Order matters when choosing sets
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Abstract. Given natural numbers ¢, w and v we show, using high school algebra, that if 1 <w <t <wv
then ((v ch t) ch w) < ((v ch w) ch t). Here we denote “n choose r” by (n ch r).
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In this paper we show, using high school algebra, that if 1 < w < ¢t < v are natural numbers then

(%) > e (V)

Our original interest in this inequality arose from the study of incidence structures. Specifically, in
regard to the assignment of keys/sub-keys to users in a network in order to ensure that certain specified
security conditions are fulfilled (i.e., Key Distribution Patterns). For further information on this see
[2, Chapter 4]. However, as this inequality is somewhat natural, not surprisingly, variations on this
inequality have been studied before e.g. in [1]. In fact, the special case of our inequality when w = 2
and t = 3 was considered in [1, Theorem 5.

Lemma 1 If1 < j < w < v are natural numbers then,
vv—1)---(v—w+1)—jwlv—w+j]>vw—-1) (v —w+1)(v—w).
Proof: Fix 1 < j < w then,

wv—1)---(v—w+1)—jwl[v-—w)+j] = vw—-1)(v—w+1)(v—w)
+[jo(v — 1)+ (v —w+ 1) — j2w! — jwl(v —w)].

We claim that
ju(v—=1)- (v —w+1) = j2w! — jw!(v —w) > 0.

To see this, we simply do more algebra.

ju(v—1)- (v —w+1) — j2w! — jw!(v —w) >0
= jo(v—1)-(v—w+1) > j2w! + juwl(v—w)

(% .
= ( ) >j+ (v—w).
w
Now, j + (v — w) < v. On the other hand, because 1 < w < v, (,Zf)) > v. Therefore,
po=—1)--(v—w+1)—jwllv—w+j >vw—-1)--- (v —w+1)(v—w). ©
Lemma 2 Ifl<w<wv,1<j<wvand j,w,v €N then,

o=1)-(v—w+1l)—jw]>w-1)v—=-2)-(v—w+1)(v—w) > (v—w)".



Proof: To prove this, we again do some algebra.

po—=1)--v—w+1l)—jwl]—(v—-—w)(v-1)(v—-2)---(v—w+1) >0
— —Jultwv-1)v—-2)--(v—w+1)>0
— @wW-1Dw-2)---v—w+1)>jw-1)

=i e B

which is true since 1 < j < v and w < v. ©

Lemma 3 If 1 < w < v are natural numbers then,

hﬂwvn~«vw+njw1ww1w~ww+1n>wwm~«vmw.

j=1

Proof: This follows directly from Lemma 1 and the fact that:

Jj=1

[[ew-1)-w-—w+1)- jw!}] [(v=1) - (v—w+1)] = [[lo(w=1) - (v—w+1) = jw!][v—w+].
j=1

At last we are ready to prove our inequality which generalises [1, Theorem 5.
v (ahw /(v

Theorem 1 If1 < w <t <wv are natural numbers then (“’) > M (t) .
t tH(w!)t \ w

Proof: Suppose that 1 < w <t < v are natural numbers then

<@§ _ 1{thvn~«vw+wjm1

—

t t! iy w!

Z 4 1; 7 H[U@ —1)-(v—w+1) = jwl{[(v- w)w}t_w_l by Lemma 2
t(w!) B
= t'(@lu‘)t ’U(U — ]_) ce (1} —w + 1)]11[1)(1} — 1) e (U — w4+ 1) _ jw']] [(7) _ w)t*’wfl]w
= t!(i}!)t ([U(U 1) (v —w)] - [(v— w)tfwfl]w> by Lemma 3
— t'(i}‘)t ([’U(U — 1) R (’U _ ’LU)(’U _ w)t—w—l]w)
> t!(;!)t([v(v—l)...(v_w) -(v—t—i—l)]w)
wl(? | 195 v —1)---(v—t+1)— jtl]
Tl |wl 7
owl@) ()
N t!(w!)t ( w > @



Proposition 1 If1 < w <t are natural numbers then lim

() _ wiey
vooe () thwh)t

Proof: Define P: R — R and Q : R — R by, P(z) := Hz;})[(x(x —1)--(x —w+1) — jw!] and
Qz) = H}":—Ol[(a:(x —1)---(x —t+1) — jt!]. Then P and @ are monic polynomials of degree wt.

Therefore, lim Plx) = 1. It now follows that,
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Together Proposition 1 and Theorem 1 yield the fact that for any natural numbers 1 < w <t
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To understand this inequality better we need the following crude estimate.

1(t1)w 1) )
Proposition 2 If 1 < w <t are natural numbers then ltU () > <w;— ) > 1.

Proof: We need only consider the case when 1 < w < t.

w! ()™ (t)(w=1) () (w=1) [t(t—1)-- (w+ 1))@V

thwht (w!)(t=1) - (w!)(E=w) () (w=1) - (w!)(t=w)

<t<w1>><(t - 1)(w1>> ((w + 1)(w1>>
- w! w! N wt )

(t—w)—factors

j 1
Now, J > v for all (w+ 1) < j since,
w! 2
D NNV s (AN (D) () s
w! w)\w—1 3/)\2) " \w/\w-1 3 2 -2
(w—1)—times (w—1)—factors
Given a natural number v > 1 and natural numbers a1, a9, ..., a, smaller than v we may inductively

define the following notation. Ny(aq) := (”) If Ny(aq,asz,...,a;) has been defined for 1 < k < n

Ny (aall,a2,--~,ak)
( )

then we define Ny(ay,aq,...,a541) = i

With this notation we may state the following generalisation of the previous theorem.
Corollary 1 Given natural numbers a1 < as < --- < a, < v,

Ny(ay,ag,...,ay) = maX{Nv(aW(l),aw(g), <oy Qn(ny) © T 08 a permutation of the set {1,2,. .. ,n}}



Proof: Let S,, denote the set of all permutations on {1,2,...,n} and let o € S,, be chosen so that

Nv(acr(l)7 Ag(2)y - - >ao(n)) = 7Irréasx Nv(aw(l)a Ar(2)y - - - >a7r(n))'

If ay(jy = 1 for some 1 < j <n then

Nv(ao(l)v <o Qo (j=1) Ao (G)s - -+ ao(n)) = Nv(aa(l)a <o Qo(5)y Ao (j—1)5 - - 7aa(n))'

Hence, if for some 1 < k <n, a; =1 for all 1 < j < k then we may assume without loss of generality
that a5y = 1 for all 1 < j < k. That is, we can shuffle all the 1’s to the front of the queue without
altering the value of Ny (aq(1), ag(2); - -5 Go(n))-

Thus, in this case, we have that 1 = a; = a,(; for all 1 < j <k and so
Nv(a17 az,...,0g, Ak+1, - - - 7an) < Nv(aa(1)7 A5 (2)y -+ 3 Ao (k)s Ao (k+1)s - - - 7a0'(n))
Aand Nv(akJrh Af+2, - - - 7an) < Nv(aa(k+1)7 Ao (k+2)s - - - 7ao(n))'
In this way, we see that we can restrict our attention to the case where 1 < a1 < a9 <---<a, <.

Next we show that a,(;) < as(;41) for all 1 < i < n. So let us suppose, in order to obtain a contradiction
that for some 1 < j < n, ag(;) > ag(j4+1)- We consider 3 cases (mainly for notational reasons):
i)j=L@{)l<j=n—1land(iii)1<j<n-—1

Case (i) If j = 1 then by Theorem 1, Ny(ay(1); @r(2)) < Nu(ag(2), Go(1)) and so
Nv(ao(l)a Ag(2) Ag(3)s+ -+ aa(n)) < Nv(aa(2)a As(1) Ao(3)s - -+ 7aa(n));
which contradicts the maximality of Ny(ag(1),ag(2), - - -5 Go(n))-
Case (ii) If 1 < j =n—1, let v* := Ny(as(1); @x(2), - - - »Ag(j—1)). Then,
Ny(ao(1)s -+ -5 Qo(j=1)5 Ao () Aa(n)) = No* (o (j) Gom)) < Npx(ag(n), () by Theorem 1
= Nv(ao(l)a <oy Qo(5—1)) Ao (n)> ao‘(j));
which again contradicts the maximality of Ny(ag(1), @o(2)s- - - Ao(n))-

Case (iil) If 2 < j <n —1, let v* := Ny(ag(1),ay(2), - - - > Gr(j—1))- Then,

Nu(%(l) e 7%(]'71);%(]')’%(%1)) = Nv*(aa(j)vaa(jJrl)) < Nv*<aa(j+1)aaa(j)) by Theorem 1

= Nv<aa(1)7 < Qo (j-1) Ao (41) aa(j))
and so Nv(ao(l), < Qo () Qo (G41)s - -+ s ao(n)) < Nv(ag(l), s Qo (541)y Ao (5)s - - - ,ag(n)); which as before,
contradicts the maximality of Ny (ag(1), dg(2); - - -5 Go(n))- Hence, as) < ag(igr for all 1 <i <n.

Now, since both (a; : 1 < i < n) and (ag(i) : 1 < i < n) are non-decreasing and re-arrangements of
each other, it follows that a; = a,(;) for all 1 <i < n. Therefore,

Ny(ai,az,...,an) = Ny(ao1), Gp(2), - - - 5 Qo(n)) = max Ny(@r(1), @n(2), - -+ 5 Or(n))- ©

From the proof of the Corollary we see that if 1 < a; < a9 <--- < a, < v then

Nv(aa(l)v Ag(2)s - - >a0'(n)) = 7IrréaSX N’U(aﬂ'(l)7 Ar(2)s - - >a7r(n))

if, and only if, o is the identity mapping.
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