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Semitopological Groups

A triple (G, ·, τ) is called a semitopological group if:

(i) (G, ·) is a group;

(ii) (G, τ) is a topological space;

(iii) multiplication, (x, y) 7→ x · y, from G × G into G is

separately continuous.

A triple (G, ·, τ) is a topological group if:

(i) (G, ·, τ) is a semitopological group;

(ii) multiplication, (x, y) 7→ x · y, from G × G into G is

jointly continuous;

(iii) inversion, x 7→ x−1, from G onto G is continuous.



Example 1. Let (X, τ) be a nonempty topological space and

let G be a nonempty subset of XX . If (G, ◦) is a group (where

“◦” denotes the binary relation of function composition) and

τp denotes the topology on XX of pointwise convergence

on X then (G, ◦, τp) is a semitopological group provided the

members of G are continuous functions.

Example 2. Let (G, ·) be a group and let (X, τ) be a topo-

logical space. Further, let π : G × X → X be a mapping

(group action) such that:

(i) π(e, x) = x for all x ∈ X, where e denotes the identity

element of G;

(ii) π(g · h, x) = π(g, π(h, x)) for all g, h ∈ G and x ∈ X;

(iii) for each g ∈ G, the mapping, x 7→ π(g, x), is a contin-

uous function on X.



Then (G, X) is called a flow on X. Next, consider the map-

ping ρ : G → XX defined by, ρ(g)(x) = π(g, x) for all

x ∈ X. Then (ρ(G), ◦, τp) is a semitopological group.

History

Research on the problem of which topological conditions on

a semitopological group imply that it is a topological group

possibly began in

[D. Montgomery,“Continuity in topological groups” Bull. Amer.

Math. Soc. 42 (1936)]

when the author showed that each completely metrizable

semitopological group has jointly continuous multiplication.

Later, in

[R. Ellis,“A note on the continuity of the inverse” Proc. Amer.

Math. Soc. 8 (1957) and “Locally compact transformation

groups” Duke Math. J. 24 (1957)]



Ellis showed that each locally compact semitopological group

is in fact a topological group. This answered a question raised

by A. D. Wallace in

[A. D. Wallace,“The structure of topological semigroups”

Bull. Amer. Math. 61 (1955)].

Next in

[W. Zelazko,“A theorem on B0 division algebras” Bull. Acad.

Pol. Sci. 8 (1960)]

Zelazko used Montgomery’s result from 1936 to show that

each completely metrizable semitopological group is a topo-

logical group. Much later, in

[A. Bouziad,“Every Čech-analytic Baire semitopological group

is a topological group” Proc. Amer. Math. Soc. 124 (1996)]

Bouziad improved both of these results and answered a ques-

tion raised by Pfister in



[H. Pfister,“Continuity of the inverse” Proc. Amer. Math.

Soc. 95 (1985)]

by showing that each Čech-complete semitopological group

is a topological group. (Recall that both locally compact and

completely metrizable topological spaces are Čech-complete).

To do this, it was sufficient for Bouziad to show that every

Čech-complete semitopological group has jointly continuous

multiplication since earlier, Brand

[N. Brand,“Another note on the continuity of the inverse”

Arch. Math. 39 (1982)]

had proven that every Čech-complete semitopological group

with jointly continuous multiplication is a topological group.

Brand’s proof of this was later improved and simplified in

[H. Pfister,“Continuity of the inverse” Proc. Amer. Math. Soc.

95 (1985)].

Apart from those named above there have been many other



contributors to the question of when a semitopological group

is a topological group. For example, Arhangel’skii, Cao, Choban,

Kenderov, Korovin, Lawson, Piotrowski, Ravsky, Reznichenko

and Tkachenko.



Topological Games

In [P. S. Kenderov, I. Kortezov and W.B. Moors,“Topological

games and topological groups” Topology Appl. 109 (2001)]

the authors used a two player topological game to determine

some conditions on a semitopological group that imply it is a

topological group. Using this game they were able to prove

a theorem considerably more general than the following.

Theorem 1. Let (G, ·, τ) be a semitopological group such

that (G, τ) is a regular Baire space. If any of the following

conditions hold, then (G, ·, τ) is a topological group.

(i) (G, τ) is metrizable (or more generally, (G, τ) is a p-

space);

(ii) (G, τ) is Čech-analytic (or more generally, has count-

able separation);

(iii) (G, τ) is locally countably compact.



The advantage to the “game” approach is that it covers many

different cases at once. However, there is a disadvantage

to using games too. Namely, people find the use of games

unappealing, artificial, hard to read and hard to understand.

Hence some of the consequences of the paper [KKM] have

gone unnoticed.

So now, on to the dreaded game.

The game that we shall consider involves two players which

we will call player α and player β. The “field/court” that the

game is played on is a fixed topological space (X, τ) with a

fixed dense subset D.

The name of the game is the “GS(D)-game”.

After naming the game we need to describe how to “play”

the GS(D)-game.



The player labeled β starts the game every time (life is not

always fair). For their first move the player β must select a

nonempty open subset B1 of X. Next, α gets a turn. For

α’s first move he/she must select a nonempty open subset

A1 of B1. This ends the first round of the game. In the

second round, β goes first (again) and selects a nonempty

open subset B2 of A1. α then gets to respond by choosing a

nonempty open subset A2 of B2. This ends the second round

of the game. At this stage we have

A2 ⊆ B2 ⊆ A1 ⊆ B1.

In general, after α and β have played the first n-rounds of

the GS(D)-game, β will have selected nonempty open sets

B1, B2, . . . , Bn and α will have selected nonempty open sets

A1, A2, . . . , An such that:

An ⊆ Bn ⊆ An−1 ⊆ Bn−1 ⊆ · · · ⊆ A2 ⊆ B2 ⊆ A1 ⊆ B1.



At the start of the (n + 1)-round of the game, β goes first

(again!) and selects a nonempty open subset Bn+1 of An. As

with the previous n-rounds, player α gets to respond to this

move by selecting a nonempty open subset An+1 of Bn+1.

Continuing this process indefinitely (i.e., continuing-on for-

ever) the players produce an infinite sequence, (called a play

of the GS(D)-game)

{(An, Bn) : n ∈ N}

of pairs of nonempty open subsets of X such that

An+1 ⊆ Bn+1 ⊆ An ⊆ Bn for all n ∈ N.

As with any game, we need a rule to determine who wins

(otherwise it is a very boring game). We shall declare that α

wins a play {(An, Bn) : n ∈ N} of the GS(D)-game if:



(i)
⋂

n∈N
An 6= ∅ and

(ii) each sequence (xn : n ∈ N) in D with xn ∈ An for all

n ∈ N, has a cluster-point in X.

If α does not win a play of the GS(D)-game then we declare

that β wins that play of the GS(D)-game. So every play

is won by either α or β and no play is won by both players.

Continuing further into game theory we need to introduce the

notion of a strategy. A strategy for the player β (player α)

is a “rule” that specifies how the player β (player α) must

respond/move in every possible situation that may occur dur-

ing the course of the game. [A more precise mathematical

description of a strategy is possible, but we shall not give it

here.]

We may now finally define a “strongly Baire” space. We shall

say that a topological space (X, τ) is strongly Baire if it is

regular and there exists a dense subset D of X such that



the player β (i.e., the player with the privilege of going first)

does NOT have a winning strategy in the GS(D)-game played

on X (that is to say, that no matter what strategy player β

adopts there is always at least one play of the GS(D)-game

where α wins.). Clearly, if α actually possesses a winning

strategy himself/herself then β cannot possibly possess a win-

ning strategy as well and so all spaces (X, τ) in which α has

a winning strategy in the GS(D)-game are strongly Baire.

Note: there are some strongly Baire spaces in which the player

α does not possess a winning strategy.



Known results

Theorem 2. [KKM, 2001] Let (G, ·, τ) be a semitopological

space. If (G, τ) is a strongly Baire space then (G, ·, τ) is a

topological group.

Corollary 1. [KM, 2012] Let (G, ·, τ) be a semitopological

space. If (G, τ) is regular, T1, Baire and has a countable

network then (G, ·, τ) is a metrizable topological group.

Given Theorem 1. part (iii) which says that every semitopo-

logical group (G, ·, τ) such that (G, τ) is regular and locally

countably compact is a topological group it is natural ask:

Question 1. If (G, ·, τ) is a semitopological group and (G, τ)

is completely regular and pseudocompact is (G, ·, τ) a topo-

logical group?

Recall that a completely regular topological space (X, τ) is

called pseudocompact if each real-valued continuous function



defined on it is bounded and that every countably compact

space is pseudocompact.

However, the answer to this question is “no”.

[A. V. Korovin,“Continuous actions on pseudocompact groups

and topological axioms”Comment Math. Univ. Carolin. 33

(1992)].

Proposition 1. Let (X, τ) be a completely regular topological

space. Then (X, τ) is pseudocompact if, and only if, for each

decreasing sequence {Un : n ∈ N} of nonempty open subsets

of X,
⋂

n∈N
Un 6= ∅.

Despite the previous negative result. It is possible to obtain

some positive results for “nice” pseudocompact semitopolog-

ical groups.



Theorem 3. [E. Reznichenko, 1994] Let (G, ·, τ) be a com-

pletely regular pseudocompact semitopological group. If any

of the following conditions hold, then (G, ·, τ) is a topological

group.

(i) (G, τ) has countable tightness;

(ii) (G, τ) is separable;

(iii) (G, τ) is a k-space.

The question now is, can we extend the game approach to

include pseudocompactness?



Strongly bounded sets

We will say that a subset A of a topological space (X, τ) is

bounded in X if for any sequence (Wn : n ∈ N) of open sets

in X such that Wn+1 ⊆ Wn and A ∩ Wn 6= ∅ for all n ∈ N,
⋂

n∈N
Wn 6= ∅. When the space X is bounded in itself and

completely regular it is pseudocompact. In this talk we need

a stronger notion. A subset A of a topological space (X, τ)

is said to be strongly bounded in X if for every infinite subset

C of A there exists a separable subspace S of X such that

the set C ∩ S is infinite and bounded in S.

Every countably compact space, as well as, every separable

pseudocompact space is strongly bounded in itself and it is

easy to show that every strongly bounded set in X is bounded

in X.

We may now introduce the G∗

S(D)-game played on a topo-

logical space (X, τ). The G∗

S(D)-game is identical to the



GS(D)-game in all regards except one. Namely, in the defi-

nition of a win for α. In the G∗

S(D)-game we declare that α

wins a play {(An, Bn) : n ∈ N} of the GS(D)-game if:

(i)
⋂

n∈N
An 6= ∅ and

(ii) each sequence (xn : n ∈ N) in D with xn ∈ An for all

n ∈ N, {xn : n ∈ N} is strongly bounded in X.

We shall say that a topological space (X, τ) is strongly bound-

edly Baire if it is completely regular and there exists a dense

subset D of X such that the player β does NOT have a

winning strategy in the G∗

S(D)-game played on X.

The main result of this talk is the following.

Theorem 4. [CKM, 2012] Let (G, ·, τ) be a semitopological

space. If (G, τ) is a strongly boundedly Baire space then

(G, ·, τ) is a topological group.



As every talk should contain at least one proof let me give an

idea of part of the above proof. Specifically, let me prove the

following fact:

Every regular pseudocompact semitopological group (G, ·, τ)

with continuous multiplication (i.e., a paratopological group)

is a topological group.

To prove this we need to introduce the following definition.

Suppose that f : (X, τ) → (Y, τ ′) is a mapping acting be-

tween topological spaces (X, τ) and (Y, τ ′) and x0 ∈ X.

Then we say that f is quasicontinuous at x0 if for each pair

of open neighbourhoods U of x0 and W of f(x0) there ex-

ists a nonempty open subset V of U such that f(V ) ⊆ W .

Hence, if f is NOT quasicontinuous at a point x0 ∈ X then

there exists a pair of open neighbourhoods U of x0 and W

of f(x0) such that for each nonempty open subset V of U ,

f(V ) 6⊆ W .



Lemma 1. Let (G, ·, τ) be a paratopological group. If in-

version is quasicontinuous at e then (G, ·, τ) is a topological

group.

Proof: Since (G, ·, τ) is a semitopological group it will suffice

to show that inversion is continuous at e ∈ G. To this end, let

W be any neighbourhood of e. Since G is a paratopological

group there exists a neighbourhood U of e such that U ·U is

a subset of W . Now since inversion is quasicontinuous at e

there is a nonempty open subset V of U such that V −1 ⊆ U .

Hence V · V −1 is an open neighbourhood of e and

(V · V −1)−1 = V · V −1 ⊆ U · U ⊆ W.

This completes the proof. k��



Lemma 2. Let (G, ·, τ) be a paratopological group. If (G, τ)

is pseudocompact then inversion is quasicontinuous at e.

Proof: In order to obtain a contradiction let us assume that

inversion is not quasicontinuous at e ∈ G. Then there exist

neighbourhoods U and W of e such that for each nonempty

open subset V of U , V −1 6⊆ W . Note that by possibly mak-

ing U smaller (and using the fact that (G, ·, τ) is a paratopo-

logical group) we may assume that U · U ⊆ W . We in-

ductively define sequences (xn : n ∈ N), (Un : n ∈ N)

and (An : n ∈ N) but first we set (for notational reasons):

A0 := U and x0 := e.

Step 1. Choose x1 ∈ A0 so that

(x−1

0 · x1)
−1 = x−1

1 6∈ W.

Then choose U1 to be any open neighbourhood of e, con-

tained in U , such that x1·U1 ⊆ A0. Then define A1 := x1·U1.

Now, suppose that xj, Uj and Aj have been defined for each



1 ≤ j ≤ n so that:

(i) xj ∈ Aj−1 and (x−1

j−1 · xj)
−1 6∈ W ;

(ii) Uj is an open neighbourhood of e, contained in U , and

xj · Uj ⊆ Aj−1;

(iii) Aj := xj · Uj .

Step n + 1. Choose xn+1 ∈ An so that

(x−1

n ·xn+1)
−1 6∈ W.

Note this is possible since x−1
n · An is a nonempty open set

and

x−1

n · An ⊆ x−1

n · (xn · Un) = Un ⊆ U.

Then choose Un+1 to be any open neighbourhood of e, con-

tained in U , such that xn+1 · Un+1 ⊆ An. Finally, define

An+1 := xn+1 · Un+1.

This completes the induction.



We claim that there exists a 2 ≤ k ∈ N such that

Ak−1 ⊆ (
⋂

n∈N
An) · U.

Since otherwise, {Ak \ (
⋂

n∈N
An) · U : k ∈ N} would be a

decreasing sequence of nonempty open subsets of the pseu-

docompact space G and so

∅ 6=
⋂

k∈N

[Ak \ (
⋂

n∈N
An) · U ]

⊆
⋂

k∈N

[Ak \ (
⋂

n∈N
An) · U ]

⊆
⋂

k∈N

[Ak \
⋂

n∈N
An]

=
⋂

k∈N

[Ak \
⋂

n∈N
An] = ∅

since
⋂

n∈N
An =

⋂
n∈N

An (as An+1 ⊆ An for all n ∈ N).



Thus,

xk ∈ Ak−1 ⊆ (
⋂

n∈N
An) · U

⊆ Ak+1 · U

⊆ xk+1 · Uk+1 · U

⊆ xk+1 · U · U = xk+1 · U · U ⊆ xk+1 · W.

Therefore, (x−1

k · xk+1)
−1 = x−1

k+1
· xk ∈ W . However, this

contradicts the way xk+1 was chosen. This shows that inver-

sion is quasicontinuous at e. k��

By putting Lemma 1 and Lemma 2 together we obtain the de-

sired result that every regular pseudocompact paratopological

group is a topological group.

A PDF version of this talk is available at:

www.math.auckland.ac.nz/∼moors/

——————————– The End ——————————–


