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Abstract. In this paper we prove a theorem more general than the following.
“If (X, ‖ · ‖) is an L1-predual, B is any boundary of X and {xn : n ∈ N} is any
subset of X then the closure of {xn : n ∈ N} with respect to the topology of pointwise
convergence on B is separable with respect to the topology generated by the norm,
whenever Ext(BX∗) is Lindelöf.” Several applications of this result are also presented.
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1 Introduction

We shall say that a Banach space (X, ‖ · ‖) is an L1-predual if X∗ is isometric to L1(µ)
for some suitable measure µ. Some examples of L1-preduals include (C(K), ‖ · ‖∞), and
more generally, the space of continuous affine functions on a Choquet simplex (see [9] for
the definition) endowed with the supremum norm (see, [4, Proposition 3.23]). We shall also
consider the notion of a boundary. Specifically, for a non-trivial Banach space X over R we
say that a subset B of BX∗ , the closed unit ball of X∗, is a boundary, if for each x ∈ X there
exists a b∗ ∈ B such that b∗(x) = ‖x‖. The prototypical example of a boundary is Ext(BX∗)
- the set of all extreme points of BX∗ , but there are many other interesting examples given
in [8].

In a recent paper [8] the authors investigate the topology on a Banach space X that is
generated by Ext(BX∗) and, more generally, the topology on X generated by an arbitrary
boundary of X. This paper continues this study.

To be more precise we must first introduce some notation. For a nonempty subset Y of the
dual of a Banach space X we shall denote by σ(X, Y ) the weakest linear topology on X
that makes all the functionals from Y continuous. In [8] the authors show (see, [8, Theorem
2.2]) using [2, Lemma 1] that for any compact Hausdorff space K, any countable subset
{xn : n ∈ N} of C(K) and any boundary B of (C(K), ‖ · ‖∞), the closure of {xn : n ∈ N}
with respect to the σ(C(K), B) topology is separable with respect to the topology generated
by the norm. In this paper we extend this result by showing that if (X, ‖·‖) is an L1-predual,
B is any boundary of X and {xn : n ∈ N} is any subset of X then the closure of {xn : n ∈ N}
in the σ(X, B) topology is separable with respect to the topology generated by the norm
whenever Ext(BX∗) is weak∗ Lindelöf.

We conclude this paper with some applications that indicate the utility of our results.
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2 Preliminary Results

Let X be a topological space and let F be a family of nonempty, closed and separable subsets
of X. Then F is rich if the following two conditions are fulfilled:

(i) for every separable subspace Y of X, there exists a Z ∈ F such that Y ⊆ Z;

(ii) for every increasing sequence (Zn : n ∈ N) in F ,
⋃

n∈N Zn ∈ F .

For any topological space X, the collection of all rich families of subsets forms a partially
ordered set, under the binary relation of set inclusion. This partially ordered set has a
greatest element, namely,

GX := {S ⊆ X : S is a nonempty, closed and separable subset of X}.

On the other hand, if X is a separable space, then the partially ordered set has a least
element, namely, G∅ := {X}.

The raison d’être for rich families is revealed next.

Proposition 1 Suppose that X is a topological space. If {Fn : n ∈ N} are rich families of
X then so is

⋂
n∈N Fn.

For a proof of this Proposition see [3, Proposition 1.1].

Throughout this paper we will be primarily working with Banach spaces so a natural class of
rich families, given a Banach space X, is the family of all closed separable linear subspaces
of X, which we denote by SX . There are however many other interesting examples of rich
families that can be found in [3] and [7].

For our first result we will provide another non-trivial example of a rich family, but to achieve
this we first need a preliminary result that characterises when a given Banach space is an
L1-predual.

Lemma 1 [6, §21, Theorem 7] For a Banach space X the following are equivalent:

(i) X is an L1-predual;

(ii) for each weak∗ continuous convex function f on BX∗

f ∗(0) =
1

2
max{f(x∗) + f(−x∗) : x∗ ∈ BX∗}

where f ∗ = inf{h : h ≥ f and h is weak∗ continuous and affine on BX∗}.

Before proceeding further we shall introduce the following notation. If X is a normed linear
space then each x ∈ X defines a weak∗ continuous affine function x̂ on BX∗ via the canonical
embbeding, that is, x̂(x∗) := x∗(x) for all x∗ ∈ BX∗ .
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Theorem 1 Let X be an L1-predual. Then the set of all closed separable linear subspaces
of X that are themselves L1-preduals forms a rich family.

Proof: Let L := {Z ∈ SX : Z is an L1-predual}. We shall verify that L is a rich family.
So first let us consider an arbitrary separable closed linear subspace Y of X. Then by [12,
Lemma 3.1] there exists a closed separable subspace Z ∈ L such that Y ⊆ Z. Next, let us
consider an increasing sequence (Zn : n ∈ N) in L and let Z :=

⋃
n∈N Zn. To show that

Z ∈ L we shall appeal to Lemma 1. Let f be a weak∗ continuous convex function on BZ∗ .
Since

1

2
max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗} ≤ f ∗(0),

it is enough to verify that for each ε > 0, f ∗(0) ≤ 1
2
max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗} + ε.

To this end, suppose that ε > 0. Since f is weak∗ continuous and convex and BZ∗ is weak∗

compact, by [1, Corollary I.1.3] there exist zi ∈ Z and ci ∈ R, i = 1, . . . n, such that the
weak∗ convex continuous g : BZ∗ → R defined by

g := max{ẑ1 + c1, ẑ2 + c2, . . . , ẑn + cn}

satisfies
f(z∗)− ε < g(z∗) < f(z∗), z∗ ∈ BZ∗ .

Since
⋃

n∈N Zn is dense in Z we may further assume that all the elements zi are contained
in some fixed Zj, j ∈ N.

Next, let r : BZ∗ → BZ∗
j

be the restriction mapping (i.e., r(z∗) = z∗|Zj
for all z∗ ∈ BZ∗) and

let h : BZ∗
j
→ R be defined by, h := max{ẑ1 + c1, ẑ2 + c2, . . . , ẑn + cn}. Then h is weak∗

continuous and convex on BZ∗
j

and g = h ◦ r. Moreover, by the definition of g (and the

fact that r is weak∗-to-weak∗ continuous and linear) we have that g∗(z∗) ≤ h∗(r(z∗)) for all
z∗ ∈ BZ∗ . Now, by the assumption that Zj is an L1-predual (and Lemma 1) there exists a
y∗ ∈ BZ∗

j
such that

h∗(0) =
1

2
[h(y∗) + h(−y∗)].

Choose z∗ ∈ r−1(y∗); which is nonempty by the Hahn-Banach extension theorem. Then,

g∗(0) ≤ h∗(0) =
1

2
[h(y∗) + h(−y∗)] =

1

2
[g(z∗) + g(−z∗)] ≤ g∗(0).

Therefore,

f ∗(0)− ε = (f − ε)∗(0) ≤ g∗(0) =
1

2
[g(z∗) + g(−z∗)]

≤ 1

2
[f(z∗) + f(−z∗)] ≤ 1

2
max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗}.

That is, f ∗(0) ≤ 1
2
max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗}+ ε; which completes the proof. k��

Before we can introduce another class of rich families we require the following lemma which
is a Banach space version of [10, Theorem 2.10].
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Lemma 2 Let Y be a closed separable linear subspace of a Banach space X and suppose
that L ⊆ Ext(BX∗) is weak∗ Lindelöf. Then there exists a closed separable linear subspace Z
of X, containing Y , such that for any l∗ ∈ L and any x∗, y∗ ∈ BZ∗ if l∗|Z = 1

2
(x∗ + y∗) then

x∗|Y = y∗|Y .

Proof: Let B be a countable base for the topology on (BY ∗ , weak∗) consisting of closed
convex sets. Recall that such a base exists because (BY ∗ , weak∗) is compact, by the Banach-
Alaoglu Theorem, and (BY ∗ , weak∗) is metrizable, since Y is separable. Let:

(i) F := {r−1(B) : B ∈ B}, where r : BX∗ → BY ∗ is the restriction mapping;

(ii) R := {1
2
(F1 + F2) : F1, F2 ∈ F and F1 ∩ F2 = ∅}.

By construction
⋃

R ⊆ BX∗ \Ext(BX∗) and so L∩
⋃

R = ∅. Furthermore, for each l∗ ∈ L
and F ∈ R there exists a y ∈ X such that

sup{ŷ(f ∗) : f ∗ ∈ F} < ŷ(l∗).

Therefore, since L is weak∗ Lindelöf for each F ∈ R there exists a countable subset CF in
X such that, for each l∗ ∈ L there exists a y ∈ CF such that sup{ŷ(f ∗) : f ∗ ∈ F} < ŷ(l∗). If
we set C :=

⋃
{CF : F ∈ R} and Z := span(C ∪X) then X ⊆ Z and Z is a closed separable

linear subspace of X.

It now only remains to verify that if l∗ ∈ L, x∗, y∗ ∈ BZ∗ and l∗|Z = 1
2
(x∗ + y∗) then

x∗|Y = y∗|Y . So, in order to obtain a contradiction, suppose that for some l∗ ∈ L and x∗,
y∗ ∈ BZ∗ , l∗|Z = 1

2
(x∗ + y∗) but x∗|Y 6= y∗|Y . Then there exists B1, B2 ∈ B such that

x∗|Y ∈ B1 and y∗|Y ∈ B2 and B1 ∩ B2 = ∅. Set F1 := r−1(B1) and F2 := r−1(B2). Then
F1, F2 ∈ F and F1 ∩ F2 = ∅. Now, by the Hahn-Banach extension Theorem there exist
x∗1 ∈ BX∗ and y∗1 ∈ BX∗ such that x∗1|Z = x∗ and y∗1|Z = y∗. Moreover,

x∗1|Y = (x∗1|Z)|Y = x∗|Y ∈ B1 and y∗1|Y = (y∗1|Z)|Y = y∗|Y ∈ B2.

That is, x∗1 ∈ F1 and y∗1 ∈ F2. Therefore, 1
2
(x∗1 + y∗1) ∈ 1

2
(F1 + F2) =: F . Since F ∈ R, by

the construction there exists a y ∈ CF ⊆ C ⊆ Z such that sup{ŷ(f ∗) : f ∗ ∈ F} < ŷ(l∗). In
particular,

1

2
(x∗ + y∗)(y) = ŷ(

1

2
(x∗1 + y∗1)) < l∗(y) = (l∗|Z)(y).

However, this contradicts the fact that 1
2
(x∗ + y∗) = l∗|Z . k��

Theorem 2 Let X be a Banach space and let L ⊆ Ext(BX∗) be a weak∗ Lindelöf subset.
Then the set of all Z in SX such that {l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗) forms a rich family.

Proof: Let L denote the family of all closed separable linear subspaces Z of X such that
{l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗). We shall verify that L is a rich family of closed separable linear
subspaces of X. So first let us consider an arbitrary closed separable linear subspace Y of
X, with the aim of showing that there exists a subspace Z ∈ L such that Y ⊆ Z. We begin
by inductively applying Lemma 2 to obtain an increasing sequence (Zn : n ∈ N) of closed
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separable linear subspaces of X such that: Y ⊆ Z1 and for any l∗ ∈ L and any x∗, y∗ ∈ BZ∗
n+1

if l∗|Zn+1 = 1
2
(x∗ + y∗) then x∗|Zn = y∗|Zn .

We now claim that if Z :=
⋃

n∈N Zn then l∗|Z ∈ Ext(BZ∗) for each l∗ ∈ L. To this end,
suppose that l∗ ∈ L and l∗|Z = 1

2
(x∗ + y∗) for some x∗, y∗ ∈ BZ∗ . Then for each n ∈ N

l∗|Zn+1 = (l∗|Z)|Zn+1 =
1

2
(x∗ + y∗)|Zn+1 =

1

2
(x∗|Zn+1 + y∗|Zn+1)

and x∗|Zn+1 , y
∗|Zn+1 ∈ BZ∗

n+1
Therefore, by construction x∗|Zn = y∗|Zn . Now since

⋃
n∈N Zn

is dense in Z and both x∗ and y∗ are continuous we may deduce that x∗ = y∗; which in turn
implies that l∗|Z ∈ Ext(BZ∗). This shows that Y ⊆ Z and Z ∈ L .

To complete this proof we must verify that for each increasing sequence of closed separable
subspaces (Zn : n ∈ N) in L ,

⋃
n∈N Zn ∈ L . This however, follows easily from the definition

of the family L . k��
Let X be a normed linear space. Then we say that an element x∗ ∈ BX∗ is weak∗ exposed
if there exists an element x ∈ X such that y∗(x) < x∗(x) for all y∗ ∈ BX∗ \ {x∗}. It is
not difficult to show that if Exp(BX∗) denotes the set of all weak∗ exposed points of BX∗

then Exp(BX∗) ⊆ Ext(BX∗). However, if X is a separable L1-predual then the relationship
between Exp(BX∗) and Ext(BX∗) is much closer.

Lemma 3 [12, Lemma 3.3(b)] If X is a separable L1-predual, then Exp(BX∗) = Ext(BX∗).

Let us also pause for a moment to recall that if B is any boundary of a Banach space X
then

Exp(BX∗) ⊆ B ∩ Ext(BX∗) ⊆ Ext(BX∗) ⊆ B
weak∗

.

The fact that Ext(BX∗) ⊆ B
weak∗

follows from Milman’s theorem, [9, page 8] and the fact
that BX∗ = coweak∗(B); which in turn follows from a separation argument. Let us also take
this opportunity to observe that if BX denotes the closed unit ball in X then BX is closed
in the σ(X, B) topology for any boundary B of X. Finally, let us end this section with one
more simple observation that will turn out to be useful in our later endeavours.

Proposition 2 Suppose that Y is a linear subspace of a Banach space (X, ‖ · ‖) and B is
any boundary for X. Then for each e∗ ∈ Exp(BY ∗) there exists b∗ ∈ B such that e∗ = b∗|Y .

Proof: Suppose that e∗ ∈ Exp(BY ∗) then there exists an x ∈ Y such that y∗(x) < e∗(x) for
each y∗ ∈ BY ∗ \ {e∗}. By the fact that B is a boundary of (X, ‖ · ‖) there exists a b∗ ∈ B
such that b∗(x) = ‖x‖ 6= 0. Then for any y∗ ∈ BY ∗ we have

y∗(x) ≤ |y∗(x)| ≤ ‖y∗‖‖x‖ ≤ ‖x‖ = b∗(x) = (b∗|Y )(x).

In particular, e∗(x) ≤ b∗|Y (x). Since b∗|Y ∈ BY ∗ and y∗(x) < e∗(x) for all y∗ ∈ BY ∗ \ {e∗},
it must be the case that e∗ = b∗|Y . k��
This ends our preliminary section.
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3 The Main Results

Theorem 3 Let B be any boundary for a Banach space X that is an L1-predual and suppose

that {xn : n ∈ N} ⊆ X, then {xn : n ∈ N}
σ(X,B)

⊆ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

.

Proof: In order to obtain a contradiction let us suppose that

{xn : n ∈ N}
σ(X,B)

6⊆ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

.

Choose x ∈ {xn : n ∈ N}
σ(X,B)

\ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

. Then there exists a finite set
{e∗1, e∗2, . . . , e∗m} ⊆ Ext(BX∗) and ε > 0 so that

{y ∈ X : |e∗k(x)− e∗k(y)| < ε for all 1 ≤ k ≤ m} ∩ {xn : n ∈ N} = ∅.

Let Y := span({xn : n ∈ N}∪{x}), let F1 be any rich family of L1-preduals; whose existence
is guaranteed by Theorem 1, and let F2 be any rich family such that for every Z ∈ F2 and
every 1 ≤ k ≤ m, e∗k|Z ∈ Ext(BZ∗); whose existence is guaranteed by Theorem 2. Next, let
us choose Z ∈ F1 ∩ F2 so that Y ⊆ Z. Recall that this is possible because, by Proposition
1, F1 ∩ F2 is a rich family. Since Z is a separable L1-predual we have by Lemma 3 that
e∗k|Z ∈ Exp(BZ∗) for each 1 ≤ k ≤ m. Now, by Proposition 2 for each 1 ≤ k ≤ m there
exists a b∗k ∈ B such that e∗k|Z = b∗k|Z . Therefore,

|b∗k(x)− b∗k(xj)| = |(b∗k|Z)(x)− (b∗k|Z)(xj)| = |(e∗k|Z)(x)− (e∗k|Z)(xj)| = |e∗k(x)− e∗k)(xj)|.

for all j ∈ N and all 1 ≤ k ≤ m. Thus,

{y ∈ X : |b∗k(x)− b∗k(y)| < ε for all 1 ≤ k ≤ m} ∩ {xn : n ∈ N} = ∅.

This contradicts the fact that x ∈ {xn : n ∈ N}
σ(X,B)

; which completes the proof. k��
Corollary 1 [12, Theorem 1.1(a)] Let B be any boundary for a Banach space X that is an
L1-predual. Then every relatively countably σ(X, B)-compact subset is relatively countably
σ(X, Ext(BX∗))-compact. In particular, every norm bounded, relatively countably σ(X, B)-
compact subset is relatively weakly compact.

Proof: Suppose that a nonempty set C ⊆ X is relatively countably σ(X, B)-compact. Let
{cn : n ∈ N} be any sequence in C then by Theorem 3

∅ 6=
⋂
n∈N

{ck : k ≥ n}
σ(X,B)

⊆
⋂
n∈N

{ck : k ≥ n}
σ(X,Ext(BX∗ ))

Hence C is relatively countably σ(X, Ext(BX∗))-compact. In the case when C is also norm
bounded the result follows from [5]. k��
Recall that a network for a topological space X is a family N of subsets of X such that
for any point x ∈ X and any open neighbourhood U of x there is an N ∈ N such that
x ∈ N ⊆ U , and a topological space X is said to be ℵ0-monolithic if the closure of every
countable set has a countable network.

The next Corollary generalises [8, Theorem 2.2].
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Corollary 2 Let B be any boundary for a Banach space X that is an L1-predual and sup-

pose that {xn : n ∈ N} ⊆ X. Then {xn : n ∈ N}
σ(X,B)

is norm separable whenever X is

ℵ0-monolithic in the σ(X, Ext(BX∗)) topology. In particular, {xn : n ∈ N}
σ(X,B)

is norm
separable whenever Ext(BX∗) is weak∗ Lindelöf.

Proof: This follows directly from Theorem 3 and [8, Theorem 2.6]; which states that if
M ⊆ X has a countable network with respect to the σ(X, Ext(BX∗)) topology then M is
separable in (X, ‖·‖). The last claim follows from [8, Theorem 2.14] where it is shown that if
Ext(BX∗) is weak∗ Lindelöf then X is ℵ0-monolithic in the σ(X, Ext(BX∗)) topology. k��
In [8] many conditions are given under which σ(X, Ext(BX∗)) is ℵ0-monolithic.

To demonstrate how this last theorem may be applied we shall present some sample appli-
cations.

4 Applications

Our first application is to metrizability of compact convex sets. If K is a compact convex set
in a real locally convex space, let A(K) stand for the space of all affine continuous functions
on K.

Proposition 3 Let K be a Choquet simplex in a separated locally convex space (over R)
such that every regular Borel probability measure carried on Ext(K) is atomic. Then K is
metrizable if, and only if, the space (BA(K), σ(A(K), B)) is separable, for some boundary B
of (A(K), ‖ · ‖∞).

Proof: This follows directly from Theorem 3 and [8, Theorem 2.19]. k��
We remark that there exists a non-metrizable Choquet simplex K and a boundary B of
(A(K), ‖ · ‖∞) such that (BA(K), σ(A(K), B)) is separable. (It is shown in [12, Section 4]
that the construction of [8, Example 2.10] yields the required example.)

Our final few results concern automatic continuity. In particular, the next result improves
[11, Theorem 6].

Proposition 4 Let B be any boundary for a Banach space X that is an L1-predual and
suppose that A is a a separable Baire space. If X is ℵ0-monolithic in the σ(X, Ext(BX∗))
topology then for each continuous mapping f : A → (X, σ(X, B)) there exists a dense subset
D of A such that f is continuous with respect to the norm topology on X at each point of D.

Proof: Fix ε > 0 and consider the open set:

Oε :=
⋃
{U ⊆ A : U is open and ‖ · ‖ − diam[f(U)] ≤ 2ε}.

We shall show that Oε is dense in A. To this end, let W be a nonempty open subset of A
and let {an : n ∈ N} be a countable dense subset of W ). Then by continuity

f(W ) ⊆ {f(an) : n ∈ N}
σ(X,B)

;
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which is norm separable by Corollary 2. Therefore there exists a countable set {xn : n ∈ N}
in X such that f(W ) ⊆

⋃
n∈N(xn + εBX). For each n ∈ N, let Cn := f−1(xn + εBX). Since

each xn + εBX is closed in the σ(X, B) topology each set Cn is closed in A and moreover,
W ⊆

⋃
n∈N Cn. Since W is of the second Baire category in A there exist a nonempty open

set U ⊆ W and a k ∈ N such that U ⊆ Ck. Then U ⊆ Oε ∩W and Oε is indeed dense in A.
Hence f is ‖ · ‖-continuous at each point of

⋂
n∈N O1/n. k��

Theorem 4 Suppose that A is a topological space with countable tightness that possesses
a rich family F of Baire subspaces and suppose that X is an L1-predual. Then for any
boundary B of X and any continuous function f : A → (X, σ(X, B)) there exists a dense
subset D of A such that f is continuous with respect to the norm topology on X at each point
of D provided X is ℵ0-monolithic in the σ(X, Ext(BX∗)) topology.

Proof: In order to obtain a contradiction let us suppose that f does not have a dense set of
points of continuity with respect to the norm topology on X. Since A is a Baire space (by
[7, Theorem 3.3]), this implies that for some ε > 0 the open set:

Oε :=
⋃
{U ⊆ A : U is open and ‖ · ‖-diam[f(U)] ≤ 2ε}

is not dense in A. That is, there exists a nonempty open subset W of A such that W∩Oε = ∅.
For each x ∈ A, let Fx := {y ∈ A : ‖f(y) − f(x)‖ > ε}. Then x ∈ Fx for each x ∈ W .
Moreover, since A has countable tightness, for each x ∈ W , there exists a countable subset
Cx of Fx such that x ∈ Cx.

Next, we inductively define an increasing sequence of separable subspaces (Fn : n ∈ N) of A
and countable sets (Dn : n ∈ N) in A such that:

(i) W ∩ F1 6= ∅;

(ii)
⋃
{Cx : x ∈ Dn ∩W} ∪Fn ⊆ Fn+1 ∈ F for all n ∈ N, where Dn is any countable dense

subset of Fn.

Note that since the family F is rich this construction is possible.

Let F :=
⋃

n∈N Fn and D :=
⋃

n∈N Dn. Then D = F ∈ F and ‖ · ‖-diam[f(U)] ≥ ε for every
nonempty open subset U of F ∩ W . Therefore, f |F has no points of continuity in F ∩ W
with respect to the ‖ · ‖-topology. This however, contradicts Proposition 4. k��
Our final result improves [7, Theorem 4.7].

Corollary 3 Suppose that A is a topological space with countable tightness that possesses a
rich family of Baire subspaces and suppose that K is a compact Hausdorff space. Then for
any boundary of (C(K), ‖ · ‖∞) and any continuous function f : A → (C(K), σ(C(K), B))
there exists a dense subset D of A such that f is continuous with respect to the ‖·‖∞-topology
at each point of D.
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