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Introduction

The purpose of this talk is twofold. This first is to celebrate

Petar’s contributions to analysis and topology over the past

40 plus years. Secondly, to take this opportunity to try to

“sell” the use of topological games as a proof technique within

analysis.

Although a combinatorial game was described back at the

beginning of the 17th century, the notion of a positional

game (i.e., a two player game where the players alternate

turns/moves in order to achieve a predefined winning condi-

tion) with perfect information (i.e., the players have available

to them the same information concerning their next move, at

the time of making that move, as they would have at the end

of the game) was not formally introduced until the mono-

graph of von Neumann and Morgenstern in 1944. In that

monograph the authors considered finite positional games and
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proved that each such game can be reduced to a matrix game,

and moreover, if the finite positional game is one with per-

fect information, then the corresponding matrix game has a

saddle point.

However, infinite positional games with perfect information

were discovered a little earlier. In 1935, Stanislaw Mazur pro-

posed a game related to the Baire category theorem, which is

described in Problem No. 43 of the Scottish book; its solution

given by Stefan Banach is dated August 4, 1935. This game,

now known as the Banach-Mazur game, is the first infinite

positional game with perfect information.

In this talk we shall restrict ourselves to games that are es-

sentially descendants of the Banach-Mazur game.
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The Choquet Game

This game involves two players which we will call α and β.

The “field/court” that the game is played on is a fixed topo-

logical space (X, τ). The name of the game is the Choquet

game and is denoted by, Ch(X).

After naming the game we need to describe how to “play”

the Ch(X)-game. The player labeled β starts the game every

time (life is not always fair). For his/her first move the player

β must select nonempty open subset B1 of X . Next, α gets

a turn. For α’s first move he/she must select a nonempty

open subset A1 of B1. This ends the first round of the game.

In the second round, β goes first again and selects a nonempty

open subset B2 ⊆ A1. Player α then gets to respond by

choosing a nonempty open subset A2 of B2. This ends the

second round of the game.
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In general, after α and β have played the first n-rounds of

the Ch(X)-game, β will have selected nonempty open sub-

sets B1, B2, . . . , Bn and α will have selected nonempty open

subsets A1, A2, . . . , An such that

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.

At the start of the (n + 1)-round of the game, β goes first

(again!) and selects nonempty open subset Bn+1 of An. As

with the previous n-rounds, the player α gets to respond to

this move by selecting a nonempty open subset An+1 of Bn+1.

Continuing this procedure indefinitely (i.e., continuing on for-

ever) the players α and β produce an infinite sequence

(

(Ak, Bk) : k ∈ N
)

called a play of the Ch(X)-game.

A partial play
(

(Ak, Bk) : 1 ≤ k ≤ n
)

of the Ch(X)-game

consists of the first n-moves of a play of the Ch(X)-game.
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As with any game, we need to specify a rule to determine who

wins (otherwise, it is a very boring game). We shall declare

that α wins a play
(

(Ak, Bk) : k ∈ N
)

of the Ch(X)-game

if:
⋂

k∈N Ak =
⋂

k∈N Bk 6= ∅.

If α does not win a play of the Ch(X)-game then we declare

that β wins that play of the Ch(X)-game. So every play is

won by either α or β and no play is won by both players.

Continuing further into game theory we need to introduce the

notion of a strategy.

By a strategy t for the player β we mean a ‘rule’ that specifies

each move of the player β in every possible situation. More

precisely, a strategy t := (tn : n ∈ N) for β is an induc-

tively defined sequence of τ -valued functions. The domain

of t1 is the sequence of length zero, denoted by ∅. That is,

Dom(t1) = {∅} and t1(∅) ∈ (τ \ {∅}). If t1, t2, . . . , tk have
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been defined then the domain of tk+1 is:

{(A1, A2, . . . , Ak) ∈ τk : (A1, A2, . . . , Ak−1) ∈ Dom(tk)

and Ak ⊆ tk(A1, A2, . . . , Ak−1).}

For each (A1, A2, . . . , Ak) ∈ Dom(tk+1),

tk+1(A1, A2, . . . , Ak) := Bk+1 ∈ τ

is defined so that ∅ 6= Bk+1 ⊆ Ak.

A partial t-play is a finite sequence (A1, A2, . . . , An−1) such

that (A1, A2, . . . , An−1) ∈ Dom(tn). A t-play is an infinite se-

quence (An)n∈N such that for each n ∈ N, (A1, A2, . . . , An−1)

is a partial t-play.

A strategy t := (tn : n ∈ N) for the player β is called a

winning strategy if each play of the form:

(

(An, tn(A1, . . . , An−1)) : n ∈ N
)
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is won by β. Similarly we can define a strategy for α. By

a strategy s for the player α we mean a ‘rule’ that specifies

each move of the player α in every possible situation. More

precisely, a strategy s := (sn : n ∈ N) for α is an inductively

defined sequence of τ -valued functions. The domain of s1 is
{

(B) : B ∈ τ \{∅}
}

and for each B1 ∈ Dom(s1),

s1(B1) := A1 ∈ τ is defined so that ∅ 6= A1 ⊆ B1.

If s1, s2, . . . , sk have been defined then the domain of sk+1

is:

{(B1, B2, . . . , Bk+1) ∈ τk+1 : (B1, B2, . . . , Bk) ∈ Dom(sk)

and Bk+1 ⊆ sk(B1, B2, . . . , Bk)}.

For each (B1, B2, . . . , Bk+1) ∈ Dom(sk+1),

sk+1(B1, B2, . . . , Bk+1) := Ak+1 ∈ τ

is defined so that ∅ 6= Ak+1 ⊆ Bk+1.
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A partial s-play is a finite sequence (B1, B2, . . . , Bn) such

that (B1, B2, . . . , Bn) ∈ Dom(sn). An s-play is an infinite

sequence (Bn)n∈N such that for each n ∈ N, (B1, B2, . . . , Bn)

is a partial s-play.

A strategy s := (sn : n ∈ N) for the player α is called a

winning strategy if each play of the form:

(

(sn(B1, . . . , Bn), Bn) : n ∈ N
)

is won by α.

Note that since it is not possible for any play of the Ch(X)-

game to be won by both players, it is not possible for both

players to possess a winning strategy in the Ch(X)-game.

Hence, if for example, the player α has a winning strategy in

the Ch(X)-game then it is not possible for the player β to

have a winning strategy in the Ch(X)-game.
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A space (X, τ) is called weakly α-favorable if α has a winning

strategy in the Ch(X)-game.

Given the previous discussion it is natural to ask the question.

“What topological spaces (X, τ) are characterized by the fact

that the player β does not have a winning strategy in the

Ch(X)-game?”

THEOREM: A topological space (X, τ) is a Baire space,

(i.e., the intersection of every countable family of dense open

sets is dense), if, and only if, the player β does not have a

winning strategy in the Ch(X)-game.

So clearly every weakly α-favourable space is a Baire space.

However, the validity of the converse statement is not clear.

That is, do there exist topological spaces (X, τ) where neither

β nor α possess a winning strategy ? The answer is YES.
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One way to see this is to first show that if (X, τ) and (Y, τ ′)

are both weakly α-favourable then so is (X × Y, τ × τ ′).

Since weakly α-favourable spaces are Baire spaces, the prod-

uct X × Y will be a Baire space. However, it is known

that there exists Baire spaces (X, τ) and (Y, τ ′) such that

(X × Y, τ × τ ′) is not a Baire space. [These spaces are

known as barely Baire spaces.]

Hence it follows that at least one of these spaces is a space

where neither α nor β has a winning strategy.
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More on Strategies

Since strategies play an important role in game theory, they

deserve further consideration. Let (X, τ) be a topological

space and let us assume that the player α adopts a strategy

s := (sn : n ∈ N) in the Ch(X)-game, then one can consider

the space of all s-plays, P (s), endowed with the Baire metric

d. That is, if

p := (Bn)n∈N and p′ := (B′
n)n∈N

are two s-plays, then

d(p, p′) = 0 if p = p′

and otherwise

d(p, p′) = 1/n

where n := min{k ∈ N : Bk 6= B′
k}.
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It is can be shown that (P (s), d) is a complete metric space.

The study of this space can lead to a deeper understanding

of the strategy s.

It is also possible to compare two strategies.

Given two strategies s and σ for the player α in Ch(X)-game,

we say that σ refines s, denoted by, σ � s, if each σ play is

an s-play. If s1, s2, · · · , sn are strategies for the player α in

the Ch(X)-game then there exists a strategy s for the player

α in the Ch(X)-game played on X such that s refines each

sj, 1 ≤ j ≤ n.

Moreover, we have the following theorem.

THEOREM: Suppose that (X, τ) is a topological space. If

(sn)n∈N is a countable family of strategies for the player α in

the Ch(X)-game then there exists a strategy s for the player

α in the Ch(X)-game such that for each s-play (Bn)n∈N, and

each k ∈ N, (Bn)n≥k is a sk-play.
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This theorem enables the exposition of several known results

concerning the Choquet game to be simplified.
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The Structure of Game Theoretic Proofs

The use of Banach-Mazur type games can often simplify the

presentation of certain inductive arguments. One can design a

game that exactly suits/fits the particular inductive argument

under consideration. That is, the game can be tailor made

to fit the situation. The proof then divides into two parts.

In one part we use the tailor made game to expedite the

proof of the inductive argument. Strategies offering an effect

way of recording the inductive hypotheses. The other part of

the proof is then to determine those space/situations where

the game conditions are satisfied. This dividing the proof

into two parts is an important feature of the game approach.

A good example of this is in the paper by R. Deville and

E. Matheron on a solution to the Eikonal equation, where the

game considered in that paper exactly isolated the geometric

property of the underlying space that was required for the

inductive construction of the desired function.
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Examples

Games are used in many places within analysis. Some of these

are listed below.

• study of the Namioka Property;

• study of weak Asplund spaces and Gâteaux differentia-

bility spaces;

• in the theory of selections (of set-valued mappings);

• optimization of continuous and lower semi-continuous

functions;

• active boundaries of set-valued mappings (involves a

game defined on filter bases);

• closed graph theorems;

• fragmentability and σ-fragmentability;
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• Baire category arguments;

• differentiability theory;

• semi-topological groups/topological groups.

Plus many other places.
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Semitopological Groups

As an illustration of how games can be exploited in order to

simplify, and at the same time generalize, known results we

shall consider the problem of determining when a semitopo-

logical group is a topological group.

This example also highlights the way in which the game ap-

proach breaks the problem into two parts (as described ear-

lier). In the first part we use a tailor made game to expedite

the inductive arguments. Then in the second part we show

that certain known topological properties/conditions imply

our game theoretic hypotheses.

A semitopological group (topological group) is a group en-

dowed with a topology for which multiplication is separately

continuous (multiplication is jointly continuous and inversion

is continuous). Ever since the paper of Montgomery in 1936

there has been continued interest in determining topological

17



properties of a semitopological group that are sufficient to

ensure that it is a topological group. There have been many

significant contributions to this field. One such contribution

is due to Ahmed Bouziad (1996) who introduced the use

of games to this area and showed that every Čech-complete

semitopological group is a topological group. This answered,

in the positive, a question raised by Pfister in 1985.

Later in 2001, the authors [KKM] further exploited the game

approach to extend the results of Bouziad. In particular, the

authors in [KKM] considered spaces where neither player (in

a Choquet-type game) possessed a winning strategy.

The way in which one usually exploits the hypothesis/condition

that β does not possess a winning strategy is the following.

One uses a proof by contradiction. This is, assume that the

conclusion of the statement (that one wants to prove) is false.

Then use this additional information to construct a strategy
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t for the player β. The fact that t is not a winning strategy

for the player β then yields the existence of a play (An)n∈N

where α wins. This play (An)n∈N is then used to obtain the

requirred contradiction.

To prove our result we need to introduce two new games that

are tailor made for the situation.

Let (X, τ) be a topological space and let D be a dense sub-

set of X . The G (D)-game is a two player game. A play of

the G (D)-game is a sequence (An, Bn, bn)n∈N defined induc-

tively in the following way: player β begins by choosing a pair

(B1, b1) consisting of a nonempty open subset B1 of X and

a point b1 ∈ D; player α then chooses a nonempty open sub-

set A1 of B1. When (Ai, Bi, bi), i = 1, 2, . . . , (n − 1), have

been defined, player β chooses a pair (Bn, bn) consisting of a

nonempty open subset Bn of An−1 and a point bn ∈ An−1∩D.

Player α then chooses a nonempty open subset An of Bn.
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Player α is declared the winner if:

⋂

n∈N{bk : k ≥ n} ∩
⋂

n∈NBn 6= ∅.

We shall call a topological space (X, τ) nearly strongly Baire

if it is a regular topological space and there exists a dense

subset D of X such that the player β does NOT have a

winning strategy in the G (D)-game played on X .

In this talk we also consider another game. Let (X, τ) be a

topological space, a ∈ X , and let D be a dense subset of

X . The Gp(a,D)-game is a two player game. A play of the

Gp(a,D)-game is a sequence (An, bn)n∈N defined inductively

in the following way: player β begins by choosing a point

b1 ∈ D; player α then chooses an open neigbourhood A1 of

a. When (Ai, bi), i = 1, 2, . . . , (n − 1), have been defined,

player β chooses a point bn ∈ An−1 ∩ D. Player α then

chooses an open neighbourhood An of a. Player α is declared

the winner if the sequence (bn)n∈N has a cluster-point in X .
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We shall call a point a a nearly qD-point if the player α has

a winning strategy in the Gp(a,D)-game played on X .

We can now state (and prove) our first result.

LEMMA 1. Let (G, ·, τ) be a semitopological group. If (G, τ)

is nearly strongly Baire then for each pair of open neighbour-

boods U and W of identity element e ∈ G there exists a

nonempty open subset V of U such that V −1 ⊆ W ·W ·W .

Proof: Suppose, in order to obtain a contradiction, that

there exists a pair of open neighbourhoods U andW of e ∈ G

such that for each nonempty open subset V of U ,

V −1 6⊆ W ·W ·W.

From this it follows that for each nonempty open subset V

of U and each dense subset D′ of V there exists a point

x ∈ V ∩D′ such that x−1 6∈ W ·W , because otherwise,

V −1 ⊆ (V ∩D′)−1 ⊆ W · (V ∩D′)−1 ⊆ W ·W ·W.
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Recall that for any nonempty subset A of a semitopological

group (H, ·, τ) and any open neighbourhoodW of the identity

element e ∈ H, (A)−1 ⊆ W · A−1.

Now, let D be any dense subset of G such that β does not

have a winning strategy in the G (D)-game played on G. We

will define a (necessarily non-winning) strategy t for β in the

G (D)-game played on G, but first we set, for notational rea-

sons, A0 := U and b0 := e.

Step 1. Choose b1 ∈ A0 ∩D so that

(b−1
0 · b1)

−1 = b−1
1 6∈ W ·W.

Then choose U1 to be any open neighbourhood of e, con-

tained in U ∩ W , such that b1 · U1 ⊆ A0. Then define

t1(∅) := (b1 · U1, b1).

Now, suppose that bj, Uj and tj(A1, . . . , Aj−1) have been

defined for each 1 ≤ j ≤ n so that:
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(i) bj ∈ Aj−1 ∩D and (b−1

j−1 · bj)
−1 6∈ W ·W ;

(ii) Uj is an open neighbourhood of e, contained in U ∩W ,

such that bj · Uj ⊆ Aj−1;

(iii) tj(A1, . . . , Aj−1) := (bj · Uj, bj).

Step n+ 1. Choose bn+1 ∈ An ∩D so that

(b−1
n · bn+1)

−1 6∈ W ·W.

Note that this is possible since b−1
n · (An ∩ D) is a dense

subset of b−1
n · An and

b−1
n · An ⊆ b−1

n · (bn · Un) = Un ⊆ U.

Then choose Un+1 to be any neighbourhood of e, contained

in U ∩ W , such that bn+1 · Un+1 ⊆ An. Finally, define

tn+1(A1, . . . , An) := (bn+1 · Un+1, bn+1).
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Note that:

(i) bn+1 ∈ An ∩D and (b−1
n · bn+1)

−1 6∈ W ·W ;

(ii) Un+1 is an open neighbourhood of e, contained in U ∩

W , such that bn+1 · Un+1 ⊆ An;

(iii) tn+1(A1, . . . , An) := (bn+1 · Un+1, bn+1).

This completes the definition of t. Since t is not a winning

strategy for β there exists a play (An, tn(A1, . . . , An−1))n∈N

where α wins. Let b∞ ∈
⋂

n∈N {bk : k ≥ n} ∩
⋂

n∈N Bn.

Choose k ∈ N so that

bk ∈ b∞ ·W ⊆ Ak+1 ·W ⊆ bk+1 · Uk+1 ·W ⊆ bk+1 ·W ·W.

Therefore, (b−1

k · bk+1)
−1 = b−1

k+1
· bk ∈ W · W . However,

this contradicts the way bk+1 was chosen. This completes the

proof. ✷

We now (only) state the next two results, which are proved

using games.
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LEMMA 2. Let (G, ·, τ) be a semitopological group and let

D be a dense subset of G. If (G, τ) is nearly strongly Baire

and the identity element e ∈ G is a nearly qD-point then

the multiplication operation, (h, g) 7→ h · g, is continuous on

G×G.

By putting these two results together we obtain the following

result.

THEOREM Let (G, ·, τ) be a semitopological group and let

D be a dense subset of G. If (G, τ) is nearly strongly Baire

and the identity element e ∈ G is a nearly qD-point then

(G, ·, τ) is a topological group.

We now come to the second part of the game approach, which

is to show that our game theoretic hypotheses are satisfied

by a large class of spaces.
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EXAMPLE Suppose that {Xs : s ∈ S} is a family of

nonempty Čech-complete spaces. Then X :=
∏

s∈S Xs is

nearly strongly Baire and each point of X is a nearly qD-point

with respect to some dense subset D of X .

Proof: For each a ∈ X =
∏

s∈S Xs the

Σ-product of {Xs : s ∈ S} with base point a,

denoted Σs∈SXs(a), is the set of all x ∈ X such that

{s ∈ S : x(s) 6= a(s)}

is at most countable. Obviously, for each a ∈ X , Σs∈SXs(a)

is dense in X .

For each x ∈ Σs∈SXs(a), let

supp(x) = {s ∈ S : x(s) 6= a(s)}.

By considering only those factors Xs such that

s ∈
⋃

1≤k≤nsupp(bk)
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we can show that for an arbitrary a ∈ X , the player α has

a winning strategy in the G (Σs∈SXs(a))-game played on X .

Furthermore, it follows in a similar way that for each a ∈ X ,

the player α has a winning strategy in the Gp(a,Σs∈SXs(a))-

game played on X . ✷

A PDF version of this talk is available at:

www.math.auckland.ac.nz/∼moors/

——————————– The End ——————————–
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