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Background

The purpose of this talk is to give a self-contained proof of

James’ characterisation of weak compactness (in the case of

separable Banach spaces). The proof is completely elemen-

tary and does not require recourse to integral representations

nor Simons’ inequality. It only requires results from linear

topology (in particular the Krein-Milman Theorem) and Eke-

land’s variational principle (Bishop-Phelps Theorem).

The idea of the proof is due to V. Fonf, J. Lindenstrauss and

R. Phelps.

Proposition 1 Let {Kj : 1 ≤ j ≤ n} be convex subsets of

a vector space V . Then

co
n⋃

j=1

Kj =

{
n∑

j=1

λjkj : (λj, kj) ∈ [0, 1] × Kj

for all 1 ≤ j ≤ n and
n∑

j=1

λj = 1

}
.



From this we may easily obtain the following result.

Theorem 1 Let {Kj : 1 ≤ j ≤ n} be weak∗ compact con-

vex subsets of the dual of a Banach space X. Then co
n⋃

j=1

Kj

is weak∗ compact.

We say that a subset E of a set K in a vector space V is an

extremal subset of K if x, y ∈ E whenever

λx + (1 − λ)y ∈ E, x, y ∈ K and 0 < λ < 1.

A point x is called an extreme point if the set {x} is an

extremal subset of K. For a set K in a vector space X we

will denote the set of all extreme points of K by Ext(K).

Proposition 2 Let K be a nonempty subset of a vector

space V . Suppose that E∗ ⊆ E ⊆ K. If E∗ is an extremal

subset of E and E is an extremal subset of K then E∗ is an

extremal subset of K. In particular, Ext(E) ⊆ Ext(K).



We may now present our first key result.

Theorem 2 (Milman’s Theorem) Let E be a nonempty sub-

set of the dual of a Banach space X. If K := coweak∗(E) is

weak∗ compact then Ext(K) ⊆ E
weak∗

.

Proof: Let e∗ be any element of Ext(K) and let N be any

weak∗ closed and convex weak∗ neighbourhood of 0 ∈ X∗.

Let E∗ := E
weak∗

. Then E∗ ⊆
⋃

x∗∈E∗(x∗ + N). So by

compactness there exist a finite set y∗
1 , y

∗
2, . . . , y

∗
n in E∗ such

that E∗ ⊆
⋃n

j=1(y
∗
j + N). For each 1 ≤ j ≤ n, let Kj :=

(y∗
j + N) ∩ K. Then each Kj is weak∗ compact and convex

and E ⊆ E∗ ⊆
⋃n

j=1 Kj. Therefore,

e∗ ∈ K = coweak∗(E) ⊆ coweak∗
n⋃

j=1

Kj = co
n⋃

j=1

Kj .

Thus, e∗ =
∑n

j=1 λjkj for some (λj, kj) ∈ [0, 1] × Kj with
∑n

j=1 λj = 1. Since e∗ ∈ Ext(K), there exists an

i ∈ {1, 2, . . . , n}



such that λi = 1 (and λj = 0 for all j ∈ {1, 2, . . . n} \ {i}).

Therefore, e∗ = ki ∈ Ki ⊆ y∗
i + N ⊆ E∗ + N . Since N was

an arbitrary weak∗ closed convex weak∗ neighbourhood of 0,

e∗ ∈ E∗. k��

Theorem 3 Let X be a Banach space. Then every nonempty

weak∗ compact convex subset of X∗ has an extreme point.

Proof: Let K be a nonempty weak∗ compact convex subset

of X∗ and let X ⊆ 2K \{∅} be the set of all nonempty weak∗

compact convex extremal subsets of K. Then X 6= ∅ since

K ∈ X. Now, (X,⊆) is a nonempty partially ordered set.

We will use Zorn’s lemma to show that (X,⊆) has a minimal

element. To this end, let T ⊆ X be a totally ordered subset of

X (i.e., (T,⊆) is a totally ordered set). Let K∞ :=
⋂

C∈T C.

Then ∅ 6= K∞ is a weak∗ compact convex subset of K.

Moreover, K∞ is an extremal subset of K since if x∗, y∗ ∈ K

and 0 < λ < 1 and λx∗ + (1 − λ)y∗ ∈ K∞ then for each



C ∈ T , λx∗ + (1− λ)y∗ ∈ C; which implies that x∗, y∗ ∈ C.

That is, x∗, y∗ ∈ K∞. Therefore, K∞ ∈ X and K∞ ⊆ C

for every C ∈ T , i.e., T has a lower bound in X. Thus, by

Zorn’s Lemma, (X ⊆) has a minimal element KM .

Claim: KM is a singleton. Supppose, in order to obtain a

contradiction, that KM is not a singleton. Then there exist

x∗, y∗ ∈ KM such that x∗ 6= y∗. Choose x ∈ X such that

x∗(x) 6= y∗(x). Let

K∗ := {z∗ ∈ KM : x̂(z∗) = max
w∗∈KM

x̂(w∗)}.

Then ∅ 6= K∗ ⊆ KM and K∗ ∈ X. Thus, K∗ = KM ;

which implies that x∗(x) = y∗(x). Thus, we have obtained a

contradiction and so KM is indeed a singleton. It now follows

from the definition of an extreme point that the only member

of KM is an extreme point of K. k��

In order to prove the well-known consequence of this result

we need a separation result (which we will not prove here).



Theorem 4 Let K be a nonempty weak∗ compact convex

subset of the dual of a Banach space X. If x∗ ∈ X∗ is not a

member of K then there exists an x ∈ X such that

x̂(x∗) > max
y∗∈K

x̂(y∗).

Theorem 5 (Krein-Milman Theorem) Let K be a nonempty

weak∗ compact convex subset of the dual of a Banach space

X. Then K = coweak∗Ext(K).

Proof: Suppose, in order to obtain a contradiction, that

coweak∗Ext(K) $ K.

Then there exists x∗ ∈ K \ coweak∗Ext(K). Choose x ∈ X

such that x̂(x∗) > max{x̂(y∗) : y∗ ∈ coweak∗Ext(K)}. Let

K∗ := {z∗ ∈ K : x̂(z∗) = max
y∗∈K

x̂(y∗)}.



Now, K∗ is a nonempty weak∗ compact convex extremal sub-

set of K. Therefore, by Theorem 3, there exists an

e∗ ∈ Ext(K∗) ⊆ Ext(K). However, e∗ 6∈ coweak∗Ext(K).

Thus, we have obtained a contradiction. Hence the state-

ment of the Krein-Milman theorem holds k��

This concludes the necessary linear topology required in order

to prove James’ Theorem.

Our next goal is to prove the Bishop-Phelps Theorem. To do

this we start will some convex analysis.

Let f : X → R be a continuous convex function defined on

a Banach space X. Then for each x0 ∈ X we define the

subdifferential of f at x0 to be:

∂f(x0) := {x∗ ∈ X∗ : x∗(x) + [f(x0) − x∗(x0)] ≤ f(x)

for all x ∈ X}.

Then for each x ∈ X, ∂f(x), is a nonempty weak∗ compact



convex subset of X∗. We will require two facts about the

subdifferential:

(a) If f(x∞) = minx∈X f(x) then 0 ∈ ∂f(x∞) (this follows

directly from the definition);

(b) If h : X → R is also a continuous convex function then

∂(h + f)(x) = ∂h(x) + ∂f(x) for all x ∈ X.

Next, we prove Ekeland’s variational principle.

Theorem 6 (E.V.P.) Suppose that f : X → R is a bounded

below lower semi-continuous function defined on a Banach

space X. If ε > 0, x0 ∈ X and f(x0) ≤ infy∈X f(y) + ε2

then there exists x∞ ∈ X such that ‖x∞ − x0‖ ≤ ε and the

function f + ε‖ · −x∞‖ attains its minimum value at x∞.

Moreover, if f is continuous and convex then

0 ∈ ∂f(x∞) + εBX∗.



Proof: We shall inductively define a sequence (xn : n ∈ N)

in X and a sequence (Dn : n ∈ N) of closed subsets of X

such that

(i) Dn := {x ∈ Dn−1 : f(x) ≤ f(xn−1) − ε‖x − xn−1‖};

(ii) xn ∈ Dn;

(iii) f(xn) ≤ infx∈Dn
f(x) + ε2/(n + 1).

Set D0 := X. In the base step we let

D1 := {x ∈ D0 : f(x) ≤ f(x0) − ε‖x − x0‖}

and choose x1 ∈ D1 so that f(x1) ≤ infx∈D1
f(x) + ε2/2.

Then at the (n + 1)th-step we let

Dn+1 := {x ∈ Dn : f(x) ≤ f(xn) − ε‖x − xn‖}

and we choose xn+1 ∈ Dn+1 such that

f(xn+1) ≤ inf
x∈Dn+1

f(x) + ε2/(n + 2).



This completes the induction.

Now, by construction, ∅ 6= Dn+1 ⊆ Dn for all n ∈ N. It is

also easy to see that sup{‖x−xn‖ : x ∈ Dn+1} ≤ ε/(n+1).

Indeed, if x ∈ Dn+1 and ‖x − xn‖ > ε/(n + 1) then

f(x) <
[
f(xn) − ε(ε/(n + 1))

]
= f(xn) − ε2/(n + 1)

≤
[

inf
y∈Dn

f(y) + ε2/(n + 1)
]
− ε2/(n + 1) = inf

y∈Dn

f(y);

which contradicts the fact that x ∈ Dn+1 ⊆ Dn.

Let {x∞} :=
⋂∞

n=1 Dn. Fix x ∈ X \ {x∞} and let n be the

first natural number such that x 6∈ Dn, i.e., x ∈ Dn−1 \ Dn.

Then,

f(x∞) − ε‖x − x∞‖ ≤ f(xn−1) − ε‖x − xn−1‖ < f(x)

since

f(x∞) ≤ f(xn−1) − ε‖xn−1 − x∞‖ since x∞ ∈ Dn

≤ f(xn−1) − ε
[
‖x − xn−1‖ − ‖x − x∞‖

]
.



Hence, f + ε‖ · −x∞‖ attains its minimum at x∞. Also note

that x∞ ∈ D1 and so ‖x∞ − x0‖ ≤ ε. k��

We can now proceed to a proof of the Bishop-Phelps Theo-

rem, but first we need a couple of definitions. Let K be a

weak∗ compact convex body in the dual of a Banach space

X. Define p : X → [0,∞) by, p(x) = maxx∗∈K x̂(x∗). Then

p is a continuous sublinear functional on X. Let

BP (K) := {x∗ ∈ K : x∗(x) = p(x) for some x 6= 0}

=
⋃

x 6=0

∂p(x).

Theorem 7 (Bishop-Phelps Theorem) Let K be a weak∗

compact convex body with 0 ∈ int(K) in the dual of a Ba-

nach space X. Then BP (K) is dense in the boundary of

K.

Proof: Let x∗
0 be an arbitrary element of the boundary of K

and let 0 < ε < 1. Without loss of generality we may assume



that ε < M := (supx∗∈K ‖x∗‖)−1. Now, x∗
0 6∈ (1 − ε2)K.

Hence we may choose x ∈ X such that

(1 − ε2)p(x) = max
x∗∈(1−ε2)K

x̂(x∗) < x∗
0(x) ≤ p(x).

Without loss of generality we may assume that p(x) = 1 and

so (1 − ε2) < x∗
0(x) ≤ 1. It also follows that M ≤ ‖x‖. Let

h : X → [0,∞) be defined by, h := p − x∗
0. Then

0 ≤ h(x) = p(x) − x∗
0(x) = 1 − x∗

0(x) < ε2.

By Ekeland’s variation principle there exists x∞ ∈ X such

that ‖x∞ − x‖ ≤ ε < M (and so ‖x∞‖ 6= 0) and

0 ∈ ∂h(x∞) + εBX∗

= ∂p(x∞) − x∗
0 + εBX∗ .

Hence there exists x∗ ∈ ∂p(x∞) ∈ BP (K) and y∗ ∈ BX∗

such that ‖x∗ − x∗
0‖ = ε‖ − y∗‖ ≤ ε. k��



The Main Theorem

Ever since R. C. James first proved that, in any Banach space

X, a closed bounded convex subset C of X is weakly com-

pact if, and only if, every continuous linear functional attains

its supremum over C, there has been continued interest in

trying to simplify his proof. Some success was made when

G. Godefroy used Simons’ inequality to deduce James’ the-

orem in the case of a separable Banach space. However,

although the proof of Simons’ inequality is elementary, it is

certainly not easy and so the search for a simple proof contin-

ued. Later Fonf, Lindenstrauss and Phelps used the notion of

(I)-generation to provide an alternative proof of James’ the-

orem (in the separable Banach space case) without recourse

to Simons’ inequality. Their proof was short and reasonably

elementary. However, it still relied upon integral representa-

tion theorems, as well as, the Bishop-Phelps theorem. In this



part of the talk we will show how to modify the proof of FLP

in order to remove the integral representations.

Let K be a weak∗ compact convex subset of the dual of a

Banach space X. A subset B of K is called a boundary of

K if for every x ∈ X there exists an x∗ ∈ B such that

x∗(x) = sup{y∗(x) : y∗ ∈ K}.

We shall say that B, (I)-generates K, if for every countable

cover {Cn : n ∈ N} of B by weak∗ compact convex subsets

of K, the convex hull of
⋃

n∈N
Cn is norm dense in K.

The main theorem relies upon the following prerequisite re-

sult.

Lemma 1 Suppose that K, S and {Kn : n ∈ N} are weak∗

compact subsets of the dual of a Banach space X. Suppose

also that S ∩K = ∅ and S ⊆
⋃

n∈N
Kn

w∗

. If for each weak∗

open neighbourhood W of 0 there exists an N ∈ N such that



Kn ⊆ K + W for all n > N then S ⊆
⋃

1≤n≤M Kn for some

M ∈ N.

Proof: Since K ∩ S = ∅ there exists a weak∗ open neigh-

bourhood W of 0 such that K +W ⊆ X∗ \S. By making W

smaller, we may assume that K + W
weak∗

⊆ X∗ \ S. From

the hypotheses there exists a M ∈ N such that

⋃

n>M

Kn ⊆ K + W

and so

⋃

n>M

Kn

weak∗

⊆ K + W
weak∗

⊆ X∗ \ S,

since K + W
weak∗

is weak∗ closed. On the other hand,

S ⊆
⋃

n∈N

Kn

weak∗

=
⋃

n>M

Kn

weak∗

∪
⋃

1≤n≤M

Kn.

Therefore, S ⊆
⋃

1≤n≤M Kn. k��

We may now state and prove the main theorem.



Theorem 8 Let K be a weak∗ compact convex subset of the

dual of a Banach space X and let B be a boundary of K.

Then B, (I)-generates K.

Proof: After possibly translating K we may assume that

0 ∈ B. Suppose that B ⊆
⋃

n∈N
Cn where {Cn : n ∈ N}

are weak∗ compact convex subsets of K. Fix ε > 0. We

will show that K ⊆ co[
⋃

n∈N
Cn] + 2εBX∗ . For each n ∈ N,

let Kn := Cn + (ε/n)BX∗ and let V ∗ := coweak∗
⋃

n∈N
Kn.

Clearly, B ⊆
⋃

n∈N
Kn and so K = coweak∗(B) ⊆ V ∗. It is

also clear that V ∗ is a weak∗ compact convex body in X∗

with 0 ∈ int(V ∗). Let x∗ be any element of BP (V ∗) and let

x ∈ X be chosen so that x∗(x) = maxy∗∈V ∗ x̂(y∗) = 1. It is

easy to see that if

F := {y∗ ∈ V ∗ : y∗(x) = 1}



then F ∩ K = ∅. Indeed, if F ∩ K 6= ∅ then

max{y∗(x) : y∗ ∈ K} = 1

and because B is a boundary for K it follows that for some

j ∈ N there is a b∗ ∈ Cj ∩ B such that b∗(x) = 1. However,

as b∗ ∈ b∗ + (ε/j)BX∗ ⊆ Kj ⊆ V ∗, this is impossible. Now,

Ext(F ) ⊆ Ext(V ∗) since F is an extremal subset of V ∗

⊆
⋃

n∈N

Kn

weak∗

by Milman’s theorem.

Thus, Ext(F ) ⊆ F ∩
⋃

n∈N
Kn

weak∗

⊆
⋃

n∈N
Kn

weak∗

and so

by Lemma 1, applied to the weak∗ compact set

S := F ∩
⋃

n∈N

Kn

weak∗

,

there exists an M ∈ N that that Ext(F ) ⊆ S ⊆
⋃

1≤n≤M Kn.



Hence,

x∗ ∈ F = coweak∗Ext(F ) by the Krein-Milman theorem

⊆ co
⋃

1≤n≤M

Kn

⊆ co
⋃

1≤n≤M

Cn + εBX∗ ⊆ co
⋃

n∈N

Cn + εBX∗ .

Since x∗ ∈ BP (V ∗) was arbitrary, we have by the Bishop-

Phelps theorem, which says that BP (V ∗) is dense in ∂V ∗,

that

∂V ∗ ⊆ co
⋃

n∈N

Cn + 2εBX∗ .

However, since 0 ∈ B (and hence in some Cn) it follows that

K ⊆ V ∗ ⊆ co[
⋃

n∈N
Cn] + 2εBX∗ . Since ε > 0 was arbitrary

we are done. k��

There are many applications of this theorem. In particular,

we have the following.



Corollary 1 Let K be a weak∗ compact convex subset of

the dual of a Banach space X, let B be a boundary for K

and let fn : K → R be weak∗ lower semi-continuous convex

functions. If {fn : n ∈ N} are equicontinuous with respect

to the norm and lim sup
n→∞

fn(b∗) ≤ 0 for each b∗ ∈ B then

lim sup
n→∞

fn(x∗) ≤ 0 for each x∗ ∈ K.

Proof: Fix ε > 0. For each n ∈ N, let

Cn := {y∗ ∈ K : fk(y
∗) ≤ (ε/2) for all k ≥ n}.

Then {Cn : n ∈ N} is a countable cover of B by weak∗

compact convex subsets of K. Therefore, co[
⋃

n∈N
Cn] =

⋃
n∈N

Cn is norm dense in K. Since {fn : n ∈ N} are

equicontinuous (with respect to the norm) it follows that

lim sup
n→∞

fn(x∗) < ε for all x∗ ∈ K. k��

The classical Rainwater’s theorem follows from this by setting:

K := BX∗ ; B := Ext(K) and for any bounded set



{xn : n ∈ N} in X that converges to x ∈ X with respect

to the topology of pointwise convergence on Ext(BX∗), let

fn : K → [0,∞) be defined by, fn(x∗) := |x∗(xn) − x∗(x)|.

We may also obtain the following well known result.

Corollary 2 (Simons’ Equality) Let K be a weak∗ compact

convex subset of the dual of a Banach space X, let B be a

boundary for K and let {xn : n ∈ N} be a bounded subset

of X. Then

sup
b∗∈B

{
lim sup

n→∞

x̂n(b∗)

}
= sup

x∗∈K

{
lim sup

n→∞

x̂n(x∗)

}
.

Proof: Since clearly,

sup
b∗∈B

{
lim sup

n→∞

x̂n(b∗)

}
≤ sup

x∗∈K

{
lim sup

n→∞

x̂n(x∗)

}

we need only show that

sup
x∗∈K

{
lim sup

n→∞

x̂n(x∗)

}
≤ sup

b∗∈B

{
lim sup

n→∞

x̂n(b∗)

}
.



To this end let

r := sup
b∗∈B

{
lim sup

n→∞

x̂n(b∗)

}

and for each n ∈ N, let fn : K → R be defined by,

fn(x∗) := sup{x̂k(x
∗) : k ≥ n} − r.

Then {fn : n ∈ N} are weak∗ lower semicontinuous, con-

vex and equicontinuous with respect to the norm. Moreover,

lim
n→∞

fn(b∗) ≤ 0 for all b∗ ∈ B. Therefore, by Corollary 1,

lim
n→∞

fn(x∗) ≤ 0 for all x∗ ∈ K. The result now easily fol-

lows. k��

As promised, we give a simple proof of James’ theorem valid

for separable, closed and bounded convex sets. In the proof

of this theorem we shall denote the natural embedding of a

Banach space X into its second dual X∗∗ by, X̂ and similarly,

we shall denote the natural embedding of an element x ∈ X

by, x̂.



Theorem 9 Let C be a closed and bounded convex subset

of a Banach space X. If C is separable and every continuous

linear functional on X attains its supremum over C then C

is weakly compact.

Proof: Let K := Ĉ
weak∗

. To show that C is weakly compact

it is sufficient to show that for every ε > 0,

K ⊆ Ĉ + 2εBX∗∗ .

To this end, fix ε > 0 and let {xn : n ∈ N} be any dense

subset of C. For each n ∈ N, let Cn := K ∩ [x̂n + εBX∗∗ ].

Then {Cn : n ∈ N} is a cover of Ĉ by weak∗ closed convex

subsets of K. Since Ĉ is a boundary of K,

K ⊆ co
⋃

n∈N

Cn ⊆ Ĉ + 2εBX∗∗
k��

If we are willing to invest a little more effort we can extend

Theorem 9 to the setting where BX∗ is weak∗ sequentially

compact. To see this we need the following lemma.



Lemma 2 Let C be a closed and bounded convex subset of a

Banach space X. If (BX∗ , weak∗) is sequentially compact and

every continuous linear functional on X attains its supremum

over C then for each F ∈ BX∗∗∗ there exists an x∗ ∈ BX∗

such that F |
bC

w∗ = x̂∗|
bC

w∗ .

Proof: Let K := Ĉ
w∗

and note that Ĉ is a boundary of K.

Let Bp(K) [Cp(K)] denote the bounded real-valued [weak∗

continuous real-valued] functions defined on K, endowed with

the topology of pointwise convergence on K. For an arbitrary

subset Y of K let τp(Y ) denote the topology on B(K) of

pointwise convergence on Y . Consider, S : (BX∗, weak∗) →

(C(K), τp(Ĉ)) defined by, S(x∗) := x̂∗|K . Since S is con-

tinuous, S(BX∗) is sequentially τp(Ĉ)-compact. Hence, from

Corollary 1, S(BX∗) is sequentially τp(K)-compact. It then

follows from Grothendieck’s Theorem that S(BX∗) is a com-

pact subset of Cp(K) and so a compact subset of Bp(K). In



particular, S(BX∗) is a closed subset of Bp(K). Next, con-

sider T : (BX∗∗∗, weak∗) → Bp(K) defined by, T (F ) :=

F |K . Then T is continuous and so T (B cX∗
) is dense in

T (BX∗∗∗), since B cX∗
is weak∗ dense in BX∗∗∗ by Goldstine’s

Theorem. However, T (B cX∗
) = S(BX∗); which is closed in

Bp(K). Therefore, T (BX∗∗∗) = S(BX∗) = T (B cX∗
). This

completes the proof. k��

Theorem 10 Let C be a closed and bounded convex subset

of a Banach space X. If (BX∗, weak∗) is sequentially com-

pact and every continuous linear functional on X attains its

supremum over C then C is weakly compact.

Proof: Let K := Ĉ
w∗

. In order to obtain a contradiction,

suppose that Ĉ ( K. Let F ∈ K \ Ĉ. Then there exists

a F ∈ BX∗∗∗ such that F (F ) > sup
bc∈ bC

F (ĉ). However, by

Lemma 2 there exists an x∗ ∈ BX∗ such that x̂∗|K = F |K .



Therefore,

x̂∗(F ) = F (F ) > sup
bc∈ bC

F (ĉ) = sup
bc∈ bC

x̂∗(ĉ) = max
G∈K

x̂∗(G);

which contradicts the fact that F ∈ K. Therefore, K = Ĉ

and so C is weakly compact. k��

——————————– The End ——————————–


