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1 Introduction

A triple (G, ·, τ) is called a semitopological group (topological group) if (G, ·) is a group, (G, τ) is a
topological space and the multiplication operation “·” is separately continuous on G × G (jointly
continuous on G×G and the inversion mapping, g 7→ g−1, is continuous on G).

Recall that a function f : X × Y → Z that maps from a product of topological spaces X and Y
into a topological space Z is said to be jointly continuous at a point (x, y) ∈ X × Y if for each
neighbourhood W of f(x, y) there exists a pair of neighbourhoods U of x and V of y such that
f(U × V ) ⊆ W . If f is jointly continuous at each point of X × Y then we say that f is jointly
continuous on X × Y . A related, but weaker notion of continuity is the following: A function
g : X × Y → Z that maps from a product of topological spaces X and Y into a topological space
Z is said to be separately continuous on X × Y if for each x0 ∈ X and y0 ∈ Y the functions
y 7→ g(x0, y) and x 7→ g(x, y0) are both continuous on Y and X respectively.

Let us also take this opportunity, just to avoid any possible confusion later, to define what we mean
by a regular topological space and by a Baire topological space. We will say that a topological space
(X, τ) is a regular topological space if for every closed subset K of X and for every point x ∈ X \K,
there exist disjoint open sets U and V of X such that x ∈ U and K ⊆ V (Note: such spaces may
not be T1) and we shall say that a topological space (X, τ) is a Baire space if the intersection of
any countable family of dense open sets is again dense in X.

The purpose of this paper is to give an up-to-date account of the following question:
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Under what additional topological conditions on (G, τ) is a semitopological group (G, ·, τ) a topo-
logical group?

A very thorough and well-written account of this question was recently given in [42] and also in [4].
However, since these articles/books went to print some further advances have been made. In this
note we will present some of these advances.

As this article is not targeted at experts in this area, we will start by giving some simple examples
of semitopological groups, some of which will turn out to be topological groups.

Example 1. (R,+, τS), where τS (the Sorgenfrey topology) is the topology on R generated by the
sets {[a, b) : a, b ∈ R and a < b}. Note that in this example (x, y) 7→ x+ y is continuous, (R, τS) is
a Baire space but inversion is not continuous, i.e., x 7→ (−x) is not continuous.

The canonical construction of a semitopological group is given next.

Example 2. Let (X, τ) be a nonempty topological space and let G be a nonempty subset of XX . If
(G, ◦) is a group (where “◦” denotes the binary relation of function composition) and τp denotes the
topology on XX of pointwise convergence on X, then (G, ◦, τp) is a semitopological group, provided
the members of G are continuous functions.

Unsurprisingly, not all the semitopological groups described in Example 2 are topological groups.

Example 3. Let G denote the set of all homeomorphisms on (R, τS). From Example 2 we see that
(G, ◦, τp) is a semitopological group. However, (G, ◦, τp) is not a topological group.

To see this, define gn : R → R by, gn(x) := [1 + 1/(n + 1)]x, an := 1 + 1/(2n) and

fn(x) :=







x if x 6∈ [an, an + 1/(2n)) ∪ [n, n+ 1/(2n))
n+ (x− an) if x ∈ [an, an + 1/(2n))
an + (x− n) if x ∈ [n, n+ 1/(2n)).

Then both (fn : n ∈ N) and (gn : n ∈ N) converge pointwise to id - the identity map, however,

lim
n→∞

(fn ◦ gn)(1) = lim
n→∞

fn(gn(1)) = ∞ 6= (id ◦ id)(1) = id(1) = 1.

This shows that the multiplication operation is not continuous.

On the other hand, sometimes Example 2 does give rise to topological groups.

Example 4. Let (M,d) be a metric space and let G be the set of all isometries on (M,d). Then
(G, ◦, τp) is a topological group.

Proof. Firstly, let us recall that a local sub-base for the topology τp at an element f ∈ G consists
of all sets of the form: W (f, x, ε) := {g ∈ G : d(f(x), g(x)) < ε} where x ∈ M and ε > 0. Using
this we shall show that “◦” is continuous on G ×G. To this end, let (f, g) ∈ G ×G and suppose
that x ∈ M and ε > 0 are given. We claim that: W (f, g(x), ε/2) ◦W (g, x, ε/2) ⊆ W (f ◦ g, x, ε);
which is sufficient to show that “◦” is continuous at (f, g). To prove the claim, suppose that
f ′ ∈ W (f, g(x), ε/2) and g′ ∈ W (g, x, ε/2). Then,

0 ≤ d((f ′ ◦ g′)(x), (f ◦ g)(x))

≤ d((f ′ ◦ g′)(x), (f ′ ◦ g)(x)) + d((f ′ ◦ g)(x), (f ◦ g)(x))

= d(g′(x), g(x)) + d(f ′(g(x)), f(g(x))) < ε/2 + ε/2 = ε.
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Next we need to show that inversion is continuous. To this end, let f ∈ G and suppose that x ∈ M
and ε > 0 are given. We claim that: [W (f, f−1(x), ε)]−1 ⊆ W (f−1, x, ε); which is sufficient to show
that inversion is continuous at f . To prove the claim, suppose that f ′ ∈ W (f, f−1(x), ε). Then,

0 ≤ d((f ′)−1(x), f−1(x)) = d(x, f ′(f−1(x)) = d(f(f−1(x)), f ′(f−1(x))) < ε.

Thus, (G, ◦, τp) is a topological group.

Remarks 1. It is not hard to show that if (M,d) is a compact metric space, then (G, ◦, τp) is in
fact a compact topological group (and hence an amenable group).

Semitopological groups also naturally arise in the study of group actions (topological dynamics).

Example 5. Let (G, ·) be a group and let (X, τ) be a topological space. Further, let π : G×X → X
be a mapping (i.e., a group action) such that:

(i) π(e, x) = x for all x ∈ X, where e denotes the identity element of G;

(ii) π(g · h, x) = π(g, π(h, x)) for all g, h ∈ G and x ∈ X;

(iii) for each g ∈ G, the mapping, x 7→ π(g, x), is a continuous function on X.

Then (G,X) is called a flow on X. If we consider the mapping ρ : G → XX defined by,

ρ(g)(x) := π(g, x) for all x ∈ X,

then ρ is a group homomorphism and (ρ(G), ◦, τp) is a semitopological group, see Example 2.

For further information on the mapping ρ, the semitopological group (ρ(G), ◦, τp) and the amenabil-
ity of (ρ(G), ◦, τp) relative to the amenability of the group G, see [10,31,39].

Examples 1 and 3 show that, in general, semitopological groups may fail to be topological groups. In
fact there are even examples of completely regular pseudo-compact semitopological groups that are
not topological groups, see [21,42]. Hence, it is perhaps natural to ask what additional properties
of a semitopological group (G, ·, τ) are required in order that it is a topological group. In this
direction one could ask “what additional topological conditions on (G, τ) are sufficient to ensure
that a semitopological group (G, ·, τ) is a topological group.” Some answers to this question are well-
known. For example, in [15,16] it is shown that if (G, ·, τ) is a semitopological group and (G, τ) is a
locally compact Hausdorff space, then (G, ·, τ) is a topological group. However, results of this type
go back much earlier than this, to at least 1936, (see [28]), and possibly even earlier. Perhaps the
best result of this type, to-date, is the result of A. Bouziad in [8], that every semitopological group
(G, ·, τ) for which (G, τ) is Čech-complete, is a topological group. Having said that, E. Reznichenko,
has just recently (see [38] and also [42]) made another significant advancement.

In his unpublished manuscript [38] Reznichenko showed that many paratopological groups (i.e., a
semitopological group whose multiplication is jointly continuous) are in fact topological groups. It
is the aim of this paper to extend Reznichenko’s approach, using ∆-Baire spaces, to situations where
the multiplication operation is not assumed to be jointly continuous (perhaps only quasicontinuous
at a single point). The benefit of this is that there are many results in the literature of the type:
“Suppose that f : X × Y → Z is a separately continuous function and suppose also that X, Y and
Z satisfy some topological conditions, then f has a point of quasicontinuity.” By using these results
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we are able to obtain results for semitopological groups rather than just paratopological groups. As
this has been a much studied area of research it would be remiss of us not to mention some of the
many contributions to this area of research, see [1–9,11,13,15,16,19–21,25–29,32–35,37,40,42–44],
just to name a small selection of them.

We shall proceed from here by first recalling the results of Reznichenko from [38]. We will then
show how to extend these results to semitopological groups where the multiplication operation
is only “feebly” continuous. After that we will mention some of the existing results concerning
when the multiplication operation on a semitopological group is quasicontinuous (and hence feebly
continuous) and then finally, we give some examples of ∆-Baire spaces.

Let (X, τ) be a topological space. Following E. Reznichenko, [38] we shall say that a subset
W ⊆ X ×X is separately open, in the second variable, if for each x ∈ X, {z ∈ X : (x, z) ∈ W} ∈ τ
and we shall say that a topological space (X, τ) is a ∆-Baire space if for each separately open, in
the second variable set W , containing ∆X := {(x, y) ∈ X ×X : x = y}, there exists a nonempty

open subset U of X such that U × U ⊆ W
τ×τ

.

Our first task is to show that there are many ∆-Baire spaces.

Proposition 1 ([38]). Every Baire metric space (X, d) is a ∆-Baire space.

Proof. Let (X, d) be a Baire metric space and let W be a separately open, in the second variable
set, that contains ∆X . For each n ∈ N, let

Fn := {x ∈ X : {x} ×B(x; 1/n) ⊆ W}.

Then, since W is a separately open, in the second variable set, containing ∆X , X =
⋃

n∈N Fn.
Now, because (X, d) is a Baire space there exists a k ∈ N such that int(Fk) 6= ∅. Next, let us
choose x0 ∈ int(Fk) and 0 < r < 1/(2k) such that B(x0; r) ⊆ int(Fk). Let U := B(x0; r) and let
x ∈ U ∩ Fk. Then U = B(x0; r) ⊆ B(x; 1/k) and so

{x} × U = {x} ×B(x0; r) ⊆ {x} ×B(x; 1/k) ⊆ W.

Since U ∩ Fk is dense in U we have that U × U ⊆ W
τ×τ

; which shows that (X, d) is a ∆-Baire
space.

E. Reznichenko’s interest, and indeed our interest in ∆-Baire spaces, follows from the next lemma.

Lemma 1 ([38]). Suppose that (G, ·, τ) is a semitopological group, W is an open neighbourhood of
e and ϕ : G×G → G is defined by ϕ(h, g) := h−1 · g. If (G, τ) is a ∆-Baire space then there exists
a nonempty open subset U of G such that ϕ(U × U) = U−1 · U ⊆ W ·W .

Proof. Let W be an open neighbourhood of e. Since (G, τ) is a ∆-Baire space and ϕ−1(W ) is
a separately open, in the second variable set, that contains ∆G, there exists a nonempty open

subset U of G such that U × U ⊆ ϕ−1(W )
τ×τ

. We claim that ϕ(U × U) = U−1 · U ⊆ W ·W . So
let us suppose, in order to obtain a contradiction, that there exists an (x, y) ∈ U × U such that
ϕ(x, y) = x−1 · y 6∈ W ·W (i.e., e 6∈ x ·W ·W · y−1). From this it follows that there exists an open
neighbourhood N of e such that N ∩(x ·W ·W ·y−1) = ∅, or equivalently, (x−1 ·N ·y)∩W ·W = ∅.
This in turn, implies that (W−1 · x−1 ·N · y) ∩W = ∅. Thus, we get that:

ϕ(x ·W ×N · y) ∩W =
[

(x ·W )−1 · (N · y)
]

∩W = (W−1 · x−1 ·N · y) ∩W = ∅;

which is impossible since, (x ·W )×(N ·y)∩(U×U)∩ϕ−1(W ) 6= ∅. Hence, ϕ(U×U) ⊆ W ·W .
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Remarks 2 ([38,42]). It follows from the previous lemma that if (G, ·, τ) is a paratopological group
and (G, τ) is a regular ∆-Baire space, then (G, ·, τ) is a topological group.

In order to extend this result we need to weaken the hypothesis on the multiplication operation to
something weaker than joint continuity.

If f : (X, τ) → (Y, τ ′) is a mapping acting between topological spaces (X, τ) and (Y, τ ′) then we
say that f is feebly continuous on X if for each open subset V of Y such that V ∩ f(X) 6= ∅,
int[f−1(V )] 6= ∅, [11, 17] and we say that f is quasicontinuous at a point x0 ∈ X if for every
neighbourhood U of x0 and every neighbourhood W of f(x0) there exists a nonempty open subset
V of U such that f(V ) ⊆ W , [18].

Proposition 2 ([25,26]). If (G, ·, τ) is a semitopological group and the multiplication operation is
feebly continuous on G×G then for each neighbourhood N of e, there exists an open neighbourhood
V of e, and an element n ∈ N , such that V · V · n ⊆ N .

Proof. To see this, note that by feeble continuity there exist nonempty open subsets U ′ and V ′

such that V ′ · U ′ ⊆ N . Choose v ∈ V ′ and let V := V ′ · (v−1) and U := v · U ′. Note that V is
an open neighbourhood of e and V · U = V ′ · U ′ ⊆ N . Choose n ∈ U and note that since e ∈ V ,
n ∈ N . By possibly making V smaller we can assume that V · n ⊆ U . Then V · V · n ⊆ N .

Theorem 1. Suppose that (G, ·, τ) is a semitopological group and (G, τ) is a regular ∆-Baire space.
If the multiplication operation on G is feebly continuous then (G, ·, τ) is a topological group.

Proof. Given that (G, ·, τ) is a semitopological group and (G, τ) is regular, to prove that (G, ·, τ)
is a topological group it is sufficient to show that for each open neighbourhood W of e there exists
a nonempty open subset U of G such that U−1 · U ⊆ W .

Let ϕ : G×G → G be defined by ϕ(h, g) := h−1 · g and let W be an arbitrary open neighbourhood
of e. Since (G, τ) is a ∆-Baire space and ϕ−1(W ) is a separately open, in the second variable set,

that contains ∆G, there exists a nonempty open set U such that U × U ⊆ ϕ−1(W )
τ×τ

. We claim
that ϕ(U × U) = U−1 · U ⊆ W . So let us suppose, in order to obtain a contradiction, that there
exists an (x, y) ∈ U ×U such that ϕ(x, y) = x−1 ·y 6∈ W (i.e., e 6∈ x ·W ·y−1). Then we may choose
an open neighbourhood N of e such that

(i) N · y ⊆ U and

(ii) N ∩ (x ·W · y−1) = ∅, or equivalently, (x−1 ·N · y) ∩W = ∅.

Now, since multiplication is feebly continuous on G × G there exists, by Proposition 2, an open
neighbourhood V of e and an element n ∈ N such that V · V · n ⊆ N . Therefore, V · V · n ⊆ N .
By Lemma 1, there exists an open neighbourhood A of e such that A−1 · A ⊆ V · V . Therefore,
A−1 ·A · n ⊆ N and so by (ii) we have that

∅ = x−1 · (A−1 · A · n) · y ∩W = (A · x)−1 ·A · (n · y) ∩W.

Let y′ := n · y. Then by (i), y′ ∈ U and ϕ(A ·x×A · y′)∩W = ∅. However, this is impossible since

(A · x×A · y′) ∩ (U × U) ∩ ϕ−1(W ) 6= ∅.

Hence, ϕ(U × U) = U−1 · U ⊆ W .
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Remarks 3. The above theorem generalises [25, Theorem 1]. However, the main benefit of the
previous theorem is that its proof is much simpler than the corresponding proofs in [25,26].

In order to fully exploit Theorem 1 we need to be able to find some natural conditions on (G, τ) that
imply that the separately continuous multiplication operation on a semitopological group (G, ·, τ)
is feebly continuous.

Suppose that (X, τ), (Y, τ ′) and (Z, τ ′′) are topological spaces and f : X × Y → Z is a separately
continuous function. In the literature there are many results of the type where X is a Baire space
(with possibly some additional completeness property), Y contains a q-point, or some generalisation
of a q-point, and Z is a regular space, that conclude that there is at least one point where f is
quasicontinuous, see [6, 7, 13, 19, 23–25, 27, 33–35]. Versions of this type of result go right back to
H. Hahn. However, it is not the purpose of this current paper to delve deeply into the question
of when such separately continuous functions are feebly continuous. The interested reader should
consult the papers mentioned above.

On the other hand, it would be nice to give at least one concrete, self contained, example where
Theorem 1 can be applied to a semitopological group. So we will give a theorem, due to Y. Mibu,
which shows that under suitable circumstances a separately continuous function is quasicontinuous.
Note that the proof given below is not the same as the one given in [23] where the space Z was
assumed to be metrisable.

Lemma 2. Suppose that (X, τ), (Y, τ ′′) and (Z, τ ′′′) are topological spaces and f : X × Y → Z is
a separately continuous mapping. If (X, τ) is a Baire space, (Z, τ ′′′) is regular and y0 ∈ Y has a
countable local base, then f is quasicontinuous at each point of X × {y0}.

Proof. Let x0 ∈ X, W be an open neighbourhood of f(x0, y0) and U be an open neighbourhood
of x0. Let (Vn : n ∈ N) be a countable local base for the topology at y0. Since, x 7→ f(x, y0) is
continuous and f(x0, y0) ∈ W , we may assume, by possibly making U smaller that f(U×{y0}) ⊆ W .
For each n ∈ N, let Fn := {x ∈ U : f({x} × Vn) ⊆ W}. Then U =

⋃

n∈N Fn. Now, because X is
a Baire space there exists a k ∈ N such that int(Fk) ∩ U 6= ∅. We claim that if U ′ := int(Fk) ∩ U
and V ′ := Vk then f(U ′ × V ′) ⊆ W . To see this, consider (x, y) ∈ U ′ × V ′ such that f(x, y) 6∈ W .
Since f is separately continuous there exists an open neighbourhood N of x, contained in U ′ such
that f(N × {y}) ⊆ Z \W . However, this is impossible since N ∩ Fk 6= ∅ and

f(N ∩ Fk × {y}) ⊆ f(N ∩ Fk × Vk) ⊆ f(Fk × Vk) ⊆ W.

Therefore, it must be the case that f(U ′ ×V ′) ⊆ W . Finally, since Z is regular, this is sufficient to
show that f is quasicontinuous at (x0, y0).

Corollary 1. Let (G, ·, τ) be a semitopological group. If (G, τ) is: (i) a first countable Baire space
and (ii) a regular ∆-Baire space, then (G, ·, τ) is a topological group. In particular, if (G, τ) is a
metrisable Baire space, then (G, ·, τ) is a topological group.

In the last part of this paper we will give some examples of ∆-Baire spaces. The most economical
way of doing this is to use topological games, [12,36,41].

The game that we shall consider involves two players which we will call α and β. The “field/court”
that the game is played on is a fixed topological space (X, τ). The name of the game is the GR-game.
After naming the game we need to describe how to “play” the GR-game. The player labelled β
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starts the game every time (life is not always fair). For his/her first move the player β must select
a pair (B1, B

∗

1) consisting of nonempty open subsets B1 and B∗

1 of X. Next, α gets a turn. For α’s
first move he/she must select a nonempty open subset A1 of B1. This ends the first round of the
game. In the second round, β goes first again and selects a pair (B2, B

∗

2) consisting of nonempty
open subsets B2 and B∗

2 of A1. Player α then gets to respond by choosing a nonempty open subset
A2 of B2. This ends the second round of the game. In general, after α and β have played the first
n-rounds of the GR-game, β will have selected pairs (B1, B

∗

1), (B2, B
∗

2), . . . , (Bn, B
∗

n) consisting of
nonempty open sets B1, B2, . . . , Bn and B∗

1 , B
∗

2 , . . . , B
∗

n of X and α will have selected nonempty
open subsets A1, A2, . . . , An such that

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.

and B∗

k+1
⊆ Ak for all 1 ≤ k < n.

At the start of the (n+1)-round of the game, β goes first (again!) and selects a pair (Bn+1, B
∗

n+1)
consisting of nonempty open subsets Bn+1 and B∗

n+1 of An. As with the previous n-rounds,
the player α gets to respond to this move by selecting a nonempty open subset An+1 of Bn+1.
Continuing this procedure indefinitely (i.e., continuing on forever) the players α and β produce an
infinite sequence (An, (Bn, B

∗

n))n∈N called a play of the GR-game. A partial play
(

(Ak, (Bk, B
∗

k)) :
1 ≤ k ≤ n

)

of the GR-game consists of the first n-moves of the GR-game.

As with any game, we need to specify a rule to determine who wins (otherwise, it is a very boring
game). We shall declare that α wins a play (An, (Bn, B

∗

n))n∈N of the GR-game if:

(
⋃

n∈NB
∗
n

)

∩
⋂

n∈NBn 6= ∅.

If α does not win a play of the GR-game then we declare that β wins that play of the GR-game. So
every play is won by either α or β and no play is won by both players.

Note that if α wins a play (An, (Bn, B
∗

n))n∈N of the GR-game then
⋂

n∈NAn 6= ∅.

Continuing further into game theory we need to introduce the notion of a strategy. By a strategy t
for the player β we mean a ‘rule’ that specifies each move of the player β in every possible situation.
More precisely, a strategy t := (tn : n ∈ N) for β is an inductively defined sequence of τ × τ -valued
functions. The domain of t1 is the sequence of length zero, denoted by ∅. That is, Dom(t1) := {∅}
and t1(∅) ∈ (τ \ {∅})× (τ \ {∅}). If t1, t2, . . . , tk have been defined then the domain of tk+1 is:

{(A1, A2, . . . , Ak) ∈ (τ \ {∅})k : (A1, A2, . . . , Ak−1) ∈ Dom(tk)

and Ak ⊆ Bk, where (Bk, B
∗

k) := tk(A1, A2, . . . , Ak−1)}.

For each (A1, A2, . . . , Ak) ∈ Dom(tk+1), tk+1(A1, A2, . . . , Ak) := (Bk+1, B
∗

k+1
) ∈ (τ\{∅})×(τ\{∅})

is defined so that Bk+1 and B∗

k+1
are subsets of Ak.

A partial t-play is a finite sequence (A1, A2, . . . , An−1) such that (A1, A2, . . . , An−1) ∈ Dom(tn).
A t-play is an infinite sequence (An)n∈N such that for each n ∈ N, (A1, A2, . . . , An−1) is a partial
t-play.

A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if each play of the
form: (An, tn(A1, . . . , An−1))n∈N is won by β. We will call a topological space (X, τ) a Reznichenko
space if the player β does not have a winning strategy in the GR-game played on X.

In addition to the GR-game we will also need to consider the following topological game.
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The Choquet game G played on a topological space (X, τ) is similar to the GR-game played on
(X, τ). In the Choquet game the two players α and β alternately choose nonempty open subsets:
the An’s by α and the Bn’s by β, in such a way that Bn+1 ⊆ An ⊆ Bn for all n ∈ N. The player α
is declared the winner of a play ((An, Bn))n∈N if

⋂

n∈NAn =
⋂

n∈NBn 6= ∅. Otherwise, the player
β is declared the winner. Strategies for the players α and β in this game are defined analogously
to those in the GR-game, see [12].

The significance of the Choquet game to this paper is revealed in the next theorem.

Theorem 2 ([14, 22, 30, 40, 41]). A topological space (X, τ) is a Baire space if, and only if, the
player β does not have a winning strategy in the Choquet game played on (X, τ).

It follows from Theorem 2 that every Reznichenko space is a Baire space since, if t := (tn : n ∈ N) is
a winning strategy for the player β in the Choquet game played on (X, τ) and we write B1 := t1(∅)
and Bn := tn(A1, . . . , An−1) for all n ≥ 2 then we can define a winning strategy t′ := (t′n : n ∈ N) for
the player β in the GR-game played on (X, τ) by, t′1(∅) := (B1, B1) and t′n(A1, . . . , An−1) := (Bn, Bn)
for all n ≥ 2. However, what is more important, for our current considerations, is the following
theorem.

Theorem 3 ([38]). Every Reznichenko space (X, τ) is a ∆-Baire space.

Proof. We shall start by introducing some notation. Let π1 : τ × τ → τ and π2 : τ × τ → τ be
defined by π1(A,B) := A and π2(A,B) := B. We will show that if (X, τ) is not a ∆-Baire space
then (X, τ) is not a Reznichenko space, (i.e., the player β has a winning strategy in the GR-game
played on X). Since (X, τ) is not a ∆-Baire space there exists a separately open, in the second

variable set W , containing ∆X , such that for each nonempty open subset U of X, U ×U 6⊆ W
τ×τ

.
We will use the set W to inductively define a winning strategy t := (tn : n ∈ N) for the player β in
the GR-game played on (X, τ).

Base Step: Define t1(∅) := (B1, B
∗

1), where B1 and B∗

1 are any nonempty open subsets of X such
that (B1 ×B∗

1) ∩W = ∅.

Now suppose that t1, t2, . . . , tn have been defined.

Inductive Step: Suppose that (A1, A2, . . . , An) is a partial t-play, i.e., (A1, A2, . . . , An−1) ∈

Dom(tn) and An is a nonempty open subset of π1(tn(A1, A2, . . . , An−1)). Since An × An 6⊆ W
τ×τ

there exist points x, y ∈ X such that (x, y) ∈ (An ×An) \W
τ×τ

. Then since W
τ×τ

is closed there
exist open neighbourhoods Bn+1 of x and B∗

n+1 of y (that are both contained in An) such that
(Bn+1 ×B∗

n+1) ∩W = ∅. Define tn+1(A1, A2, . . . , An) := (Bn+1, B
∗

n+1).

This completes the definition to t := (tn : n ∈ N).

We claim that t := (tn : n ∈ N) is a winning strategy for the player β in the GR-games played
on (X, τ). To this end, let (An : n ∈ N) be a t-play and let (Bn, B

∗

n) = tn(A,A2, . . . , An−1)

for all n ∈ N. Suppose, in order to obtain a contradiction, that
(
⋃

n∈NB
∗
n

)

∩
⋂

n∈NBn 6= ∅. Let

x ∈
(
⋃

n∈NB
∗
n

)

∩
⋂

n∈NBn and let Wx := {y ∈ X : (x, y) ∈ W}. Then, Wx is an open neighbourhood
of x and so Wx ∩

⋃

n∈NB∗

n 6= ∅. In particular, for some k ∈ N, Wx ∩ B∗

k 6= ∅. Let y ∈ Wx ∩ B∗

k.
Then (x, y) ∈ (Bk ×B∗

k) ∩W ; which contradicts the fact that, by the construction of the strategy
t, (Bk ×B∗

k) ∩W = ∅.

This shows that t is indeed a winning strategy for the player β, which in turn, shows that (X, τ) is
not a Reznichenko space.
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It is not hard to show that the Bouziad spaces considered in [25], the nearly strongly Baire spaces
considered in [26] and the (β,GΠ)-unfavourable spaces considered in [2] are all Reznichenko spaces.
In this way we see that Theorem 1 generalises many of the results contained in [2, 25,26].

In order to more easily establish whether a space (X, τ) is a Reznichenko space we need to consider
spaces where the player α has a strategy.

By a strategy s for the player α we mean a ‘rule’ that specifies each move of the player α in every
possible situation. More precisely, a strategy s := (sn : n ∈ N) for α is an inductively defined
sequence of (τ \ {∅})-valued functions. The domain of s1 is (τ \ {∅}) × (τ \ {∅}) and for each
(B1, B

∗

1) ∈ Dom(s1), s1((B1, B
∗

1)) is a nonempty open subset of B1. If s1, s2, . . . , sk have been
defined then the domain of sk+1 is:

{((B1, B
∗

1), . . . , (Bk+1, B
∗

k+1)) ∈ ((τ \ {∅})× (τ \ {∅}))k+1 : ((B1, B
∗

1), . . . , (Bk, B
∗

k)) ∈ Dom(sk)

and Bk+1 ∪B∗

k+1 ⊆ sk((B1, B
∗

1), . . . , (Bk, B
∗

k))}.

For each ((B1, B
∗

1), . . . , (Bk+1, B
∗

k+1
)) ∈ Dom(sk+1), sk+1((B1, B

∗

1), . . . , (Bk+1, B
∗

k+1
)) is a nonempty

open subset of Bk+1.

A partial s-play is a sequence ((B1, B
∗

1), . . . , (Bn, B
∗

n)) such that ((B1, B
∗

1), . . . , (Bn, B
∗

n)) ∈ Dom(sn).
An s-play is an infinite sequence ((Bn, B

∗

n))n∈N such that for each n ∈ N, ((B1, B
∗

1), . . . , (Bn, B
∗

n))
is a partial s-play.

A strategy s := (sn : n ∈ N) for the player α is called a winning strategy if each play of the
form: (sn((B1, B

∗

1), . . . , (Bn, B
∗

n)), (Bn, B
∗

n))n∈N is won by α.

We will say that a space (X, τ) is conditionally α-favourable if the player α in the GR-game played
on (X, τ) has a strategy s such that for every s-play

(

(Bn, B
∗

n) : n ∈ N
)

either,
⋂

n∈NBn = ∅ or
(
⋃

n∈NB
∗
n

)

∩
⋂

n∈NBn 6= ∅.

In order to simply the proof of our final theorem we will give two preliminary results concerning
strategies in the GR-game and Choquet game.

Proposition 3. Let t := (tn : n ∈ N) be a strategy for the player β in the GR-game played on
(X, τ) and let s := (sn : n ∈ N) be a strategy for the player α in the GR-game played on (X, τ).
Then there exists a strategy t′ := (t′n : n ∈ N) for the player β in the GR-game played on (X, τ)
such that, for every t′-play, (An : n ∈ N):

(i) (An : n ∈ N) is a t-play and

(ii)
(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1), . . .
)

is an s-play.

Proof. We shall start by introducing some notation. Let π1 : τ × τ → τ and π2 : τ × τ → τ be
defined by π1(A,B) := A and π2(A,B) := B. Suppose that t := (tn : n ∈ N) is a strategy for the
player β in the GR-game played on (X, τ) and that s := (sn : n ∈ N) is a strategy for the player α
in the GR-game played on (X, τ). We shall define the strategy t′ := (t′n : n ∈ N) inductively.

Base Step: Define t′1(∅) by π1(t
′

1(∅)) := s1(t1(∅)) and π2(t
′

1(∅)) := π2(t1(∅)). This makes sense
since

(

t1(∅)
)

is a partial s-play.

Now suppose that t′1, t
′

2, . . . , t
′

n have been defined such that:

(i) every partial t′-play of length (n− 1) is a partial t-play;
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(ii) for every partial t′-play (A1, A2, . . . , An−1),
(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1)
)

is a partial s-play.

(iii) π1(t
′

n(A1, A2, . . . , An−1)) := sn((t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1))) and
π2(t

′

n(A1, A2, . . . , An−1)) := π2(tn(A1, A2, . . . , An−1)).

Inductive Step: Suppose that (A1, A2, . . . , An) is a partial t
′-play. That is, An ∈ τ , (A1, A2, . . . , An−1)

is a partial t′-play and ∅ 6= An ⊆ π1(t
′

n(A1, A2, . . . , An−1)). By assumption (A1, A2, . . . , An−1) is a
partial t-play and

(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1)
)

is a partial s-play. Therefore,

An ⊆ π1(t
′

n(A1, A2, . . . , An−1)) = sn(t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1))

⊆ π1(tn(A1, A2, . . . , An−1)).

Hence, (A1, A2, . . . , An) is a partial t-play. Furthermore, if j ∈ {1, 2} then

πj(tn+1(A1, A2, . . . , An)) ⊆ An

⊆ π1(t
′

n(A1, A2, . . . , An−1))

= sn
(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1)
)

.

Therefore,
(

t1(∅), t2(A1), t3(A1, A2), . . . , tn+1(A1, A2, . . . , An)
)

is a partial s-play. We may now
define t′n+1(A1, A2, . . . , An) by,

π1(t
′

n+1(A1, A2, . . . , An)) := sn+1((t1(∅), t2(A1), t3(A1, A2), . . . , tn+1(A1, A2, . . . , An))) ⊆ An and
π2(t

′

n+1(A1, A2, . . . , An)) := π2(tn+1(A1, A2, . . . , An)) ⊆ An.

This completes the definition of t′. It is now easy to see, with this construction, that for every
t′-play (An : n ∈ N):

(i) (An : n ∈ N) is a t-play and

(ii)
(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1), . . .
)

is an s-play.

This completes the proof.

Proposition 4. Let t′ := (t′n : n ∈ N) be a strategy for the player β in the GR-game played on
(X, τ). Then there exists a strategy t′′ := (t′′n : n ∈ N) for the player β in the Choquet game G
played on (X, τ) such that every t′′-play is a t′-play.

Proof. We shall start by introducing some notation. Let π1 : τ × τ → τ and π2 : τ × τ → τ be
defined by π1(A,B) := A and π2(A,B) := B. Suppose that t′ := (t′n : n ∈ N) is a strategy for
the player β in the GR-game played on (X, τ). We shall define the strategy t′′ := (t′′n : n ∈ N)
inductively.

Base Step: Define t′′1(∅) := π1(t
′

1(∅)); which is a nonempty open subset of X.

Now suppose that t′′1, t
′′

2 , . . . , t
′′

n have been defined such that (i) every partial t′′-play of length n− 1
is a partial t′-play and (ii) t′′n(A1, A2, . . . , An−1) := π1(t

′

n(A1, A2, . . . , An−1)) for every partial t′-play
(A1, A2, . . . , An−1).

Inductive Step: Suppose that (A1, A2, . . . , An) is a partial t
′′-play. That is, An ∈ τ , (A1, A2, . . . , An−1)

is a partial t′′-play and ∅ 6= An ⊆ t′′n(A1, A2, . . . , An−1). By assumption (A1, A2, . . . , An−1) is a
partial t′-play and because

∅ 6= An ⊆ t′′n(A1, A2, . . . , An−1) = π1(t
′

n(A1, A2, . . . , An−1)),
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(A1, A2, . . . , An) is a partial t′-play. We may now define

t′′n+1(A1, A2, . . . , An) := π1(t
′

n+1(A1, A2, . . . , An)) ⊆ An.

This completes the definition of t′′. Furthermore, it is easy to see from this construction that every
t′′-play is a t′-play.

Theorem 4. Every conditionally α-favourable Baire space (X, τ) is a Reznichenko space (and
hence a ∆-Baire space).

Proof. Let t := (tn : n ∈ N) be a strategy for the player β in the GR-game played on (X, τ) and
let s := (sn : n ∈ N) be a strategy for the player α in the GR-game played on (X, τ) such that for

every s-play
(

(Bn, B
∗

n) : n ∈ N
)

either,
⋂

n∈NBn = ∅ or
(
⋃

n∈NB
∗
n

)

∩
⋂

n∈NBn 6= ∅. Since (X, τ) is
conditionally α-favourable such a strategy for α exists. We need to construct a t-play (An : n ∈ N)
in the GR-game, in which α wins.

By Proposition 3 there exists a strategy t′ := (t′n : n ∈ N) for the player β in the GR-game
played on (X, τ) such that for every t′-play (An : n ∈ N): (i) (An : n ∈ N) is a t-play and
(ii)

(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1), . . .
)

is an s-play. By Proposition 4 there
exists a strategy t′′ := (t′′n : n ∈ N) for the player β in the Choquet game played on (X, τ)
such that every t′′-play is a t′-play. Since (X, τ) is a Baire space, we have, by Theorem 2,
the existence of a t′′-play (An : n ∈ N) where α wins in the Choquet game played on (X, τ),
i.e., where

⋂

n∈NAn 6= ∅. Since every t′′-play is a t′-play we have that (An : n ∈ N) is a
t′-play. Furthermore, by the properties of the strategy t′, we have that (An : n ∈ N) is also
a t-play and

(

t1(∅), t2(A1), t3(A1, A2), . . . , tn(A1, A2, . . . , An−1), . . .
)

is an s-play. By the prop-
erties of the strategy s, and the fact that

⋂

n∈NAn 6= ∅, we must have that α wins the play
((An, tn(A1, A2, . . . , An−1)) : n ∈ N). Hence (An : n ∈ N) is a t-play where α-wins (in the GR-game
played on (X, τ)).

Remarks 4. It follows from Corollary 1 that the semitopological group (R,+, τS) considered in
Example 1 is not a ∆-Baire space (although it is a Baire space). Furthermore, it follows from
Theorem 4 that (R,+, τS) is not a conditionally α-favourable space either. On the other hand,
the semitopological group (G, ·, τ) given in [21] is pseudocompact and hence α-favourable in the
GR-game. Thus, this space is a Reznichenko space and hence a ∆-Baire space. Therefore, by
Theorem 1, the multiplication operation on (G, ·, τ) is not feebly continuous.
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