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INTRODUCTION

It is well-known that every closed convex set in a
Hilbert space is a Chebyshev set, i.e., contains a unique
nearest point to eaﬁh point in the space. However, a famous
unsolved problem in approximation theory is whether or not
every Chebyshev set in a Hilbert space is convex. In the
finite dimensional éaSe, the answer is known to be in the
affirmative; in the infinite dimensional case, while -some
results have been obtained, the question is,still unresolved
(see Viasov [23] and Narang [20]5.

This paper is a historical and expository account
-of the results in finite dimensional normed linear spaces.

Historically, Bunt [8] in 1934, Motzkin [18] in 1935,
and Kritikos [17] in 1938 all independently showed that
in Euclidean spaces every Chebyshev set is convex. Bunt,
working in Rn, in his dissertation on convex sets, showed
that more generally, a "basic set” is convex if it satisfies
certéin conditions. Motzkin proved his result in B? and
also in‘;935 [19] gave a different proqf'fof bounded |
Chebyéhev sets in}RQ. This proof for bounded Chebyshev
sets in R2 was reprinted, with credit given to Mbtzkin,
in Bundgaard and Duerlune [5] in 1937 and in the survey

paper of Beretta and Maxia [2] in 1940. Xritikos was led



to‘his proof in R™ after an investigation of the relation-
ship between "F-sets" and convex sets. |

In 1940 Jessen [13], awére of Kritikos's proof, gave
still another in R". Busemann.in‘1947 [6] noted that
Jessen's proof could be extended to "straight line spaces"
and in 1955 [7] showed how this could be done. Since a
finite dimensional normed linear space is a "straight line
space" if and only if it is strictly convex (see section 5),
Busemann's result is that in a smooth strictly convex
finiteAdimensional normed linear space, every Chebyshev
set is convex. Valentine [21] independently in 1964
gave essentially the same proof as Busemann.

In 1953, Klee [14] stated that in a finite dimensional

" and

normed linear space, every Chebyshev set is a "sun
gave a characterization of Chebyshev sets in a smooth
and strictly convex finite dimensional normed linear space.

However, as he noted in 1961 [15] the argument in [14]
was garbled, and he proceeded to prove a stronger

result, which in the finite dimensional case, showed
'Vthat the requirement of strict convexity could be dropped.
Thus Klee was the first to show that in a smooth finite
dimensional normed linear space, every Chebyshev set is
convex. (It is easy to see that smoothness cannot be

dropped - take Rz with norm ||(x,y)||=maX{IX|, |y|}.



Then the union of the set of points above or on the
lines y=x and y=2x is a nonconvex Chebyshev set.) In
1961 Vlasov [22] showed that a "boundedly compact"
‘Chebyshev set in é smooth Banach space:(of arbitrary
dimension) is convex. In the finite dimensional case,
this yields a short proof that in a smooth finite di-
mensional normed linear space, every Chebyshev set is
convex.

TheAproofs fall into three classes. Bunt, Jessen
and Busemann use proof by contradiction to find a bail
in the complement of the Chebyshev set of maximai radius
containing a fixed ball. Since the set is Chebyshev
the maximal ballvonly touches at one point. They then
proceed to mer the maximal ball so that it still contains
the fixed ball but is wholly contained in the‘complement
of the Chebyshev set. This contradicts the maximaiity
of the ball. Motzkin, Klee and Vlasov show that a
Chebyshev set is a "sun". (The concept of '"sun" did not
exist in 1935 when Motzkin wfote his paper but was first
used by Klee [14], although he did not name them; this
was done later by Efimov and Steckin [11].) Brdndsted [4]
noted that both Klee and Vlasov use a fixed point theorem |

and remarked that no elementary proof seems to be known.



Kritikas's proof seems to be different from any of

the others.
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PRELIMINARIES

Definition Let X be a normed linear space and M a

nonempty subset of X. The set-valued mapping PM:X+2M

defined by
Pu(x) = A{yeM:|[|x-y|| = d(x,M},
where d(x,M) =‘infllx—y[|, is called the metric projection
yeM )
(or best approximation operator). The set M is proximinal

(semi-Chebyshev) if PM(X) contains at least (at most)
one element for every x¢X. M is a Chebyshev set if it is
both.proximinal~and semi~Chebyshev; i.e., if'PM(x) is a
singleton for every xeX.

Lemma 1 If M is a proximinal set in a normed linear
space X, then M is élosed.

Proof If M were not closed, choose xe¢M\M. Then
d(x,M) = 0 but | |x-m| >0 for all meéM. Hence PM(X) =,
a contradiction.

| ///.

Definition For X a normed linear space, the

closed ball with center x and radius r, denoted Blx,r],

is Blx,r] ={y€X:||x-y||<r}. The open ball with center x

and radius r, denoted B(x,r), is B(x,r) = {yeX:||x-y||<r}.



Proposition Let X be a normed linear space. For

all A€(o,r), if peB[m,r] then there exists a c¢Blm,r]
such that pe¢Bl[c,AlcB[m,r].

Proof By translating and scaling, if necessary,
assume m=0 and r=1. If A>||pl||, take c=0. If x<||pl]|,

. 0
take ¢ = .
l+%%+T—‘ P

/77 .

Definition For any two points x and y in a

linear spaceVX, the interval (or segment) between x and
y, denoted [x,y], is [x,y]={Ax+(1-A)y:0<A<1}. The half-line

from x through y, denoted [x,y> or §§, is

Xy = [x,y>={x+A(y-x):A>0}.
Lemma 2 Let M be a Chebyshev set in a normed linear

space X. Let x€X\M. Let y(}) = PM(X) + A(x—PM(X)).

‘Then K = {A€R:A>0 and PM(y(k)) = PM(X)} is a nonempty
closed intérval.» | |

-Egggi‘ By the triangle inequality; if ne€k, then o€k
for 0<o<n. Purther, 1€K. Let {ai} be a sequence in K
.converging to B. |

[[y(B)—PM(x)llile(B)—y(ai)||+I|y(ai)—PM(y(ai))||

Py yCa;))=P ()|
=y (8)-ya )| [+d(yla, ) ,M)
implies ||y(8)-B,(x)[]|<d(y(8),M). So Py (B))=F (%), BeK,

and K is closed. /77,



Propositions 1) Let M be a norempty set in a

metric space X. Then d(x,M)Zinf{d(x,m):meM} is continuaus.

2) In a finite dimensional normed linear space,
every closed bounded set is compact.

3) Let M be a Chebyshev set in a finite dimensional
normed linear space X. Then PM is continuous.

Proofs 1) ([12], p. 77).

2) ([10], p. 2u86).

3) Follows by a compactness argument ([£91).

/17

Definition If X is a normed linear space, X" will

denote its dual space: the Banach space of all bounded

linear functionals x on X with the norm

1w LEGL
x#0 l

Definition If X is a linear space, a flat (or linear

- variety) is a translate of a linear subspacé of X. The
dimension of & flat is the cardinality of a basis of the

corresponding linear subspace. A hyperplane is a maximal

proper flat of X.

Remark It can be shown that in a linear space X,
H is a hyperplane if and only if there exists a nonzero
‘linear functional f and r¢R such that H=[f:rl={xeX:f(x)=r}

(See [16] or [211).



Definition In a normed linear space X, a supporting

hyperplane of a closed bounded set M at a point yeéM is

a hyperplane [f:r] such that f(y)=r and f(z)<r for zeM.

Notation 1) R" will denote Euclidean n-space,

i.e., the set of n-tuples x = (X, ,X,45...,%X ), X.€R, with
_ 1/2 1°72 n it
' .2 2 2
l{x[[~(xl o, +...+xn)

2) bd M denotes the boundary of the set M.

Definition The distance between two sets A and B,

‘denoted d(A,B), is d(A,B) = inf |]|a-b]|.
ac€A
b€B

Remark The following is used by Motzkin and Jessen.
It was also ﬁoted by Bonnesen [3] (p.43) in 1929.

Lemma 3 If McR", meR™\M, d=d(m,M), Blc,r]cB[m,d],
o<r<d, MNB[m,dJl={p}, and p¢Ble,r], then there exists a ball
‘with radius larger than d, containing Blc,r], and disjoint
from M.

Proof By translating and scaling, if necessary,
assumevmﬁo aﬁd d=1. 'Let § be thé distance between the
supporting hyperplane H of BL0,1] at p and the ball
Blc,r]. Let H' = H - % p. Thus H'ﬂ[o,p] is the poinf
Ap for some A, 0<A<l. So H = {x:<x-Ap, p>=0}. Let

a,b €{x:||x||=1 and x¢H }. Then for €>0,



| |atep|]=||b+ep|]| (look at the squaré of the norms). Let
S={x:||x||<1 and <x-Ap, p><0}. Then ScBl-ep, ||atep|]]

since for x¢S, ||xtep||<]||atep||. Thus Blc,rlcB[-ep,]||atep]]|].
Let T={x:xeBl-ep,||atep|]|] and <x-Ap, p>>0}. Then

T<B(0,1) since for xeT, if ||x]||>1, then | |x+ep||>]|atep] |-

Thus for e sufficiently small, B[-ep, ||atep||] has a

radius larger than 1, contains Blc,r], and is disjoint

from M.

/17,

Definition A normed linear space X is strictly convex

if for every two distinct points x and y. . of unit norm,
| [Ax+(1-0)y|[<1 for 0<A<l.

Definition A normed linear space X is smooth if

every point on the boundary of B[0,1] has a unique
supporting hyperplane.
Lemma 4 In a smooth normed linear space X, the

. supporting hyperplane of BIx,||x-y||] at y is
fx*.: X#,(X) + | |x-y]|]|] where X*EX*, IIX*IIZl,and
K (y-x) = [v-x]]. |

- Proof By a corollary to the Hahn-Banach Theorem
(LT23,p.214) [x*:l] is a supporting hyperplane of B[0,1]
at TT%EgTT where x*eX*, le*[|=l and X*(TT¥E§TT) = i.
By smoothness, it is unique. Thus the unique supporting
hyperplane of Blx,||x-y||] at y is (by translating)
[x*:x*(x)+llx—yl|3.

/17
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Remark It is well-known that in a smooth normed
linear space the ﬁnion of all open balls with centers on
a half-line and radius the distance between the center
and the endpoint of the hélf—line is a half-space (see,
for example, [1] where a somewhat more general result was
established). This can be restated as follows.

Propositioh In a smooth normed linear space X,

let [xwzxw(x)+][x—y|lj be the supporting hyperplane of

Blx,|[x-y||]J at y. then

{ZGX:X*(Z)<X*(X)+IIX—YI[}: U Bly+a(x-y),A|lx-y|]).
A>0 .

Proof ([11]).

/177

Definition A Chebyshev set M in a normed linear space
B ——————

X 1s called a sun if for every x€¢X\M and WEPM(X)X,

'_PM(X) = BM(W).

Remark In [22] Vlasov proved the following (which
had been stated previously by N. Efimov and S. Steckin).
The following proof is from Amir and Deutsch [1], where
a somewhat more general result was established.

Theorem 1 Let M be a Chebyshev set in a smooth normed

linear space X. If M is a sun, then M is convex.
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Proof If M were not convex, there would exist
Yi»> Yo €M, X1€(0,1) such that x = Ay, ¥ (l—k)y2¢ M.

Claim {zeX:x*(z)<x*(X)+[lx—PM(X)![}ﬂM=¢. Let

yG{ZEX:XN(Z)<Xw(X)+IIX—PM(X)II}HM. Thus there exists
a Y>0 such that yeB(P,(x)+y(x-P (x)), Y] ix-Py(x2] 1)
that is,

[ [Py (s0)+y (=P () =y [ [ <y | {%=Py () [ ]
=[!PM(X)—Y(X-PM(X))—PM(X)|l
which contradicts the fact that for

3

W = PM(x) + Y(X—PM(X))GPM(X)X, PM(X) = PM(w),

since y€M. Thus the claim is proved.

Thus, x"(y)2x" (x)+]|x-P, () || for i = 1,2. But

0<||x—PM(x)||=A|[x—PM(X)Il+(l—A)||x—PM(x)||

f}xx(yl—x)+(l—x)xx(y2—x)

=x“(kyl+(1—x)y2-x)

=x (0)
:O,
a contradiction. Thus M is convex.

1777
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Theorem 2 (Schauder-Tychonoff Fixed Point Theorem)
Let B be a dompact convex subset of a normed iinear space
X and T:B+B a continuous map. Then there exists an xB

such that T(x) = x.

Proof ([10], p. 456).

/77,
Definition In a linear space X, the convex hull
of a set M, denoted co(M), is the intersection of all
convex sets which contain M.
Definition A convex combination of the elements
X9 x2,...,xn'in a linear space X is any linear combination
igl A%;, where A.>0 and igl Ay, o= 1.

Propositions 1) In alinear space X, a set M is convex

if and only if M=co(M).

2) Let M be a subset of a lineér space X. Then'co(M)'is

the set of all convex combinations of elements of M.

3) (Caratheodory) Let McX where X is a linear space of

dimension n. If x€co(M), then x is expressible as a convex

combination of n+l (or fewer) points of M.

4) Let M be a compact set in R™. Then co(M) is closed.
Proofs 1) Follows from the definition of convex

hull.

2) Let B denote the set of all convex combinations of

elements of M. McB and since B is convex co(M)<B. The
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proof of the reverse inclusion, Bcco(M), follows by induction
on the number of elements in a convex combination.

3) «([9]1, p. 17).

4) TFollows by a compactness argument.

/117
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1. Bunt (193Y4)

Lemma (Bunt) Let there be given in R": a closed set
M, a point c4M but ¢ = %X + %y, X,y€M, and a ball Blec,rl]
such that Blc,r]JNM = ¢ . Then the radii of the closed
balls which contain Blc,r] and which do not intersect M are

bounded above by a positive number d.

Proof It will be shown that

works. If n=1, since

2. 2
[[x-y || +r

2r

B IERIE

the result follows. If n>2, let B[cx,rx] be a ball which

contains Blc,r] and which does not intersect M. Let F be

any two-dimensional flat containing x,y and c¢”. If d works

} . . n
in F, it works in R.

Let % be the line in T passing through e and perpendicular
to [x,y]. Let c¢' denote the intersection of % and [x,v].

Let p be the point of intersection of the half-line

_ -

oo s, o
-~

c ¢' and bd Ble ,r ] (in case ¢ =c¢', choose one of the

intersections of the line £ and bd B[c“,rw]). Let s and g be

\2 ole

the points of intersection of [x,y] and bd B[cx,r“].



15

‘ %
Applying the Pythagorean Theorem to the triangle sc'c

and noting that ||c*—c'}|=r*—|]c'-p]|, it is seen that
' 2
o Us=all® & jjerop])?
::_ l+
"o ZTTeT=p]]

Because B[c,r]CB[cw,rx] and ¢ is on the segment [x,y],

r<||ec'-p||. Since

T5 ¥ psc >¥psc'>0

2_.
and
ipsc“ = ispc“,
cos(ispc*) i cos(¥psc')
then
_1b=all
le'-pl] . 2
(5P| — TEH
Thus
ozr<|]cr-p||<Hezall
For some A€(0,1), r=X||c'-p]|].
Also

2
ler-p||? < Lessall

implies



16

A=) [ et-p] |

| A

3

2
(1-x)li§%91l_

expanding this

I A

2 2
aolls=allporopy 2y < Hegalls v 32y jcrp))?

and by dividing both sides by 2A||c'-p|]|,

2 2
LAEadlepyy2 Lol oy h2jerop))?

r = <
2]le’-pl| - 2xTTe’-pl]

, .
lS;g J_I___ + PZ

2r

But ll§%9L1<<||x—y|| so

2. 2
o o Hx-y] T4
2r

/77

'Remark " Bunt's original proof used induction on the
dimension of R™. Bunt's Lemma can be extended.to smooth
finite dimensional nofmed linear spaces (seebBusemann's |
Lemma below). However, the result is false without smoothness -
take R? with norm P (x,9) ] |=]x|+]|y|. For M={(-2,0),(2,0)}, BLO,1]
can be contained in balls of arbitrarily large radius not

intersecting M.
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Theorem In Rn, every Chebyshev set is convex.

nggi (Bunt [8]) Let M be a Chebyshev set in R"
which is not convex. Then there exists points x and y
bon the boundary of M such that {Ax+(1-A)y:0<A<1}NM =¢.
Since M 1is closed, there exists a ball Blc,r] with center

2
Let d be the supremum of the radii of the closed balls which

at ¢ = lx + %y and with radius r>0 such that MNBlc,r]l = ¢.

contain Blc,r] and which do not intersect M (d exists by
Bunt's Lemma). Let {B[mi,di]} be a sequence of closed
balls with di+d which contain Ble,r] and which do not
intersect M. Since ||c-m;||<d;<d, the sequence of points
{ﬁi} is bounded and hence, by péssing to a subsequence 1if
necessary, m.>m as e

Now B[m,d] contains Blc,r]. For if géBlc,r] then
| [q-m; | |<d; which implies ||q-m[]|<d. |

"~ Also MNB(m,d)=¢. For if qeM then llq_mi||>di which implies

| lq-m] | >d. |

Since M is closed, the maximality of the radius implies
B[lm,dJNM#¢. Since M is a Chebyshev set, the intersection
of Blm,d] and M is a point; call it p.

| Let Blz,r] be a ball such that péBlz,rlcBlm,d]l. Since

Blc,rJNM=¢, c#z.
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Claim There exists a §&>0 such that

1) [B[m,dl + A ﬁ%}%ﬁ]rm =¢, and

(c-2)

2) Blc,r]JcBlm,d] + A -

‘whenever 0<A<S.

Let t€lc+(p-2z),pINB(m,d) (always possible by strict
convexity). Thus ||t-p||<||c-z||. Choose s>0 such that
B[t,s]cB[m,dJ; Blm,dJ\B(p,s) is bounded and closed and has
no point in common with M and hence has ?Qsitive distance

Yy from M. Let &= min(y,||t-p||). Note that

(c~2)

B[msd] + A_T%%E%%T = B[m,d] + A TTE:ETT.

Assume 7
: (t-p)
qE[B[m,d] + AO TT¥:§TT] n M
for some A <8 . Now
(t-p) (t-p) _
@ Trempi M < Ham 2o sy - @l
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Thus
(t-p) .
q—)\o ﬁT X B[m,d]\B(p,S)
S0
A ETP) ¢ B(p,s)
1o TTE=p[T € BP9
Let
b = (t-p)
TG R TR TR
S0
o=t l] = ||a- A, T2y - B||< ©
I Yo TTEpIT ~ P

which implies beB(t,s)cB(m,d). Thus

(t-p)

[q-ko ﬂﬁ‘—r, b]CB(m,d) .

From the definition of b,

(t-p) -
'lq-xo TTe=pIT b“ = | {t-pll,
and
(t-p) -
oo THERTT - 9f| = rosestieeil s
thus
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This is a contradiction as MNB(m,d) = ¢. Hence

[B(m,d] + xﬁ%ﬁ]m = ¢

for 0<A<§, proving 1) of the claim.

Assume q€B[c,r]}. Now g€B[m,d] since Blc,rJcBlm,d]. Also

o<x<s<||t-p||<|]c-z]]

and ¢ and z are in BIm,dJ. Thus

q_va%%EE%T- € B[m,d]

since

q+(z-c)€Blz,rJcBlm,d].

SO
' (c-2)
qEB[m,d] + A TTE:ETT
and

(c-2)

B[C,P]CB[m,d] + A TTE:ETT.

Thus the claim is proved.
Since

(c-2)

BLm+x Cc—-z

, dlnM = ¢,

if follows that for do>d and dO sufficiently close to d that

B[m+k T%%;%%T 5 dO]ﬂM = ¢.
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However, this contradicts the maximality of the radius of
B[m,d]. Thus, every Chebyshev set is convex.
/77,

Remark Close inspectioﬁ of the proof shows that only
strict convexity, finite dimensionality and Bunt's Lemma
were used. Thus in any strictly convex finite dimensiénal
»normed linear space X in which Bunt's Lemma holds (e.g., if
X is also smooth - compare section 5 below) every Chebyshev

set in X is convex.



22
2. Motzkin (1935)

Remark In [18] Motzkin gave the following theorem
and proof and mentioned that it could be extended to any
smooth two-dimensional normed linear spaces (although it
is not entirely clear how this would be done). In addition,
it is not clear whether Motzkin's proof can be éxtended
fromIR2 to R".

Theorem In Rz, every Chebyshev set is convex.

Proof vLet M be a Chebyshev in Rz. It will be shown
that M is a sun, hence by Theorem 1, it is convex. Let
xERQ\M be given. It is necessary to show that every point

—>
on the half-1line PM(X)X has PM(X) as best approximation.

Assume, by translation if necessary, that 0 is the last point
on the half-line that has PM(X) as best approximation (it
has PM(X) as best approximation by Lemma 2).

Define the deviation of a vector to be the angle
between it and the vector PM(X). Since the metric‘projection
is continuous,bthere exists a closed ball Bl[o,r] such that
for every point y€Blo,r], PM(y)—y has deviation less than
€ (<g). ' |

Let D be the diameter of Blo,r] perpendicular to PM(X).
Now D divides the circumference of Blo,r] into two half-

" circumferences. Let C be the half-circumference which is
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on the opposite side of D as PM(X). Let cy and c, be points
on C such that -c,; and -c, have deviation equal to € and let
d1 and d2 be points on D, different from 0, such that

d

l—ci and d2—02 have deviation equal to € (dl and d2 exist
since e<%).

Let 6132 be the curve on C with endpoints cq and Cy-
———

Let d:5182+D be the function defined by d(c) = CPM(c)ﬂD (defined
since every point of c;¢, has deviation less than €). Now

d is injective since if d(c')=d(c"),vPM(cf') would be a
better approximation to ¢' by the triangle inequality. Note
that d(cl)E[dl,O] and d(cz)é[dz,O] and that d is continuous
since PM is continuous. Since the continuous image of a
connected set is cbnnected, by restricting the range‘ofvd to
[d(cl),d(cz)], d is surjective. Thus there is a bijective
correspondence between 5122 and [d(cl)’d(CZ)]' So there |
exists a 666132
by the triangle inequality PM(é) = PM(O) = PM(X). Thus g»is
> .

such that d(&)=0. Thus vOE[@,PM(é)] and so

a point on the half-line PM(X)X further from PM(X) than 0 that
has PM(X) as best approximation. But this is a contradiction
as 0 was assumed to be the last point on the half-line
that has PM(X) as best approximation.
/17
Remark Motzkin's original proof showed that every
sun in R2‘is convex by noting that M is the intersection

(over all xER?\M) of the complement of fhe open half-space
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formed by taking the union of all open balls with centers
—}

on the half-line PM(X)X and radius the distance between

the center and PM(X).

Theorem In Rz, every bounded Chebyshev set is convex.

Proof (Motzkin [19]) Let M be a bounded Chebyshev
" set in R%?. Assume M is not convex. Hence M#co(M)..

Case 1 bd [co(M) IcM.

Let r = sup d(p,M) where p runs through co(lM). Since
M is ciosed, r>0. Since co(M) is compact there exists a
point ¢ such that r = d(c,M). Thus the interior of Blc,r]
has no point in common with M. Since M is a Chebyshev set,
Blc,r] intersects M at only one point, call it q. By
Lemma 3, there exists a ball with larger radius than r
that is disjoint from M. This contradicts the maximality
of the radius of Blc,r]. Thus M is convex.

Case 2 bd [co(M)I¢M.

Let ¢ be a coundary point of co(M) which is not
contained in M. Let H be a supporting hyperplane_of‘co(M)
passing through ¢ (possible by finite dimensionality).

If a supporting hyperplane only has one point in common
with co(M), that point is contained in M. Hence H contains
an interval [a,b] which contains c¢ in its relative interior

and has only a and b belonging to M (since M is closed).
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Let B[é,r] be a ball that does not have any point in common
with M. Let x be the point on the boundary of Blec,r]

"~ such that [ec,x] is perpendicular to [a,b] and x is in the
half-space supported by theéh;perplane H. Let ry be the
half-line from x passing through the closed triangle cxb,
such that no point of M is contained in the open area

—

bounded by r, and xc, while r., has at least one point y

1 1
'in common with M. Let r, be the half-line from y, per-
pendicular to ry, which e ventually lies in the half—space

not containing M. Let w be the point on r, such that| |w-y||=1.
Let Ke{a€R:B(y+a(w-y),a)NM=¢}. By taking o sufficiently
small K is seen to be nonempty and if o is taken big enoﬁgh,

K is seen to be bounded above. Let B8=sup K. .

Assume B§K (a contradiction will be shown). Then
B(w+B(w-y),8)M#¢. Let z=P (w+B(w-y)). Then z€B(w+B(w-y),8)
and so

| [w+B(w-y)-z| [=d (w+B(w-y),M)<B.

Choose " €>0 such that

aGutB(w-y) ;M <B-2E<p-Eap.

" Then

| [+ (8=5) (w=y) =z | <| [wBCw-y) -z ] |+] |SCw-y)) ||

=d(w+B(W—y),M)+%

_a_ E
-3-5.
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SO zGB(w+(B-%)(w—y),B-%), a contradiction. Thus BeK.

Since M is a Chebyshev set, Blw+B(w-y),BINM={y}. Let
S = B[w+B(w-y),BI\B(y,e) where e<B and € 1is sufficiently
small so that MﬂB(y,é)ris on one side of ry. Now S is closed
and bounded and SNM=¢. Thus d(S,M)= 6>0. Thus
B[w+(8+%)(w—y),8+g] intersects M only within B(y,e). But
r, is the supporting hyperplane of MNB(y,e) at y, and the
balls with centers on r, have ry as a tangent line. Thus

the intersection of B[w+(8+%)(w—y),8+%] and MNB(y,e) 1is y.

This is a contradiction as B=sup K. Thus M is convex.

/77
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3. Kritikos (1938)

Definition A closed set M in ®R" is an F-set, if for

any r>0 and any point pERn\M there exists a closed ball
of radius r containing p and contained in Rn\M.

Definition A closed set M in R™ is an H-set if for

every point pERn\M there exists a hyperplane passing
through p such that M is contained in one of the closed
half-spaces formed by the hyperplane. (Kritikos called
such sets G-sets).

Lemma In R", every F-set is an H-set.

Proof (Kritikos [17]) Let M be an F-set in R" and let
p¢R™\M. Thus there exists a sequence of balls {B[mi,di]}
with d, v containing p and contained in R™\M. Let qéM.
Then ||q-m,||>d; and  [[gq-m | [>e as i»» . Since

| Im;-al[-]la-p|||<|Im;-p||, [|mi-p|]>> as i+=

Thus, for i large, mi—p¢0. Hence by passing to a subsequence

m. =P
m, -p
pm, converges to the direction of 53. Let H be the hyperplane

if necessary, p + + ¢. So the direction of

perpendicular to Pé and passing through p.

Let t be any point in the open half-space of H containing

—_—
c. So the angle i(pc,pt)<g. Let S be the point of inter-
—
section of pt and bd B[mi,di]. Let b be the point of inter-
—_— N

section of pm. and the hyperplane T perpendicular to ps; passing

through SFE
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Claim. For i large, ||p-b||>d;.

For i sufficiently large, Eﬁ; is in the direction of Eg.
Assume for purposes of the claim, by scaling and translating
if necessary, that mi=0 and di:l. Let u=gpNbd BLO,1],

B € R. Thus p=Au, 0<A<l. Now H={x:<u,x-p>=0}. So

<u,s,-p><0 and <u,s;><A. Also‘T={x:<p—si,x—si>=0}. Since

b=TNau, «¢€R, <p—si,au-si>=0 which implies

A<u, s.>-1
-

cx =
A=-<u, s.>
1
Thus
2% - 2h<u, s>+ 1
! Ip—bl I = )\ _<u, Si>

So 1t sufficies to show that

2

[A° = 2A<u, si>+1|—l+<u, Si>30.

If =0, lt+<u, s5.>>0 since |<u, si>|i||u|| |[si||. If A=1,
2|L-<u, si>[—(1-<u, si>)20.

case 1 % - 2a<u, 5.>+1>0.

So

2

£ AT - 2A<u, si>+l—A+<u, Si>’

£1(0)

2x - 2<u, s.>-1,
i
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and f has a minimum when f'(A) = 0; that is, A= <u, s.>+ L

1 2
1 1 1,_ 2.3
But 0<A<1l, hence -5<<u, s;><5. Thus f(<u,si>+7)~ —<u,s;> +E>O'
Case 2 Az - 2A<u, Si>+l<0'
So.
g(x) = -~ Az + 2Xi<u, si>—l—A+<u, 85>
g'(A) = - 2x+ 2<u, si>—l,
and
g't(\)= - 2<0.
Thus g 1is concave down.
So
lkz - 2A<u, s.>+1|-A+<u, s.>>0
i i =

for 0<A<1 and the claim is proved.

Hence
ls;-pl
| [e;~p]] d; TTTe=5TT

d;, cos 3§ (Eﬁi, 1.
Since

lim cosi(ﬁﬁi 5%)=cos§(§g,§%)>0;lIsi—pll+w
> 3

] >0

as i+, Thus, eventually, tE[p,si] and hence tGB[mi,di] and
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so t€R™ M. Since t was an arbitrary point in the open
half-space of H containing ¢, M is contained in the closed
half-space not containing c¢. Hence M is an H-set.
/17

Lemma In Rn, every H-set is either convex or contained
in a hyperplane.

Proof (Kritikos [17]) Let M be a H-set in R and
‘assume M is not contained in a hjperplane. If n=1 and if
M containé two points aq and qz,_it must contain all the
points of the segment [ql,q2] since M is an H-set. Hence
assume n>2. If M is not convex, there exists two points
q; and g, of M such that the segment [qlsq2] contains a
point D, in R™\ M. Choose a point Q4 in M not on the line
connecting Q and ay 5 such a point exists since n>2 and M
is not contained in a hyperplane. On the segment [qs,pz]
choose a point Py in the relative interior of [q3,p2]
such that p3€Rn\M; this is possible since pzeﬁn\M. If n>3,
‘one can continue fhis construction ﬁntil one has n+l points
ql,qé,..,,qn+l in M which determine an n-dimensional simplex
whose'interior contains a point Pr+1 of RH\MG But this-
implies a contradiction, as it is impossible to pass a
hyperplane through P41 that does not separate some of

the points Q75 Qgsees Thus M is convex.

>An+1°
/177,
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Theorem Zh)(fx every Chebyshev set is convex.

Proof Let M be a Chebyshev set in R"™. Tt may be
assumed that 0€M and that span M is R" (otherwise, restrict
attention to span M).

Claim M is an F-set.

If pERn\M5 B[p,r]an\M for r<d(p,M). Assume the radii
of the closed balls containing p and contained in Rn\M are
bounded and let d be the supremum. Hence all closed balls
containing p and contained in R™M M with radius d have
at least one point in common with M.

Let {B[mi,di]} be a sequence of closed balls containing
p and contained in R™\ M with d.>d. Since f[p—mi[[idiid,
the sequence of points {mi} is bounded. ‘Hence, by passing
to a subsequehce if necessary, {mi} converges to a point m.

Every interior point of BIm,d] is an interior point

of B[mi,di] for i sufficiently large; hence every interior point

of B[m,d] is contained in R™MM. Also ]Imi—pllid and.
lim [[mi—pllzllm—pl[ so peBlm,d]. Since the radius is
10

d, B[m,dINM#é¢; since M is a Chebyshev set, the intersection
of BIm,d] and M is a point, call it q.

Let H be the supporting hyperplane of Blm,d] at q. Let

. d (m-q)
§ = d(p,M) and o= min {3, -g-}. Let H' = H +.°‘T7%-_<%T
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The translation defined by the vector A s where

0<A<a, translates the part of the ball Blm,d] onbthe same
side of H' as g into the interior of the ball B[m,d]. Thus,
this part of the ball is translated into RAM. The remaining
part of the ball is a closed set in Rn\M, thus there is a
minimum distance e.from it to M. Hence as long as A<e , its

translation is contained in R™M. Also p¢Blm,d] + XT%%E%%T

if A<a. Thus for A<min{a,e}, B[m,d] + A T%%E%%T

is a ball with radius d which contains p, is contained
in'ﬁn\M, and has no point in common with M. Thus for do>d

P (m-q) ) -
and dO sufficiently close to d, Blm + do TTE:%TT, dO]ﬂM = ¢,

However, this contradicts the maximality of the radius of
Blm,d]. Thus, M is an F-set.
Consequently, M is an H-set. Since span M = Rn, M
is convex. - /77
Remark Kritikos's original proof used an'inductioﬁ
argument on the dimension n to show that M is convex.

That one can assume that M is not contained in a hyperplane

was suggested by Professor Deutsch.
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4. Jessen (1940)

Remark The first part of Jessen's proof is similar
to Bunt's proof.

Theorem In Rn, every Chebyshev set is convex.

Proof (Jessen [13]) Let M be a Chebyshev set in R™
which is not convex. Then there exists points x and y on
the boundary of M such that {Ax+(1—l)y:O<X<ZﬂﬂM = ¢.

- Since M is closed, there exists a ball Blc,r] with center
at ¢ = %X + %y and with radius r>0 such that MNBlc,r] = ¢.
Let S ={s€Rn\M:B[c,r]CB[S,IIs—PM(s)IIJ}. Since>pM is
continuous, S is closed. Since M is in Rn, at least one

of x and y is outside of B[s,[]s—PM(s)II] for all s¢S.

From this it follows that S is bounded (a rigorous proof

of this is given in section 5 (Busemann's Lemma)). Thus S
is compact. Hence the continuous function d(.,M) attains

a maximum on the set S; say at a point 8. Then the ball
B[g,I[;—PM(s)I[] contains B[c,r] and only intefsects M at
PM(;). Thus by Lemma 3, there exists a ball B withvradius
larger than d, containing Ble,r] and disjoint from M. Thus
the center of the ball B belongs to the set S. But this
contradicts the maximality of the radius of B[g,llg—PM(g)ll].

Hence every Chebyshev set in R" is convex.

/7.
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Remark Jessen did not give a detailed proof that S

is bounded, but only stated this fact.
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5. Busemann (1947)

Definition In a metric space X with metric d let

(xyz) denote the statement that the three points x,y and
zZz are different and the equation d(x,y) + d(y,z) = d(x,z)

holds. X is a straight line space if the following

conditions are satisfied:
1) Each bounded infinite set has an accumulation point.
2) TFor any two different points x and z, there is a point
y with (xyz).
3) For any two different points x and y, there is a
point z with (xyz). |
4) If (xyzl) and (xyzZ), and d(y,zl) = d(y,zz),k

then zl = 22'

Theorem Let X be a normed linear spacé.A Then X
is a straight line space if and only if X if finife dimensional -
and strictly convex.
Proof If X is a straight line space, then 1) impliés
B(X) is compact and hence X is finite dimensional. Let
u, vex, ||u||=|]v||=l, and ||u+v|l=2. Set x=u, Z,=-u,

Z,==v, and y=0. Then for i=1,2

2
==yl [+ | y-2z ]| =2=] | x-2,]

so by 1) 213255 i.e. u=v., Thus X is strictly convex.
| Conversely, if X is a finite dimensional (strictly
convex) space, conditions 1), 2), and 3) are obviously satisfied.

For i=1,2, let x,vy, and'zi be three distinect points with

-yl [+l T y-2 11 =] I x-2,1]
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and IIY‘21II=IIY°22||- Then I |x=zl‘!=|‘x—zzi|. Let

A = H—ll.hx‘ . ou o= XS A .
X"Zi P u ]—IT_%T-‘— ,» and Vi = ﬂ?z—ll—-l— (1—1,2).
Then ||u]|=|]v]|=1 and [ Iru+s (1-2)v) | =1. By strict convexity,

usv. (i=1,2), i.e. 2152, Thus condition 4) is satisfied

~and X is a straight line space. i

Remark The following extends Bunt's Lemma.

Lemma (Busemann) Let there be given in a smooth
finite dimensional normed linear space X: a'élosed set M,
a point c¢M but c = %X + %y, x,y€M, and a ball Blc,r]
such that Bl[ec,r]NM = ¢. Then the radii of the closed balls
which do not intersect M are bounded above by a positive
number d.

Proof (Busemann [7]) Assume {B[mi,di]} is a sequence of

balls with di+w which contain Blc,r] and which do not

intersect M. Define

(c-m.)
i

Q) wyEmg 4 ([ fe-mg | [+0) [Tesm T -

Since ||w;-c||=r, w,¢bd Blc,r]. Thus B[mi,']mi—will]CB[mi,dij

since wieB[c,r]cB[mi,di]. Also MﬂB[mi,di].= ¢ implies

MﬂB[mi,||mi-wi||] = ¢, SO x,ka[mi,IImi—willl for all i.
From (1)
llc'mil|+r
m. = w, *+ ] (c-w.)
i i r i
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and
| | [e-m; | [+r

llmi'will: ( -~ ) IIC“WilI°
1o

Blm.,||m,~w.|]|J=Blw.+Xx.(c-w.),A,|]|c-w.]|]|]

i i i i7i i i i
where
||c-m. | [+r
- i
i T

Since bd Blc,r] is closed aﬁd bounded, it is compact.

‘Thus, by passing to a subsequence if necessary, W, W Considef

the unique supporting hyperplane [x“:xw(c)+l[w—c|l] of

Blc,r] at w. Either x*(x—c)<]|w—c | |or X*(y—c)<||w;cll.

For if not .

Thus

SO

This

x*(x?c)zllw—cll and x*(y—c)illw—cll.

%-xw(x—c) + % x*(y—c)illw—cll

| [w-c] |<x" (3% + Fy-c) = x (0)=0.

is a contradiction, as ||w-c||=r>0. Assume without

loss of generality that

x (y-c)<| |w-c|].
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Thus there exists a A>0 such that yeB(wtA(c-w) ,A||e-w]]).
Assume y{B(wi+(A+l)(c—wi),(A+l)]lc—will) frequently (a

contradiction will be shown). Thus, for infinitely many i,

[ y=w; =1 Cemw ) [ | > (A1) | |e=w.]].
So
A[ic—wi][i]]y—wi—(l+l)(c-wi)l[—]]c—wi]l
i[]y—wi—k(c—wi)ll.
By passing to the limit on both sides of the inequality
Mle-wl <] |y-w=2(c-w)]].

But yeB(wti(e-w),A||c-w| |} implies

brty~w—k(c—w)|[<xllc—wl]

which is a contradiétion. Thus
yEB(wi+(A+l)(c—wi),(k+l)lIcfwi]])
eventually.
To show A;>® it suffices to show thatl]c—mi[l+w

Assume llc—mi[|<M for all i. Now

[ Tx=my [ <] [x=c| [+] | e-m, | |

<I]x—cl[+M,
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Thus for diZIIX‘CII+M3 x€Blm, ,d.]J. This is a contradiction
of the definition of Blm,,d.].

Choose N such that for i>N, Ai>k+l and
yeBw; +(A+1) (c-w,), (A+1)|]e-w,|[).

That is, for i>N,
yEB(wi+Ai(c-wi),Ai]|c—wi||)=B(mi,llmi—will).

But this is. a contradiction of the construction of B[m > | [m. —wl{}].

/117

Theorem In a strictly convex smooth finite dimensional
normed lineer space X, every Chebyshev set is convex.
Proof Busemann's Lemma can be used in place of Bunt's
Lemma in the proof of Section 1.
///7

Remark Busemann clalmed that Lemma 3 could be extended

to stralght line spaces; however, this is not clear to me.
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6. Klee (1961)

Remark In [15] Klee showed that a Chebyshev set M
in.a smooth reflexive Banach space X, with every point of
X\M having a neighborhood on which the restricted metric
projection is both continuous and weakly continuous, is
convex. In the finite dimensional case, the théofem and
proof reduce to the following.

Theorem In-a smooth finite dimensional normed_lineaf
space X, every Chebyshev set is convex.

Proof (Klee [15]) Let M be a Chebyshev set in X.. It
will be shown that M is a sun, hence by Theorem 1 it is
convex. Let x€X\M be given. It is necessary to show that
every point on the half-line ?ET§7§ has PM(X) as best
approximation. Assume, by translation if necessary, that 0
is the last point on the half-line that has PM(X) as best

‘approximation (it has PM(X) as best approximation by Lemma 2).

ES

Let x be a norm one functional such that x"(PM(x))=IIPM(X)||.
Let H = x ~1(0). Hence every point ye€X can be written
. s PM(X)
uniquely in the form y = y' + x (y)p, y'€H, p = . .
_ | TP GO

Choose € such that 0<E<%|,PM(X)||. Thus B[P, (x),elN H = ¢.

For if yEB[PM(x),E],
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(1) % (y)

x“(y—PM(x)) +ox (B (x))

| v

| y-Py GO | #] B Go ||

\'4

- FliE GO+ PG|

> 0.

Choose §>0 such that
1. o<$<%JIPM(x)|l
-2. Bl[0,810M = ¢
and 3. y€BLO,61=P) (y) €BLP,(x),e]

(possible since PM is continuous).

Then for y€B[0,6]
(2) x“(y><x"<PM(y>>
since” '

x“(PM<y)-y> - x“<pM(y> - Py(x) + Pu(x) - y)
= |12y GO [+x7 (Py(y) = P x)) - x" (y)

> By |||y = By GO | [=]]v]]
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1 1
1Py GO = 5l Py G = 5l Ry GO

2
= 2]|py ]|
> 0

- Also, for y€Bl[o,681],

(3) ||Py(y) "=y [ |<x” (Py(y))=x (y)
since

| 1Py =yt [ <] 1By (v =% (P (y)p] [+]]y-x" (v)p]]

- P,(x)
% M
<I|Py(y)-x (Py(y) =By GO 5 3T Py [ [+2]]y]]

| A

2| [Py (y)-Py G [ [+2] |y ]]

| A

1 1
2 x| |[PyG | [+25] [Py GO ]

2

A

x"(PM(y)—y).

Assume without loss of generality, by scaling if

necessary, that 6=2 and hence IIPM(X)[I>12>2. Let

W={x€H:||x||<1} and q = TT%TT . Thus W—qCB[C,ZJ. By

2

(1) and (2), for each wew; xw(w—q)<0<xx(PM(w—q)), so the
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segment from w-q to PM(w—q) must intersect H in a unique

point, call it f(w). Thus

F(w) = (1-2)(w-q) + xtPM(w-q>J

where
A= % : (ﬂ)
x (@) + x (PM(w—q))
. #
since x (f(w)) = 0.
Since PM is continuous, f is continuous. For each
weW,
f(w)-w = [f(w)-w]"'
= A[PM(w—q)' - (w-g)']J
and by (3)
| [Py w-a)" - (w—q)'llixx(PM(w—q) - % (w-q)
i Xh‘( )
A
so |[£Gn) - w|<||x (@]]<]lal] = 1.

For each z¢2W, let glz) = z - f(% z). Then g is
continuous and ]Ig(z)lli[l% le+||% z—f(%-z)l]i2, SO

g(2W) c2W. Now 2W is compact and convex. Hence by the
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~

Schauder-Tychonoff Fixed Point Theorem there exists a we2Ww

such that g(;) = ;. Thus f(% &) = 0, so OE[% ;—q, PM(% ;—q)].

Thus by the triangle inequality PM(% %—q) = PM(O) = PM(X).

- Thus % a—q is a point on the half-line ?ﬁT§T§ further from

PM(X) than 0 that has PM(X) as best approximation. - But

this is a contradiction as 0 was assumed to be the last

point on the half-line that has PM(X) as best approximatipn.

/17,

Remark Klee showed that every sun 'in a smooth space is

convex by noting that M is the iﬁtersection (Qver all xeX\M)

of the complement of the open half-space formed by taking

the union of all open balls with centers on the half-line

PMEX5§ and radius the distance between the center and PM(X);
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7. Vlasov (1961)

Rémark In [22] Vlasov showed that in any smooth
Banach space every boundedly compact Chebyshev set is
convex (a set M is boundedly compact if every bounded
sequence in M has a subsequence which converges to a
point in M). In the finite dimensional case, the theorem
- and proof reduce to the following. |

Theorem In a smooth finite dimensional normed linear
space X, every Chebyshev set is convex.

‘Proof (Vlasov [22]) Let M be a ChebysheV set in X.
It will be shown that M is a sun, hence by Theorem 1 it is
convex. Let x€X\M be given. It is necessary to show that
every point on the half-line PET§7§ has PM(X) as best
approximation. Assume, by translation if necessaby, that O
- is the last point on the half-line that has PM(X) as best
approximation (it has PM(X) as best approximation by=Lemma 2).

Let T:BIO,IIPM(X)IIJ+B[O,]|PM(X)|I] be defined by
| Pu(x)
T(Z) = = H'PI\T(Z—)H PM(FZ)'.

Now B[OSIIPM(X)IIJ is compact and convex, and T is continuous
since PM is continuous. Thus by the Schauder-Tychonoff Fixed

Point Theorem there exists a zEB[O,IlPM(x)Il] such that
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A

T(z) = z; that is

~ P (x)r N
S T STV

A

| 1PuC2 )
Thus ; Z 0 and
:HPM<:§>H R S 1, Tl £ .
[ IRz [[+] [ ByGo || | 1By (2| [+] | By |

so Oe[z,PM(z)J. Thus by the triangle inequality PM(Z)=PM(O)=PM(X).

Thus z is a point on the half-line TET§7§ further from PM(X)
than 0 that has PM(X) as best approximation. But this is
a contradiction as 0 was assumed to be the last point on
the half-line that has PM(X) as best approximation.
/77
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Summary

Recall that the proofs fall into three classes. Bunt,
Jessen and Busemann use proof by contradiction to find a
maximal ball and then move it. Motzkin, Klee and Vlasov
vshow that a Chebyshev set is a sun,vhence convex. . Kpitikos's
proof uses the concept of F-set and H-set.

Two apprbaches to finding a proof not using a fixed
point theorem for the finite dimensional case readily
present themselves.

(1) Try to extend Motzkin's proof. Recall that
Motzkin did not use a fixed point theorem but .instead used
the idea of deviation. The idea of deviation can be
extended to aﬁy normed linear space; Motzkin's proof is
probably capable of generalization.

(2) Try to extend Lemma 3 (concerning the existence
of a ball larger than the maximal ball) from R™ to any
.finite dimensional normed linear space.  In conjunction with
Busemanh‘s Lemma this would give a new proof (which would‘
be fixed point free) that in a smooth finite dimensional |

normed linear space, every Chebyshev set is convex.
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