On the topology of pointwise convergence on the boundaries of L_1 -preduals

WARREN B. MOORS AND JIŘÍ SPURNÝ

Abstract. In this paper we prove a theorem more general than the following. "If $(X, \|\cdot\|)$ is an L_1 -predual, B is any boundary of X and $\{x_n : n \in \mathbb{N}\}$ is any subset of X then the closure of $\{x_n : n \in \mathbb{N}\}$ with respect to the topology of pointwise convergence on B is separable with respect to the topology generated by the norm, whenever $\operatorname{Ext}(B_{X^*})$ is Lindelöf." Several applications of this result are also presented.

AMS (2002) subject classification: Primary 46A50 ; Secondary 46B20

Keywords: Compact convex; Extreme points; boundary; L_1 -predual.

1 Introduction

We shall say that a Banach space $(X, \|\cdot\|)$ is an L_1 -predual if X^* is isometric to $L_1(\mu)$ for some suitable measure μ . Some examples of L_1 -preduals include $(C(K), \|\cdot\|_{\infty})$, and more generally, the space of continuous affine functions on a Choquet simplex (see [9] for the definition) endowed with the supremum norm (see, [4, Proposition 3.23]). We shall also consider the notion of a boundary. Specifically, for a non-trivial Banach space X over \mathbb{R} we say that a subset B of B_{X^*} , the closed unit ball of X^* , is a *boundary*, if for each $x \in X$ there exists a $b^* \in B$ such that $b^*(x) = \|x\|$. The prototypical example of a boundary is $\text{Ext}(B_{X^*})$ - the set of all extreme points of B_{X^*} , but there are many other interesting examples given in [8].

In a recent paper [8] the authors investigate the topology on a Banach space X that is generated by $\text{Ext}(B_{X^*})$ and, more generally, the topology on X generated by an arbitrary boundary of X. This paper continues this study.

To be more precise we must first introduce some notation. For a nonempty subset Y of the dual of a Banach space X we shall denote by $\sigma(X, Y)$ the weakest linear topology on X that makes all the functionals from Y continuous. In [8] the authors show (see, [8, Theorem 2.2]) using [2, Lemma 1] that for any compact Hausdorff space K, any countable subset $\{x_n : n \in \mathbb{N}\}$ of C(K) and any boundary B of $(C(K), \|\cdot\|_{\infty})$, the closure of $\{x_n : n \in \mathbb{N}\}$ with respect to the $\sigma(C(K), B)$ topology is separable with respect to the topology generated by the norm. In this paper we extend this result by showing that if $(X, \|\cdot\|)$ is an L_1 -predual, B is any boundary of X and $\{x_n : n \in \mathbb{N}\}$ is any subset of X then the closure of $\{x_n : n \in \mathbb{N}\}$ in the $\sigma(X, B)$ topology is separable with respect to the topology generated by the norm whenever $\operatorname{Ext}(B_{X^*})$ is weak* Lindelöf.

We conclude this paper with some applications that indicate the utility of our results.

2 Preliminary Results

Let X be a topological space and let \mathcal{F} be a family of nonempty, closed and separable subsets of X. Then \mathcal{F} is *rich* if the following two conditions are fulfilled:

- (i) for every separable subspace Y of X, there exists a $Z \in \mathcal{F}$ such that $Y \subseteq Z$;
- (ii) for every increasing sequence $(Z_n : n \in \mathbb{N})$ in $\mathcal{F}, \overline{\bigcup_{n \in \mathbb{N}} Z_n} \in \mathcal{F}$.

For any topological space X, the collection of all rich families of subsets forms a partially ordered set, under the binary relation of set inclusion. This partially ordered set has a greatest element, namely,

 $\mathcal{G}_X := \{ S \subseteq X : S \text{ is a nonempty, closed and separable subset of } X \}.$

On the other hand, if X is a separable space, then the partially ordered set has a least element, namely, $\mathcal{G}_{\varnothing} := \{X\}$.

The raison d'être for rich families is revealed next.

Proposition 1 Suppose that X is a topological space. If $\{\mathcal{F}_n : n \in \mathbb{N}\}$ are rich families of X then so is $\bigcap_{n \in \mathbb{N}} \mathcal{F}_n$.

For a proof of this Proposition see [3, Proposition 1.1].

Throughout this paper we will be primarily working with Banach spaces so a natural class of rich families, given a Banach space X, is the family of all closed separable linear subspaces of X, which we denote by S_X . There are however many other interesting examples of rich families that can be found in [3] and [7].

For our first result we will provide another non-trivial example of a rich family, but to achieve this we first need a preliminary result that characterises when a given Banach space is an L_1 -predual.

Lemma 1 [6, §21, Theorem 7] For a Banach space X the following are equivalent:

- (i) X is an L_1 -predual;
- (ii) for each weak^{*} continuous convex function f on B_{X^*}

$$f^*(0) = \frac{1}{2} \max\{f(x^*) + f(-x^*) : x^* \in B_{X^*}\}$$

where $f^* = \inf\{h : h \ge f \text{ and } h \text{ is weak}^* \text{ continuous and affine on } B_{X^*}\}.$

Before proceeding further we shall introduce the following notation. If X is a normed linear space then each $x \in X$ defines a weak^{*} continuous affine function \hat{x} on B_{X^*} via the canonical embbeding, that is, $\hat{x}(x^*) := x^*(x)$ for all $x^* \in B_{X^*}$.

Theorem 1 Let X be an L_1 -predual. Then the set of all closed separable linear subspaces of X that are themselves L_1 -preduals forms a rich family.

Proof: Let $\mathscr{L} := \{Z \in \mathcal{S}_X : Z \text{ is an } L_1\text{-predual}\}$. We shall verify that \mathscr{L} is a rich family. So first let us consider an arbitrary separable closed linear subspace Y of X. Then by [12, Lemma 3.1] there exists a closed separable subspace $Z \in \mathscr{L}$ such that $Y \subseteq Z$. Next, let us consider an increasing sequence $(Z_n : n \in \mathbb{N})$ in \mathscr{L} and let $Z := \bigcup_{n \in \mathbb{N}} Z_n$. To show that $Z \in \mathscr{L}$ we shall appeal to Lemma 1. Let f be a weak^{*} continuous convex function on B_{Z^*} . Since

$$\frac{1}{2}\max\{f(x^*) + f(-x^*) : x^* \in B_{Z^*}\} \le f^*(0),$$

it is enough to verify that for each $\varepsilon > 0$, $f^*(0) \leq \frac{1}{2} \max\{f(x^*) + f(-x^*) : x^* \in B_{Z^*}\} + \varepsilon$. To this end, suppose that $\varepsilon > 0$. Since f is weak^{*} continuous and convex and B_{Z^*} is weak^{*} compact, by [1, Corollary I.1.3] there exist $z_i \in Z$ and $c_i \in \mathbb{R}$, $i = 1, \ldots n$, such that the weak^{*} convex continuous $g : B_{Z^*} \to \mathbb{R}$ defined by

$$g := \max\{\widehat{z_1} + c_1, \widehat{z_2} + c_2, \dots, \widehat{z_n} + c_n\}$$

satisfies

$$f(z^*) - \varepsilon < g(z^*) < f(z^*), \quad z^* \in B_{Z^*}$$

Since $\bigcup_{n \in \mathbb{N}} Z_n$ is dense in Z we may further assume that all the elements z_i are contained in some fixed $Z_j, j \in \mathbb{N}$.

Next, let $r: B_{Z^*} \to B_{Z_j^*}$ be the restriction mapping (i.e., $r(z^*) = z^*|_{Z_j}$ for all $z^* \in B_{Z^*}$) and let $h: B_{Z_j^*} \to \mathbb{R}$ be defined by, $h := \max\{\widehat{z_1} + c_1, \widehat{z_2} + c_2, \dots, \widehat{z_n} + c_n\}$. Then h is weak^{*} continuous and convex on $B_{Z_j^*}$ and $g = h \circ r$. Moreover, by the definition of g (and the fact that r is weak^{*}-to-weak^{*} continuous and linear) we have that $g^*(z^*) \leq h^*(r(z^*))$ for all $z^* \in B_{Z^*}$. Now, by the assumption that Z_j is an L_1 -predual (and Lemma 1) there exists a $y^* \in B_{Z_j^*}$ such that

$$h^*(0) = \frac{1}{2}[h(y^*) + h(-y^*)]$$

Choose $z^* \in r^{-1}(y^*)$; which is nonempty by the Hahn-Banach extension theorem. Then,

$$g^*(0) \le h^*(0) = \frac{1}{2}[h(y^*) + h(-y^*)] = \frac{1}{2}[g(z^*) + g(-z^*)] \le g^*(0).$$

Therefore,

$$f^{*}(0) - \varepsilon = (f - \varepsilon)^{*}(0) \leq g^{*}(0) = \frac{1}{2}[g(z^{*}) + g(-z^{*})]$$

$$\leq \frac{1}{2}[f(z^{*}) + f(-z^{*})] \leq \frac{1}{2}\max\{f(x^{*}) + f(-x^{*}) : x^{*} \in B_{Z^{*}}\}.$$

That is, $f^*(0) \leq \frac{1}{2} \max\{f(x^*) + f(-x^*) : x^* \in B_{Z^*}\} + \varepsilon$; which completes the proof. \bigcirc Before we can introduce another class of rich families we require the following lemma which is a Banach space version of [10, Theorem 2.10]. **Lemma 2** Let Y be a closed separable linear subspace of a Banach space X and suppose that $L \subseteq \text{Ext}(B_{X^*})$ is weak^{*} Lindelöf. Then there exists a closed separable linear subspace Z of X, containing Y, such that for any $l^* \in L$ and any x^* , $y^* \in B_{Z^*}$ if $l^*|_Z = \frac{1}{2}(x^* + y^*)$ then $x^*|_Y = y^*|_Y$.

Proof: Let \mathscr{B} be a countable base for the topology on (B_{Y^*}, weak^*) consisting of closed convex sets. Recall that such a base exists because (B_{Y^*}, weak^*) is compact, by the Banach-Alaoglu Theorem, and (B_{Y^*}, weak^*) is metrizable, since Y is separable. Let:

- (i) $\mathscr{F} := \{r^{-1}(B) : B \in \mathscr{B}\}, \text{ where } r : B_{X^*} \to B_{Y^*} \text{ is the restriction mapping};$
- (ii) $\mathscr{R} := \{ \frac{1}{2}(F_1 + F_2) : F_1, F_2 \in \mathscr{F} \text{ and } F_1 \cap F_2 = \varnothing \}.$

By construction $\bigcup \mathscr{R} \subseteq B_{X^*} \setminus \text{Ext}(B_{X^*})$ and so $L \cap \bigcup \mathscr{R} = \emptyset$. Furthermore, for each $l^* \in L$ and $F \in \mathscr{R}$ there exists a $y \in X$ such that

$$\sup\{\widehat{y}(f^*): f^* \in F\} < \widehat{y}(l^*).$$

Therefore, since L is weak^{*} Lindelöf for each $F \in \mathscr{R}$ there exists a countable subset C_F in X such that, for each $l^* \in L$ there exists a $y \in C_F$ such that $\sup\{\widehat{y}(f^*) : f^* \in F\} < \widehat{y}(l^*)$. If we set $C := \bigcup\{C_F : F \in \mathscr{R}\}$ and $Z := \overline{\operatorname{span}}(C \cup X)$ then $X \subseteq Z$ and Z is a closed separable linear subspace of X.

It now only remains to verify that if $l^* \in L$, x^* , $y^* \in B_{Z^*}$ and $l^*|_Z = \frac{1}{2}(x^* + y^*)$ then $x^*|_Y = y^*|_Y$. So, in order to obtain a contradiction, suppose that for some $l^* \in L$ and x^* , $y^* \in B_{Z^*}$, $l^*|_Z = \frac{1}{2}(x^* + y^*)$ but $x^*|_Y \neq y^*|_Y$. Then there exists $B_1, B_2 \in \mathscr{B}$ such that $x^*|_Y \in B_1$ and $y^*|_Y \in B_2$ and $B_1 \cap B_2 = \varnothing$. Set $F_1 := r^{-1}(B_1)$ and $F_2 := r^{-1}(B_2)$. Then $F_1, F_2 \in \mathscr{F}$ and $F_1 \cap F_2 = \varnothing$. Now, by the Hahn-Banach extension Theorem there exist $x_1^* \in B_{X^*}$ and $y_1^* \in B_{X^*}$ such that $x_1^*|_Z = x^*$ and $y_1^*|_Z = y^*$. Moreover,

$$x_1^*|_Y = (x_1^*|_Z)|_Y = x^*|_Y \in B_1$$
 and $y_1^*|_Y = (y_1^*|_Z)|_Y = y^*|_Y \in B_2.$

That is, $x_1^* \in F_1$ and $y_1^* \in F_2$. Therefore, $\frac{1}{2}(x_1^* + y_1^*) \in \frac{1}{2}(F_1 + F_2) =: F$. Since $F \in \mathscr{R}$, by the construction there exists a $y \in C_F \subseteq C \subseteq Z$ such that $\sup\{\widehat{y}(f^*) : f^* \in F\} < \widehat{y}(l^*)$. In particular,

$$\frac{1}{2}(x^* + y^*)(y) = \hat{y}(\frac{1}{2}(x_1^* + y_1^*)) < l^*(y) = (l^*|_Z)(y).$$

(:)

However, this contradicts the fact that $\frac{1}{2}(x^* + y^*) = l^*|_Z$.

Theorem 2 Let X be a Banach space and let $L \subseteq \text{Ext}(B_{X^*})$ be a weak^{*} Lindelöf subset. Then the set of all Z in S_X such that $\{l^*|_Z : l^* \in L\} \subseteq \text{Ext}(B_{Z^*})$ forms a rich family.

Proof: Let \mathscr{L} denote the family of all closed separable linear subspaces Z of X such that $\{l^*|_Z : l^* \in L\} \subseteq \operatorname{Ext}(B_{Z^*})$. We shall verify that \mathscr{L} is a rich family of closed separable linear subspaces of X. So first let us consider an arbitrary closed separable linear subspace Y of X, with the aim of showing that there exists a subspace $Z \in \mathscr{L}$ such that $Y \subseteq Z$. We begin by inductively applying Lemma 2 to obtain an increasing sequence $(Z_n : n \in \mathbb{N})$ of closed

separable linear subspaces of X such that: $Y \subseteq Z_1$ and for any $l^* \in L$ and any $x^*, y^* \in B_{Z_{n+1}^*}$ if $l^*|_{Z_{n+1}} = \frac{1}{2}(x^* + y^*)$ then $x^*|_{Z_n} = y^*|_{Z_n}$.

We now claim that if $Z := \overline{\bigcup_{n \in \mathbb{N}} Z_n}$ then $l^*|_Z \in \operatorname{Ext}(B_{Z^*})$ for each $l^* \in L$. To this end, suppose that $l^* \in L$ and $l^*|_Z = \frac{1}{2}(x^* + y^*)$ for some $x^*, y^* \in B_{Z^*}$. Then for each $n \in \mathbb{N}$

$$l^*|_{Z_{n+1}} = (l^*|_Z)|_{Z_{n+1}} = \frac{1}{2}(x^* + y^*)|_{Z_{n+1}} = \frac{1}{2}(x^*|_{Z_{n+1}} + y^*|_{Z_{n+1}})$$

and $x^*|_{Z_{n+1}}, y^*|_{Z_{n+1}} \in B_{Z_{n+1}^*}$ Therefore, by construction $x^*|_{Z_n} = y^*|_{Z_n}$. Now since $\bigcup_{n \in \mathbb{N}} Z_n$ is dense in Z and both x^* and y^* are continuous we may deduce that $x^* = y^*$; which in turn implies that $l^*|_Z \in \text{Ext}(B_{Z^*})$. This shows that $Y \subseteq Z$ and $Z \in \mathscr{L}$.

To complete this proof we must verify that for each increasing sequence of closed separable subspaces $(Z_n : n \in \mathbb{N})$ in $\mathscr{L}, \overline{\bigcup_{n \in \mathbb{N}} Z_n} \in \mathscr{L}$. This however, follows easily from the definition of the family \mathscr{L} .

Let X be a normed linear space. Then we say that an element $x^* \in B_{X^*}$ is weak^{*} exposed if there exists an element $x \in X$ such that $y^*(x) < x^*(x)$ for all $y^* \in B_{X^*} \setminus \{x^*\}$. It is not difficult to show that if $\text{Exp}(B_{X^*})$ denotes the set of all weak^{*} exposed points of B_{X^*} then $\text{Exp}(B_{X^*}) \subseteq \text{Ext}(B_{X^*})$. However, if X is a separable L_1 -predual then the relationship between $\text{Exp}(B_{X^*})$ and $\text{Ext}(B_{X^*})$ is much closer.

Lemma 3 [12, Lemma 3.3(b)] If X is a separable L_1 -predual, then $\text{Exp}(B_{X^*}) = \text{Ext}(B_{X^*})$.

Let us also pause for a moment to recall that if B is any boundary of a Banach space X then

$$\operatorname{Exp}(B_{X^*}) \subseteq B \cap \operatorname{Ext}(B_{X^*}) \subseteq \operatorname{Ext}(B_{X^*}) \subseteq \overline{B}^{\operatorname{weak}}$$

The fact that $\operatorname{Ext}(B_{X^*}) \subseteq \overline{B}^{\operatorname{weak}^*}$ follows from Milman's theorem, [9, page 8] and the fact that $B_{X^*} = \overline{\operatorname{co}}^{\operatorname{weak}^*}(B)$; which in turn follows from a separation argument. Let us also take this opportunity to observe that if B_X denotes the closed unit ball in X then B_X is closed in the $\sigma(X, B)$ topology for any boundary B of X. Finally, let us end this section with one more simple observation that will turn out to be useful in our later endeavours.

Proposition 2 Suppose that Y is a linear subspace of a Banach space $(X, \|\cdot\|)$ and B is any boundary for X. Then for each $e^* \in \text{Exp}(B_{Y^*})$ there exists $b^* \in B$ such that $e^* = b^*|_Y$.

Proof: Suppose that $e^* \in \text{Exp}(B_{Y^*})$ then there exists an $x \in Y$ such that $y^*(x) < e^*(x)$ for each $y^* \in B_{Y^*} \setminus \{e^*\}$. By the fact that B is a boundary of $(X, \|\cdot\|)$ there exists a $b^* \in B$ such that $b^*(x) = \|x\| \neq 0$. Then for any $y^* \in B_{Y^*}$ we have

$$y^*(x) \le |y^*(x)| \le ||y^*|| ||x|| \le ||x|| = b^*(x) = (b^*|_Y)(x).$$

In particular, $e^*(x) \leq b^*|_Y(x)$. Since $b^*|_Y \in B_{Y^*}$ and $y^*(x) < e^*(x)$ for all $y^* \in B_{Y^*} \setminus \{e^*\}$, it must be the case that $e^* = b^*|_Y$.

This ends our preliminary section.

3 The Main Results

Theorem 3 Let B be any boundary for a Banach space X that is an L_1 -predual and suppose that $\{x_n : n \in \mathbb{N}\} \subseteq X$, then $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)} \subseteq \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,Ext(B_{X^*}))}$.

Proof: In order to obtain a contradiction let us suppose that

$$\overline{\{x_n:n\in\mathbb{N}\}}^{\sigma(X,B)}\nsubseteq\overline{\{x_n:n\in\mathbb{N}\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$$

Choose $x \in \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)} \setminus \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$. Then there exists a finite set $\{e_1^*, e_2^*, \dots, e_m^*\} \subseteq \operatorname{Ext}(B_{X^*})$ and $\varepsilon > 0$ so that

$$\{y \in X : |e_k^*(x) - e_k^*(y)| < \varepsilon \text{ for all } 1 \le k \le m\} \cap \{x_n : n \in \mathbb{N}\} = \emptyset.$$

Let $Y := \overline{\operatorname{span}}(\{x_n : n \in \mathbb{N}\} \cup \{x\})$, let \mathcal{F}_1 be any rich family of L_1 -preduals; whose existence is guaranteed by Theorem 1, and let \mathcal{F}_2 be any rich family such that for every $Z \in \mathcal{F}_2$ and every $1 \leq k \leq m, e_k^*|_Z \in \operatorname{Ext}(B_{Z^*})$; whose existence is guaranteed by Theorem 2. Next, let us choose $Z \in \mathcal{F}_1 \cap \mathcal{F}_2$ so that $Y \subseteq Z$. Recall that this is possible because, by Proposition 1, $\mathcal{F}_1 \cap \mathcal{F}_2$ is a rich family. Since Z is a separable L_1 -predual we have by Lemma 3 that $e_k^*|_Z \in \operatorname{Exp}(B_{Z^*})$ for each $1 \leq k \leq m$. Now, by Proposition 2 for each $1 \leq k \leq m$ there exists a $b_k^* \in B$ such that $e_k^*|_Z = b_k^*|_Z$. Therefore,

$$|b_k^*(x) - b_k^*(x_j)| = |(b_k^*|_Z)(x) - (b_k^*|_Z)(x_j)| = |(e_k^*|_Z)(x) - (e_k^*|_Z)(x_j)| = |e_k^*(x) - e_k^*)(x_j)|.$$

for all $j \in \mathbb{N}$ and all $1 \leq k \leq m$. Thus,

$$\{y \in X : |b_k^*(x) - b_k^*(y)| < \varepsilon \text{ for all } 1 \le k \le m\} \cap \{x_n : n \in \mathbb{N}\} = \emptyset.$$

This contradicts the fact that $x \in \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$; which completes the proof. \bigcirc

Corollary 1 [12, Theorem 1.1(a)] Let B be any boundary for a Banach space X that is an L_1 -predual. Then every relatively countably $\sigma(X, B)$ -compact subset is relatively countably $\sigma(X, \text{Ext}(B_{X^*}))$ -compact. In particular, every norm bounded, relatively countably $\sigma(X, B)$ -compact subset is relatively weakly compact.

Proof: Suppose that a nonempty set $C \subseteq X$ is relatively countably $\sigma(X, B)$ -compact. Let $\{c_n : n \in \mathbb{N}\}$ be any sequence in C then by Theorem 3

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} \overline{\{c_k : k \ge n\}}^{\sigma(X,B)} \subseteq \bigcap_{n \in \mathbb{N}} \overline{\{c_k : k \ge n\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$$

Hence C is relatively countably $\sigma(X, \operatorname{Ext}(B_{X^*}))$ -compact. In the case when C is also norm bounded the result follows from [5].

Recall that a *network* for a topological space X is a family \mathscr{N} of subsets of X such that for any point $x \in X$ and any open neighbourhood U of x there is an $N \in \mathscr{N}$ such that $x \in N \subseteq U$, and a topological space X is said to be \aleph_0 -monolithic if the closure of every countable set has a countable network.

The next Corollary generalises [8, Theorem 2.2].

Corollary 2 Let B be any boundary for a Banach space X that is an L_1 -predual and suppose that $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$ is norm separable whenever X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology. In particular, $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$ is norm separable whenever $\operatorname{Ext}(B_{X^*})$ is weak^{*} Lindelöf.

Proof: This follows directly from Theorem 3 and [8, Theorem 2.6]; which states that if $M \subseteq X$ has a countable network with respect to the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology then M is separable in $(X, \|\cdot\|)$. The last claim follows from [8, Theorem 2.14] where it is shown that if $\operatorname{Ext}(B_{X^*})$ is weak* Lindelöf then X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology.

In [8] many conditions are given under which $\sigma(X, \operatorname{Ext}(B_{X^*}))$ is \aleph_0 -monolithic.

To demonstrate how this last theorem may be applied we shall present some sample applications.

4 Applications

Our first application is to metrizability of compact convex sets. If K is a compact convex set in a real locally convex space, let A(K) stand for the space of all affine continuous functions on K.

Proposition 3 Let K be a Choquet simplex in a separated locally convex space (over \mathbb{R}) such that every regular Borel probability measure carried on Ext(K) is atomic. Then K is metrizable if, and only if, the space $(B_{A(K)}, \sigma(A(K), B))$ is separable, for some boundary B of $(A(K), \|\cdot\|_{\infty})$.

Proof: This follows directly from Theorem 3 and [8, Theorem 2.19].

We remark that there exists a non-metrizable Choquet simplex K and a boundary B of $(A(K), \|\cdot\|_{\infty})$ such that $(B_{A(K)}, \sigma(A(K), B))$ is separable. (It is shown in [12, Section 4] that the construction of [8, Example 2.10] yields the required example.)

Our final few results concern automatic continuity. In particular, the next result improves [11, Theorem 6].

Proposition 4 Let B be any boundary for a Banach space X that is an L_1 -predual and suppose that A is a a separable Baire space. If X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology then for each continuous mapping $f : A \to (X, \sigma(X, B))$ there exists a dense subset D of A such that f is continuous with respect to the norm topology on X at each point of D.

Proof: Fix $\varepsilon > 0$ and consider the open set:

$$O_{\varepsilon} := \bigcup \{ U \subseteq A : U \text{ is open and } \| \cdot \| - \operatorname{diam}[f(U)] \le 2\varepsilon \}.$$

We shall show that O_{ε} is dense in A. To this end, let W be a nonempty open subset of A and let $\{a_n : n \in \mathbb{N}\}$ be a countable dense subset of W). Then by continuity

$$f(W) \subseteq \overline{\{f(a_n) : n \in \mathbb{N}\}}^{\sigma(X,B)};$$

which is norm separable by Corollary 2. Therefore there exists a countable set $\{x_n : n \in \mathbb{N}\}$ in X such that $f(W) \subseteq \bigcup_{n \in \mathbb{N}} (x_n + \varepsilon B_X)$. For each $n \in \mathbb{N}$, let $C_n := f^{-1}(x_n + \varepsilon B_X)$. Since each $x_n + \varepsilon B_X$ is closed in the $\sigma(X, B)$ topology each set C_n is closed in A and moreover, $W \subseteq \bigcup_{n \in \mathbb{N}} C_n$. Since W is of the second Baire category in A there exist a nonempty open set $U \subseteq W$ and a $k \in \mathbb{N}$ such that $U \subseteq C_k$. Then $U \subseteq O_{\varepsilon} \cap W$ and O_{ε} is indeed dense in A. Hence f is $\|\cdot\|$ -continuous at each point of $\bigcap_{n \in \mathbb{N}} O_{1/n}$.

Theorem 4 Suppose that A is a topological space with countable tightness that possesses a rich family \mathcal{F} of Baire subspaces and suppose that X is an L_1 -predual. Then for any boundary B of X and any continuous function $f : A \to (X, \sigma(X, B))$ there exists a dense subset D of A such that f is continuous with respect to the norm topology on X at each point of D provided X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology.

Proof: In order to obtain a contradiction let us suppose that f does not have a dense set of points of continuity with respect to the norm topology on X. Since A is a Baire space (by [7, Theorem 3.3]), this implies that for some $\varepsilon > 0$ the open set:

$$O_{\varepsilon} := \bigcup \{ U \subseteq A : U \text{ is open and } \| \cdot \| \text{-diam}[f(U)] \le 2\varepsilon \}$$

is not dense in A. That is, there exists a nonempty open subset W of A such that $W \cap O_{\varepsilon} = \emptyset$. For each $x \in A$, let $F_x := \{y \in A : ||f(y) - f(x)|| > \varepsilon\}$. Then $x \in \overline{F_x}$ for each $x \in W$. Moreover, since A has countable tightness, for each $x \in W$, there exists a countable subset C_x of F_x such that $x \in \overline{C_x}$.

Next, we inductively define an increasing sequence of separable subspaces $(F_n : n \in \mathbb{N})$ of A and countable sets $(D_n : n \in \mathbb{N})$ in A such that:

- (i) $W \cap F_1 \neq \emptyset$;
- (ii) $\bigcup \{C_x : x \in D_n \cap W\} \cup F_n \subseteq F_{n+1} \in \mathcal{F}$ for all $n \in \mathbb{N}$, where D_n is any countable dense subset of F_n .

Note that since the family \mathcal{F} is rich this construction is possible.

Let $F := \overline{\bigcup_{n \in \mathbb{N}} F_n}$ and $D := \bigcup_{n \in \mathbb{N}} D_n$. Then $\overline{D} = F \in \mathcal{F}$ and $\|\cdot\|$ -diam $[f(U)] \ge \varepsilon$ for every nonempty open subset U of $F \cap W$. Therefore, $f|_F$ has no points of continuity in $F \cap W$ with respect to the $\|\cdot\|$ -topology. This however, contradicts Proposition 4.

Our final result improves [7, Theorem 4.7].

Corollary 3 Suppose that A is a topological space with countable tightness that possesses a rich family of Baire subspaces and suppose that K is a compact Hausdorff space. Then for any boundary of $(C(K), \|\cdot\|_{\infty})$ and any continuous function $f : A \to (C(K), \sigma(C(K), B))$ there exists a dense subset D of A such that f is continuous with respect to the $\|\cdot\|_{\infty}$ -topology at each point of D.

References

- [1] Erik M. Alfsen *Compact convex sets and boundary integrals*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971.
- [2] Bernardo Cascales and Gilles Godefroy, Angelicity and the boundary problem, *Mathematika* **45** (1998), 105–112.
- [3] Jonathan M. Borwein and Warren B. Moors, Separable determination of integrability and minimality of the Clarke subdifferential mapping, *Proc. Amer. Math. Soc.* **128** (2000), 215–221.
- [4] V. P. Fonf, J. Lindestrauss and R. R. Phelps, *Infinite dimensional convexity*, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, 599-670.
- [5] S. S. Khurana, Pointwise compactness on extreme points, Proc. Amer. Math. Soc. 83 (1981), 347–348.
- [6] H. E. Lacey The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974.
- [7] Peijie Lin and Warren B. Moors, Rich families and the Product of Baire spaces, *Math. Balkanica* to appear, available at http://www.math.auckland.ac.nz/~moors/.
- [8] Warren B. Moors and Evgenii A. Reznichenko, Separable subspaces of affine function spaces on compact convex sets, *Topology Appl.* to appear in 2008.
- [9] R. Phelps, Lectures on Choquet's Theorem, Second edition, Lecture Notes in Mathematics, Berlin, 1997.
- [10] Evgenii A. Reznichenko, Compact convex spaces and their maps, Topology Appl., 36 (1990), 117–141.
- [11] J. Saint Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87 (1983), 449–504.
- [12] Jiří Spurný, The boundary problem for L₁-preduals. Illinois J. Math. to appear in 2009, available at http://www.karlin.mff.cuni.cz/kma-preprints/.

Warren B. MoorsJiříDepartment of MathematicsFacuThe University of AucklandChaPrivate Bag 92019, AucklandSokoNew ZealandCzeoEmail: moors@math.auckland.ac.nzEmaURL:http://www.math.auckland.ac.nz/~moors/Ema

Jiří Spurný Faculty of Mathematics and Physics Charles University Sokolovská 83, 186 75 Praha 8 Czech Republic Email: spurny@karlin.mff.cuni.cz