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Abstract. In this paper we provide an elementary proof of James’ characterisation of weak
compactness for Banach spaces whose dual ball is weak∗ sequentially compact.
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In the paper [6] the author gave a simple proof of James’ theorem on weak compactness for Banach
spaces whose dual ball is weak∗ sequentially compact. This class of spaces is quite large, because
in addition to all the separable Banach spaces (whose dual ball is weak∗ metrisable), it contains
all Asplund spaces, [5] (i.e., spaces in which every separable subspace has a separable dual space)
and all spaces that admit an equivalent smooth norm, [3] (which includes all WCG spaces, [1]). In
fact, it contains all Gateaux differentiability spaces, [5]. On the other hand, it does not contain
`∞(N). However, the proof in [6] still relied upon the Krein-Milman theorem, Milman’s theorem
and the Bishop-Phelps theorem. In this paper we obtain the same result but only rely upon the
Hahn-Banach theorem and convexity. The idea of the proof comes from [7, Lemmas 4-5] and [4,
Lemma 2]. For any x in a normed linear space X we shall define x̂ ∈ X∗∗ by, x̂(x∗) := x∗(x) for
all x∗ ∈ X∗. Then, x 7→ x̂, is a linear isometric embedding of X into X∗∗. In particular, if X is a
Banach space, then X̂ is a closed linear subspace of X∗∗.

Let K be a weak∗ compact convex subset of the dual of a Banach space X. A subset B of K is called
a boundary of K if for every x̂ ∈ X̂ there exists a b∗ ∈ B such that x̂(b∗) = sup{x̂(y∗) : y∗ ∈ K}.
We shall say B, (I)-generates K, if for every countable cover {Cn}n∈N of B by weak∗ compact
convex subsets of K, the convex hull of

⋃
n∈NCn is norm dense in K.

The main theorem relies upon the following prerequisite results.

Lemma 1 Let 0 < β, 0 < β′ and suppose that ϕ : [0, β + β′]→ R is a convex function. Then

ϕ(β)− ϕ(0)

β
≤ ϕ(β + β′)− ϕ(β)

β′
.

Proof: The inequality given in the statement of the lemma follows by rearranging the inequality

ϕ(β) ≤ β

β + β′
ϕ(β + β′) +

β′

β + β′
ϕ(0). k��

Lemma 2 Let V be a vector space (over R) and let ϕ : V → R be a convex function. If (An)n∈N is
a decreasing sequence of nonempty convex subsets of V , (βn)n∈N is any sequence of strictly positive
numbers, r ∈ R and

β1r + ϕ(0) < inf
a∈A1

ϕ(β1a),

then there exists a sequence (an)n∈N in V such that:
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(i) an ∈ An and

(ii) ϕ(
∑n

i=1 βiai) + βn+1r < ϕ(
∑n+1

i=1 βiai) for all n ∈ N.

Proof: We proceed in two parts. Firstly we prove that if u ∈ V and βnr+ϕ(u) < inf
a∈An

ϕ(u+βna)

for some n ∈ N, then there exists an an ∈ An, such that

βn+1r + ϕ(u+ βnan) < inf
a∈An

ϕ(u+ βnan + βn+1a).

To see this, suppose that u ∈ V and that βnr+ϕ(u) < inf
a∈An

ϕ(u+βna). Then there exists an 0 < ε

such that

r + 2ε <
infa∈An ϕ(u+ βna)− ϕ(u)

βn
. (∗)

So choose an ∈ An such that ϕ(u + βnan) < inf
a∈An

ϕ(u + βna) + βn+1ε. Let a ∈ An. Then

v := (βnan + βn+1a)/(βn + βn+1) ∈ An and so,

r + 2ε <
ϕ(u+ βnv)− ϕ(u+ 0v)

βn
by (∗) and the fact that v ∈ An

≤ ϕ(u+ (βn + βn+1)v)− ϕ(u+ βnv)

βn+1
by Lemma 1.

Rearranging gives βn+1(r+ ε) + [ϕ(u+ βnv) + βn+1ε] < ϕ(u+ βnan + βn+1a) for all a ∈ An. Since
ϕ(u+ βnan) < [ϕ(u+ βnv) + βn+1ε], the desired inequality follows.

From this, we may inductively construct a sequence (an)n∈N. For the first step, we set u := 0 and
then, by the hypothesis, we have that β1r + ϕ(0) < inf

a∈A1

ϕ(β1a) = inf
a∈A1

ϕ(0 + β1a). So, by the

above, there exists an a1 ∈ A1, such that β2r + ϕ(β1a1) < inf
a∈A1

ϕ(β1a1 + β2a).

For the nth step, set u :=
∑n−1

i=1 βiai. Since An ⊆ An−1 and by the way the an−1 was constructed,
we have that βnr+ϕ(u) < inf

a∈An−1

ϕ(u+βna) ≤ inf
a∈An

ϕ(u+βna). So, by the first result again, there

exists an ∈ An, such that βn+1r+ϕ (
∑n

i=1 βiai) < inf
a∈An

ϕ (
∑n

i=1 βiai + βn+1a) which completes the

induction. The sequence (an)n∈N has the properties claimed above. k��
We may now state and prove the main theorem.

Theorem 1 Let K be a weak∗ compact convex subset of the dual of a Banach space X and let B
be a boundary of K. Then B, (I)-generates K.

Proof: After possibly translating K, we may assume that 0 ∈ B. Let {Cn}n∈N be weak* compact,
convex subsets of K such that B ⊆

⋃
n∈NCn and suppose, for a contradiction, that co[

⋃
n∈NCn] is

not norm dense in K. Then there must exist an 0 < ε and y∗ ∈ K such that

y∗ ∈ K\(co[
⋃

n∈NCn] + εBX∗) where, BX∗ := {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}.

Since, for all n ∈ N, co[
⋃n

j=1Cj ] is weak* compact and convex, there exist (x̂n)n∈N in X̂ such that
for every n ∈ N, ‖x̂n‖ = 1 and

ε ≤ max{x̂n(x∗) : x∗ ∈ co[
⋃n

j=1Cj ]}+ε = max{x̂n(x∗) : x∗ ∈ co[
⋃n

j=1Cj ]+εBX∗} < x̂n(y∗). (∗∗)
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Now, (x̂n(y∗))n∈N is a bounded sequence of real numbers and thus has a convergent subsequence
(x̂nk

(y∗))k∈N. Let s := lim
k→∞

x̂nk
(y∗). Then, ε ≤ s and, after relabelling the sequence (x̂n)n∈N if

necessary, we may assume that |x̂n(y∗)− s| < ε/3 for all n ∈ N. Note that this relabelling does not
disturb the inequality in (∗∗).

We define An := co{x̂k : n ≤ k} for all n ∈ N and note that: (i) (An)n∈N is a decreasing sequence
of nonempty convex subsets of X̂ and (ii) if N < n and b∗ ∈ CN then

g(b∗) < [g(y∗)− ε] for all g ∈ An (∗∗∗)

since, {x̂k : n ≤ k} ⊆ {x̂ ∈ X̂ : x̂(b∗ − y∗) < −ε}; which is convex. Next, we define p : X̂ → R by,

p(x̂) := sup
x∗∈K

x̂(x∗) for all x̂ ∈ X̂.

Then p defines a convex functional on X̂ such that p(0) = 0. Moreover, for all g ∈ A1, we have
(s−ε/3) < g(y∗) ≤ p(g) since {x̂n}n∈N ⊆ {x̂ ∈ X̂ : (s−ε/3) < x̂(y∗)}; which is convex and y∗ ∈ K.

Let (βn)n∈N be any sequence of positive numbers such that limn→∞
(∑∞

i=n+1 βi
)
/βn = 0. Now,

β1(s− ε/2) + p(0) < β1(s− ε/3) ≤ β1[infg∈A1 p(g)] = infg∈A1 p(β1g).

Therefore, by Lemma 2, there exists a sequence (gn)n∈N in X̂ such that gn ∈ An and

p(
∑n

i=1βigi) + βn+1(s− ε/2) < p(
∑n+1

i=1 βigi) for all n ∈ N.

Since ‖gn‖ ≤ 1 for all n ∈ N, we have that
∑∞

i=1 ‖βigi‖ ≤
∑∞

i=1 βi <∞. As X is a Banach space,

this implies that g :=
∑∞

i=1 βigi ∈ X̂ and so there exists a b∗ ∈ B such that p(g) = g(b∗). Then,

βn(s− ε/2) < p(
∑n

i=1 βigi)− p
(∑n−1

i=1 βigi

)
≤ p(g)− p

(∑n−1
i=1 βigi

)
≤ g(b∗)−

∑n−1
i=1 βigi(b

∗) =
∑∞

i=nβigi(b
∗).

Since B ⊆
⋃

n∈NCn, b∗ ∈ CN for some N ∈ N. Thus, if N < n, then

(s− ε/2) <
1

βn

(∑∞
i=n+1βigi(b

∗)
)

+ gn(b∗) <
1

βn

(∑∞
i=n+1βigi(b

∗)
)

+ [gn(y∗)− ε] by (∗∗∗),

since gn ∈ An. By taking the limit as n tends to infinity we get that (s− ε/2) ≤ (s− ε); which is
impossible. Therefore, B, (I)-generates K. k��
Remark 1 If βn :=

1

n!
for all n ∈ N or, βn :=

1

2n2 for all n ∈ N, then lim
n→∞

∑∞
i=n+1βi

βn
= 0.

We will say that a subset C of a Banach space X is weakly compactly generated if for every
0 < ε there exists a countable family {Cε

n}n∈N of weakly compact convex subsets of X such that
C ⊆ [

⋃
n∈NC

ε
n] + εBX . Here, BX denotes the closed unit ball in the Banach space X. Our first

compactness result is based upon the following observation: For each F ∈ X∗∗∗ there exists an
x∗ ∈ X∗ such that F |

X̂
= x̂∗|

X̂
. In this way we see that the relative weak topology on X̂ coincides

with the relative weak∗ topology on X̂. In particular, each weak∗ compact subset of X̂ is weakly
compact (and of course, vice versa).
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Corollary 1 Let C be a closed and bounded convex subset of a Banach space X. If C is weakly
compactly generated and every continuous linear functional on X attains its supremum over C,
then C is weakly compact.

Proof: Let K := Ĉ
w∗

. To show that C is weakly compact it is sufficient to show that for every
0 < ε, K ⊆ X̂ + 2εBX∗∗ . To this end, fix 0 < ε and let {Cε

n}n∈N be any countable family
of weakly compact convex subsets of X such that C ⊆ [

⋃
n∈NC

ε
n] + εBX . For each n ∈ N, let

Kε
n := K ∩ [Ĉε

n + εBX∗∗ ]. Then {Kε
n}n∈N is a cover of Ĉ by weak∗ closed convex subsets of K.

Since Ĉ is a boundary of K, K ⊆ co
⋃

n∈NK
ε
n ⊆ X̂ + 2εBX∗∗ . k��

The author in [6] used Theorem 1 to give a short proof of the following result.

Corollary 2 ([6, Theorem 3]) Let C be a closed and bounded convex subset of a Banach space
X. If (BX∗ , weak∗) is sequentially compact and every continuous linear functional on X attains
its supremum over C, then C is weakly compact.
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