) is continuous on Y .

Proof. Consider the mapping ψ which puts into correspondence to each x ∈
X the point (ϕ(x), h(x)) ∈ Y × R. Since h is continuous the mapping ψ :
X −→ ψ(X) is continuous with respect to the product topology of Y × R
and ψ(X) is feebly compact. Since h is constant on the fibers, the projection
πY of ψ(X) into Y is a one-to-one continuous (and onto) mapping which,
due to Proposition 2.1, must be a homeomorphism. Since the projection πR

of ψ(X) to R is also continuous we get that πR ◦ π−1

Y = h′ is continuous.
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3. Sets bounded in Cp(T ). The separable case.

We start with a simple and well-known observation.

Corollary 3.1. Let T be a separable topological space and A be a bounded
set in Cp(T ). Then the closure of A in Cp(T ) is a metrizable compact.

Proof. Let D be a countable dense subset of T . Consider in C(T ) the topol-
ogy τ of pointwise convergence at the points of D. It is metrizable and
the identity mapping Cp(T ) −→ Cτ (T ) is one-to-one and continuous. By
Corollary 2.2 it follows that the closure of A is a metrizable compact in the
topology of Cp(T ).

Many of the results that follow are based upon the next statement.

Theorem 3.2. Let T be a pseudocompact space and A be a bounded set in a
separable subspace S of the space Cp(T ). Then

a) A is a compact metrizable subset of Cp(T );
b) If the sequence {fi}i≥1 where fi ∈ A, i ≥ 1, is uniformly bounded

in C(T ) and f0 is a cluster point of this sequence in Cp(T ), then for every
ǫ > 0 there exist an integer k > 0 and nonnegative numbers λi, 1 ≤ i ≤ k,
such that

∑k

i=1
λi = 1 and |f0(t) −

∑k

i=1
λifi(t)| ≤ ǫ for every t ∈ T (i.e.

convex combinations of elements of {fi}i≥1 approximate fo arbitrarily well
with respect to the sup-norm in C(T )).

Proof. a) Let H be a countable dense subset of S. For every g ∈ H the set
g(T ) = {g(t) : t ∈ T} is a compact subset of the real line. Consider the
continuous mapping ϕ : T −→ T ′, where ϕ(t) = {g(t)}g∈H is a point in the
product

∏

g∈H g(T ) and T ′ = ϕ(T ).
The continuous mapping ϕ generates a dual mapping ψ : Cp(T

′) −→
Cp(T ), where ψ(f ′) = f ′ ◦ ϕ for any f ′ ∈ Cp(T

′). Note that every g ∈ S,
as a cluster point of H , is constant on the fiber ϕ−1(t′) for every t′ ∈ T ′. It
follows from Proposition 2.4 that there exists a unique continuous function
g′ ∈ Cp(T

′) such that g(t) = g′(ϕ(t)). Therefore S ⊂ ψ(Cp(T
′)).

Put S ′ = ψ−1(S) and A′ = ψ−1(A). Since ψ is a one-to-one and homeo-
morphic mapping, the set A′ is bounded in S ′ with respect to the topology
inherited from Cp(T

′). By construction, T ′ is a metrizable pseudocompact
(and so a metrizable compact). Denote by Z some dense countable sub-
set of T ′. The topology of pointwise convergence on Z is metrizable and
weaker than the topology of Cp(T

′). It follows from Corollary 2.2 that A′ is
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a metrizable compact. This implies that A = ψ(A′) is a metrizable compact
as well.

b) Because of a) there exists a subsequence converging to f0. Without loss
of generality we may think that {fi(t)}i≥1 converges to f0(t) for every t ∈ T .
Uniform boundedness of the sequence means that there is some constant
a > 0 such that |fi(t)| ≤ a whenever t ∈ T and i ≥ 1. Then the sequence
{f ′

i = ψ−1(fi)}i≥1 is uniformly bounded and converges to f ′
0 = ψ−1(f0) in

Cp(T
′). By Lebesgue dominated convergence theorem the sequence {f ′

i}i≥1

converges to f ′
0 in the weak topology of the normed space (C(T ′), ‖.‖) where

‖f ′‖ = max{|f ′(t′)| : t′ ∈ T ′}. In particular, f ′
0 belongs to the weak closure

of the convex hull C of the sequence {f ′
i}i≥1. By a known result (separation

theorem for Banach spaces) it follows that f ′
0 belongs also to the norm closure

of C and this implies that for every ǫ > 0 there exist a positive integer k
and non-negative numbers λi, 1 ≤ i ≤ k, such that

∑k

i=1
λi = 1 and |f ′

0(t
′)−

∑k

i=1
λif

′
i(t

′)| ≤ ǫ for every t′ ∈ T ′. This means that |f0(t)−
∑k

i=1
λifi(t)| ≤ ǫ

for every t ∈ T .

Let βT be the Čech-Stone compactification of a pseudocompact space T .
Then C(T ) and C(βT ) can be considered as one and the same space. This
space has three natural topologies: the topology of pointwise convergence in
T , the topology of pointwise convergence in βT and the weak topology of
the Banach space (C(βT ), ‖ · ‖) where ‖f‖ = max{|f(t)| : t ∈ βT}. Since
the natural extension ϕ̃ : βT −→ T ′ of the map ϕ : T −→ T ′ from the proof
of Theorem 3.2 is an onto mapping, the dual map ψ : Cp(T

′) −→ Cp(βT )
is a homeomorphism. This allows us to formulate the following assertion (a
more general form of it will be given in the next section).

Corollary 3.3. Let T be a pseudocompact space and A be a bounded set in
some separable subset of the space Cp(T ). Then the closure of A in Cp(βT )
is a metrizable compact.

If the set A is uniformly bounded, then A is metrizable and compact in
the weak topology of (C(βT ), ‖ · ‖) as well.

4. Eberlein Theorem for Pseudocompact and for Strongly Pseu-
docompact Spaces T .

We show in this section that Theorem 1.1 remains valid for strongly
pseudocompact spaces T and we prove a similar statement for pseudocompact
spaces T .

8



Theorem 4.1. Let T be a completely regular strongly pseudocompact space
and let A be a non-empty set which is bounded in Cp(T ). Then

(i) A is a non-empty compact subset of Cp(T );
(ii) Every sequence {fi}i≥1 of functions fi ∈ A, i ≥ 1, has a subsequence

converging to some f0 in Cp(T ). If, in addition, the sequence {fi}i≥1 is
uniformly bounded in C(T ), then for every ǫ > 0 there exist an integer k > 0
and nonnegative numbers λi, 1 ≤ i ≤ k, such that

∑k
i=1

λi = 1 and |f0(t) −
∑k

i=1
λifi(t)| ≤ ǫ for every t ∈ T .

Proof. Let D be a dense subset of T such that for every infinite subset C of
D there exists some separable subspace S of X such that the set S ∩ C is
infinite and bounded in S. The proof exploits the basic idea which goes back
to the original proof of Eberlein theorem. Consider Cp(T ) as a subset of the
product Y =

∏

t∈T Rt where Rt = R is the real line with its usual topology.
Since A is bounded in Cp(T ), it follows from Tykhonoff theorem that the

closure of A in Y (which is denoted by A
Y
) is a compact subset of Y . The

proof will be completed if we show that each function g0 ∈ A
Y

is continuous

(i.e. A
Y
⊂ Cp(T )).

Let g0 ∈ A
Y

and t0 ∈ T . It suffices to prove that, for every ǫ > 0 there
exists an open V ∋ t0 such that |g0(t) − g0(t0)| ≤ ǫ for every t ∈ V ∩ D.

Suppose this is not so for some t0 ∈ T and ǫ > 0. Since g0 ∈ A
Y
, there is some

g1 ∈ A such that |g1(t0) − g0(t0)| < 1. Consider the open set V1 = {t ∈ T :
|g1(t)− g1(t0)| < 1} and find some t1 ∈ V1 ∩D for which |g0(t1)− g0(t0)| > ǫ.
We define inductively sequences of: functions {gi}i≥0, of points {ti}i≥0 and
of open sets {Vi}i≥1 in such a way that, for each integer k ≥ 1,

1. gk ∈ A;

2. |gk(ti) − g0(ti)| < 1/k whenever 0 ≤ i < k;

3. tk ∈ Vk ∩ D where Vk = {t ∈ T : |gi(t) − gi(t0)| < 1/k whenever
0 < i ≤ k};

4. |g0(tk) − g0(t0)| > ǫ.

The objects g0, g1, t0, t1 and V1 were defined above. Suppose that the func-
tions {gi}

k
i=0, the points {ti}

k
i=0 and the sets {Vi}

k
i=1 with the listed properties

have already been defined for all k < n. Since g0 ∈ A
Y
, there is some gn ∈ A

such that |gn(ti) − g0(ti)| < 1/n whenever 0 ≤ i < n. Consider the open
set Vn = {t ∈ T : |gi(t) − gi(t0)| < 1/n whenever 0 < i ≤ n} and find some
tn ∈ Vn ∩D for which |g0(tn) − g0(t0)| > ǫ. This finishes the induction step.
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Without loss of generality we may assume that ti 6= tk for i 6= k. Property
2. implies that limk→∞ gk(ti) = g0(ti) for every i ≥ 0. Since gi ∈ A for every
i ≥ 1, the set A′ = {gi}i≥1 is bounded in Cp(T ). Since {ti}i≥1 is an infinite
subset of D, there exists a closed separable space S ⊂ T such that the set
S ∩ {ti}i≥1 = {til}l≥1 is infinite and bounded in S. We may assume that
i1 < i2 < . . . and il ≥ l for every l ≥ 1.

Consider the restriction operator rS : Cp(T ) −→ Cp(S) which puts into
correspondence to each function f ∈ Cp(T ) its restriction f|S on S. Clearly,
f|S ∈ Cp(S). The mapping rs is continuous and, therefore, the set rS(A′) is
bounded in Cp(S). Since S is separable, there is some metrizable topology
in C(S) which is weaker than the topology of pointwise convergence in S.
Proposition 2.1 implies that rS(A′) is a compact metrizable subset of Cp(S).
In particular, there is a function g∗ ∈ C(S) which is a cluster point in Cp(S)
of the restrictions of the functions gi, i ≥ 1, on S. In particular, g∗(til) =
limk→∞ gk(til) = g0(til) for every l ≥ 1. Then, by 4., we have |g∗(til) −
g0(t0)| = |g0(til) − g0(t0)| > ǫ for every l ≥ 1.

Since g∗ is continuous in S, for every l ≥ 1 there exists an open (in S)
set Uil ⊂ Vil such that til ∈ Uil and |g∗(t) − g0(t0)| > ǫ for every t ∈ Uil .

The set {til}l≥1 is bounded in S. Hence the set
⋂

k≥1

⋃

l≥k Uil

S
is not empty

and contains some point t∗ ∈ S. Clearly, |g∗(t∗) − g0(t0)| ≥ ǫ. On the
other hand,{Vk}k≥1 is a nested sequence of sets and, therefore,

⋃

l≥k Uil ⊂
⋃

l≥k Vil = Vik ⊂ Vk. This means that t∗ ∈ Vk and, by 3., |gi(t
∗)−gi(t0)| ≤ 1/k

whenever 1 ≤ i ≤ k. Therefore gi(t
∗) = gi(t0) for every i ≥ 1. Since

the sequence {gi(t0)}i≥0 converges to g0(t0) and the sequence {gi(t
∗)}i≥1 has

g∗(t∗) as cluster point we obtain that g∗(t∗) = g0(t0). This contradicts the

inequality |g∗(t∗) − g0(t0)| ≥ ǫ obtained earlier. Therefore A
Y

is a subset of
Cp(T ).

Proof of (ii). What was already proved shows that every sequence of
functions fi ∈ A, i ≥ 1, has a cluster point f0 in Cp(T ). Therefore the set
A′ = {fi}i≥1 is bounded in its closure A′ and the latter is a separable subset
of Cp(T ). The claim now follows from Theorem 3.2.

Corollary 4.2. Let T be a completely regular strongly pseudocompact space.
If a set A is bounded in Cp(T ), then it is bounded in Cp(βT ). Moreover, the
closure A in Cp(βT ) is compact and every closed separable subset of A is a
metrizable compact.
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If, in addition, the set A is uniformly bounded, then A is compact with
respect to the weak topology of (C(βT ), ‖ · ‖).

Proof. Theorem 4.1 yields that every sequence of functions fi ∈ A, i ≥ 1,
has a cluster point f0 in Cp(T ). Therefore the set A′ = {fi}i≥1 is bounded
in its closure A′ which is a separable subset of Cp(T ). Corollary 3.3 implies
that A′ is a metrizable compact in Cp(βT ).

To have a result similar to Theorem 4.1 for arbitrary pseudocompact
spaces T , it is necessary to increase the requirements imposed upon the set
A.

Theorem 4.3. Let T be a pseudocompact completely regular space and A be
a non-empty set which is strongly bounded in Cp(T ). Then

(i) the set A is a non-empty compact subset of Cp(T );
(ii) Every sequence {fi}i≥1 of functions fi ∈ A, i ≥ 1, has a subsequence

converging to some f0 in Cp(T ). If, in addition, the sequence {fi}i≥1 is
uniformly bounded in T , then for every ǫ > 0 there exist an integer k > 0
and nonnegative numbers λi, 1 ≤ i ≤ k, such that

∑k
i=1

λi = 1 and |f0(t) −
∑k

i=1
λifi(t)| ≤ ǫ for every t ∈ T .

Proof. Without loss of generality we may assume that the set A itself (rather
then its dense subset) has the property from the definition of strong bound-
edness: for every infinite sequence {gi}i≥1 ⊂ A there exists an infinite sub-
sequence {gil}l≥1 which is bounded in some separable subspace S ′ of Cp(T ).
Then we proceed as in the proof of Theorem 4.1 and construct the se-
quences {gi}i≥0, {ti}i≥0 {Vi}i≥1 having the four properties listed in that
proof. We show next that {gi}i≥1 has a convergent subsequence. This is
obvious, if {gi}i≥1 is a finite set. If it is infinite, then the strong bounded-
ness implies the existence of a separable subset S ′ of Cp(T ) such that the set
S ′ ∩ {gi}i≥1 = {gil}l≥1 is infinite and bounded in S ′. By Theorem 3.2 the
sequence {gil}l≥1 has a subsequence converging in Cp(T ) to some g∗. Further
the proof runs precisely as the proof of Theorem 4.1 (with the set S replaced
by T ).

Corollary 4.4. Let T be a completely regular pseudocompact space and let
A be a strongly bounded set in Cp(T ). Then A is strongly bounded in Cp(βT )
as well. Moreover, the closure A in Cp(βT ) is compact and every closed
separable subset of A is a metrizable compact.
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If, in addition, the set A is uniformly bounded, then A is compact with
respect to the weak topology of (C(βT ), ‖ · ‖).

As mentioned in the introduction, Shachmatov [32] exhibited a pseudo-
compact space T such that the closed unit ball B of Cp(T ) is pseudocompact
but not compact. It follows from Theorem 4.1 that Shachmatov’s space
T is not strongly pseudocompact. Similarly, Theorem 4.3 implies that the
pseudocompact unit ball B is not strongly bounded in Cp(T ).

5. Norm Continuity of Pointwise Continuous Mappings

In order to formulate the results in this section we need two games G
and G∗, played in a given topological space X. Both games have identical
playing rules but differ in the definition of a win.

LetX be a topological space. Two players, α and β, play a game similar to
the famous Banach-Mazur game. The player β begins the game by selecting
some non-empty open subset U1 of X. In response, player α picks an open
non-empty subset V1 of U1 and a point x1 ∈ V1. Then β selects some non-
empty open U2 ⊂ V1 and, in turn, α selects some open nonempty set V2 ⊂ U2

and a point x2 ∈ V2. Proceeding in this way infinitely many times, the players
“produce” a nested sequence U1 ⊃ V1 ⊃ U2 ⊃ V2 ⊃ · · · ⊃ Un ⊃ Vn ⊃ · · ·
of open non-empty subsets of X and a sequence of points {xi ∈ Vi}i≥1. The
sequence {Ui, Vi, xi}i≥1 is called a play.

Definition 5.1. Player α is said to have won a play {Ui, Vi, xi}i≥1 of the
game G(X), if the sequence of sets {Vn}n≥1 has non-empty intersection and
the sequence of points {xi}i≥1 has a subsequence which is bounded in X.
Otherwise, the player β is declared to be the winner of this play of the game
G(X).

Definition 5.2. Player α is said to have won a play {Ui, Vi, xi}i≥1 of the
game G∗(X), if the sequence of sets {Vn}n≥1 has non-empty intersection and
there exists a subsequence of {xi}i≥1 which is bounded in some separable
subspace S ⊂ X. Otherwise, the player β is declared to be the winner of this
play of the game G∗(X).

A very similar game to this was considered in [11].

Under a strategy s for player β (in any of the considered games) we mean
“a rule” that specifies each move of player β in every possible situation. If the

12



player β applies a certain strategy s, then the resulting plays {Ui, Vi, xi}i≥1

are called s-plays. A strategy s for the player β is called winning, if the player
β wins all s-plays. A space X is called β-unfavorable, if the player β does
not have a winning strategy. For more information on topological games see
[9].

Theorem 5.3. Let T be a pseudocompact space and let X be a topological
space that is β-unfavorable for the game G∗(X). Then for every continuous
mapping h : X → Cp(T ) there exists a dense Gδ subset C ⊂ X, at the points
of which, h is continuous with respect to the sup-norm topology in C(T ).

Proof. Without loss of generality we may assume that h(X) is a subset of the
closed unit ball B of C(T ). It is also well known that the set C of points at
which h is norm-continuous is a Gδ subset of X. Therefore it suffices to show
that C is dense in X. To do this we take an arbitrary non-empty open set
U1 ⊂ X and construct a special strategy s for the player β with U1 as her/his
first choice. Since X is β-unfavorable, there exists an s-play {(Ui, Vi, xi)}i≥1

which is won by the player α. In particular, the set ∩i≥1Vi is nonempty. The
construction of the strategy s however is such that h is norm-continuous at
the points of the set ∩i≥1Vi ⊂ U1 whenever the s-play is won by player α.

The strategy s will be constructed inductively. As mentioned above, the
set U1 is the first move of β. Suppose the strategy s has been defined ”up
to the stage n”, where n ≥ 1. Let {Ui, Vi, xi}

n
i=1 be a finite s-play. To define

the set Un+1, the next move of β, we put gi = h(xi), i = 1, . . . , n, and

dn := inf{t > 0 : co{g1, . . . , gn} + tB ⊃ h(Vn)},

where co{g1, . . . , gn} is the convex hull of the set {g1, . . . , gn}.
If dn = 0, then h(Vn) is a subset of the finite-dimensional compact

co{g1, . . . , gn} in which pointwise convergence topology and norm topology in
C(X) coincide. In such a case h is norm-continuous at the points of Vn ⊂ U1.
Therefore, without loss of generality, we may assume that dn > 0.

Consider the nonempty set

h(Vn) \ {co{g1, . . . , gn} +
n

n+ 1
dnB}.

It is relatively open in h(Vn). Take some nonempty open subset U ⊂ Vn such
that

h(U)
⋂

{co{g1, . . . , gn} +
n

n + 1
dnB} = ∅.
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Since co{g1, . . . , gn} is compact, there is a finite set M such that

co{g1, . . . , gn} ⊂M +
1

n + 1
B.

Since
h(U) ⊂ h(Vn) ⊂ co{g1, . . . , gn} + dnB,

we have h(U) ⊂M +(dn + 1

n+1
)B. Without loss of generality we can assume

that M is a minimal (with respect to its cardinality) finite set with this
property.

Then, for any m0 ∈M , the set

h(U) \

{

{M \ {m0}} + (dn +
1

n + 1
)B

}

6= ∅.

is a nonempty relatively open subset of h(U). Then there exists some non-
empty open set Un+1 ⊂ U such that h(Un+1) ⊂ m0 + (dn + 1

n+1
)B. We take

this set Un+1 to be the next move of player β. This completes the construction
of the strategy s.

Note that, for every s-play {Ui, Vi, xi}i≥1 and n ≥ 1 we have:
a) ‖ · ‖ -diam(h(Un+1)) ≤ 2(dn + 1

n+1
);

b) h(Un+1)
⋂

{co{g1, . . . , gn} + n
n+1

dnB} = ∅ and

c) gn+1 6∈ co{g1, . . . , gn}.

Since X is β-unfavorable for the game G∗(X), there exists some s-play
{Ui, Vi, xi}i≥1 which is won by α. In particular, there exists some separable
subset S of X and a subsequence of {xi}i≥1 which is bounded in S. Since h is
continuous, the set h(S) is separable in Cp(X) and {gi = h(xi)}i≥1 contains
a subsequence which is bounded in h(S). By Theorem 3.2, the sequence
{gi}i≥1 contains a subsequence converging in Cp(T ) to some function g∞
which, necessarily, belongs to

⋂

i≥1
h(Ui).

The sequence {di}i≥1 of non-negative numbers is non-increasing. Put
d∞ := limn→∞ dn. It suffices to show that d∞ = 0. Suppose that d∞ > 0 and
take some positive number ε < 1

2
d∞. Then we have, for every i ≥ 1,

{g∞ + εB} ∩ co{g1, . . . , gi} ⊂ {h(Ui) +
i

i+ 1
diB} ∩ co{g1, . . . , gi} = ∅.

Therefore {g∞ + εB} ∩ {
⋃

i≥1
co{g1, . . . , gi}} = ∅.
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This contradicts part b) of Theorem 3.2. Hence d∞ = 0. This completes
the proof of Theorem 5.3.

Theorem 5.4. Let T be a strongly pseudocompact space and let X be a
topological space that is β-unfavorable for the game G(X). Then for every
continuous mapping h : X → Cp(T ) there exists a dense Gδ subset C ⊂ X,
at the points of which, h is continuous with respect to the sup-norm topology
in C(T ).

Proof. The proof is almost identical with the proof of Theorem 5.3. We
construct a strategy s for player β with U1 as a first move and such that
every s-play {Ui, Vi, xi}i≥1 satisfies the properties a), b) and c) whenever
n ≥ 1.

Since X is β-unfavorable for the game G(X), there exists some s-play
{Ui, Vi, xi}i≥1 which is won by α in the game G(X). I.e. ∩i≥1Vi 6= ∅ and the
sequence {xi}i≥1 has a subsequence bounded in X. Since h is continuous, the
sequence {gi = h(xi)}i≥1 has a subsequence bounded in Cp(X). By Theorem
4.1, {xi}i≥1 has a subsequence converging in Cp(T ) to some function g∞
which, necessarily, belongs to

⋂

i≥1
h(Ui). Using part (iii) of Theorem 4.1

Instead of part b) of Theorem 3.2) we establish as above that d∞ = 0.

At the end of this section we give some sufficient conditions for a space
X to be β-unfavorable in the games G(X) and G∗(X).

For a point x and a family δ of subsets of some space put St(x, δ) =
∪{W ∈ δ : x ∈W}. This set is the star of x with respect to δ. We need
the following separation property (see [4] Definition 4.4).

Definition 5.5. Let X be a subset of a topological space Z. X is said to have
star separation in Z, if there exists a sequence {δi}i≥1 of families of open
subsets of Z, such that the points of X are separated from the points of Z \X
in the following sense: for every pair of points x ∈ X and z ∈ Z \X, there
exists some n ≥ 1 such that at least one of the stars St(x, δn), St(z, δn) is
not empty and does not contain the other point. In such a case the sequence
of families {δi}i≥1 is called a star separation for X in Z.

If the families {δi}i≥1 are a star separation forX in Z, then they are a star
separation for Z \X in Z as well. An arbitrary open subset U of any space
Z has star separation in Z (all δi consist of the set U only). Hence, every
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closed subset of Z also has star separation in Z. It is easy to realize that
the collection of all sets with star separation in a certain space Z is closed
under taking countable unions and countable intersections. In particular,
Borel subsets of Z have star separation in this space. Moreover, the Souslin
scheme, applied to sets with star separation in Z, also produces a set with
star separation in Z. In particular, Souslin generated subsets of Z have star
separation in it.

It is easy to see that a space X has star separation in some Z if, and only
if, X has star separation in clZX.

Some partial cases of this notion have been studied and used earlier. For
instance, spaces admitting star separation in a compact space Z by families
δn which are open covers for X are called p-spaces [1] (or also feathered
spaces). The class of p-spaces is very large. It contains all metric spaces as
well as all locally compact spaces.

Spaces X admitting star separation in a compact space Z by families δi
each consisting of just one open subset of Z have been used in the study
of fragmentability and σ-fragmentability of Banach spaces under the name
spaces with countable separation (see [19] page 213).

According to Theorem 4.9 in [4] a completely regular space X has star
separation in some compactification bX if, and only if, it has star separation
in its Stone-Ĉech compactification βX.

The notion“star separation” allows to formulate the following two state-
ments which imply Proposition 1.5 from the Introduction section of the pa-
per.

Theorem 5.6. Let X be a Baire space that is dense in some feebly compact
space Z, and which has star separation in it. Let T be a strongly pseudo-
compact space. Then for every continuous mapping h : X −→ Cp(T ) there
exists a dense Gδ subset C ⊂ X, at the points of which, h is continuous with
respect to the norm topology in C(T ).

Proof. Corollary 4.6 c) from [4] implies that X is β-unfavorable for the game
G(X). It remain to apply Theorem 5.4.

Theorem 5.7. Let X be a Baire space that is dense in some countably com-
pact space Z, and which has star separation in it. Let T be a pseudocompact
space. Then for every continuous mapping h : X −→ Cp(T ) there exists a
dense Gδ subset C ⊂ X, at the points of which, h is continuous with respect
to the norm topology in C(T ).
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Proof. Corollary 4.6 b) from [4] implies that X is β-unfavorable for the game
G∗(X). It remain to apply Theorem 5.4.

The topic norm-continuity of pointwise continuous mappings stems from
another, perhaps more popular, topic known under the name joint continuity
of separately continuous functions. Recall that a real-valued function f(x, t)
defined on the product X × T of two topological spaces X and T is sepa-
rately continuous if for every pair (x∗, t∗) ∈ X×T the function f(x∗, t) (of
the variable t ∈ T ) and the function f(x, t∗) (of the variable x ∈ X) are con-
tinuous. Well-known examples show that a separately continuous function
f(x, t) need not be continuous. However, under some requirements imposed
on the spaces X and T , it is possible to prove that the set

{x ∈ X : f(x, t) is continuous at the point (x, t) for every t ∈ T}

contains a dense Gδ-subset of X. This phenomenon received a lot of atten-
tion after the famous paper of Baire [7] was published. Information about
historical developments in this topic can be found in the survey papers of Pi-
otrowski [25, 26]. Interesting results in this area are contained in the papers
of Namioka [22], Christensen [12], Saint-Raymond [31], Talagrand [33, 34],
Debs [13], Troallic [35, 36], Namioka and Pol [23] and many others, including
[20, 21]. The current state of the art together with many new results can be
found in the paper of Bareche and Bouziad [6].

Each separately continuous function f(x, t) determines a continuous map-
ping h : X → Cp(T ) which puts into correspondence to every x0 ∈ X the
function h(x0) = f(x0, t) ∈ C(T ). The norm continuity of h at x0 ∈ X im-
plies the continuity of f(x, t) at all points (x0, t), t ∈ T . For compact spaces
T the inverse implication also holds: continuity of f(x, t) at all points (x0, t),
t ∈ T , implies norm continuity of the mapping h at x0. For non-compact
spaces, even for sequentially compact spaces T , this is not necessarily so.
This is seen from the next example. In this sense the results obtained in this
paper concerning norm continuity of h at many points x ∈ X do not follow
directly from the results concerning joint continuity of f(x, t) at (x, t) for
every t ∈ T .

Example 5.8. Let ω1 be the first non-countable ordinal. Let X = [0, ω1]
and T = [0, ω1). Endow T with the usual order generated topology which
turns it into a sequentially compact space. Consider in X a topology for
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which all points x < ω1 are isolated and the family {(x, ω1]}x<ω1
is a base

of neighborhoods at ω1. Consider the function f which is equal to 0 at the
points (x, t), t ≤ x, and 1 otherwise. This function is continuous at the points
of X × T . The corresponding mapping h however is not norm continuous at
the point x0 = ω1.
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