An elementary proof of James' characterisation of weak compactness II

WARREN B. MOORS AND SAMUEL J. WHITE

Abstract. In this paper we provide an elementary proof of James' characterisation of weak compactness for Banach spaces whose dual ball is weak^{*} sequentially compact.

AMS (2010) subject classification: Primary 46B20, 46B22.

Keywords: weakly compact sets, James' theorem, boundaries.

In the paper [6] the author gave a simple proof of James' theorem on weak compactness for Banach spaces whose dual ball is weak* sequentially compact. This class of spaces is quite large, because in addition to all the separable Banach spaces (whose dual ball is weak* metrisable), it contains all Asplund spaces, [5] (i.e., spaces in which every separable subspace has a separable dual space) and all spaces that admit an equivalent smooth norm, [3] (which includes all WCG spaces, [1]). In fact, it contains all Gateaux differentiability spaces, [5]. On the other hand, it does not contain $\ell_{\infty}(\mathbb{N})$. However, the proof in [6] still relied upon the Krein-Milman theorem, Milman's theorem and the Bishop-Phelps theorem. In this paper we obtain the same result but only rely upon the Hahn-Banach theorem and convexity. The idea of the proof comes from [7, Lemmas 4-5] and [4, Lemma 2]. For any x in a normed linear space X we shall define $\hat{x} \in X^{**}$ by, $\hat{x}(x^*) := x^*(x)$ for all $x^* \in X^*$. Then, $x \mapsto \hat{x}$, is a linear isometric embedding of X into X^{**} . In particular, if X is a Banach space, then \hat{X} is a closed linear subspace of X^{**} .

Let K be a weak^{*} compact convex subset of the dual of a Banach space X. A subset B of K is called a *boundary* of K if for every $\hat{x} \in \hat{X}$ there exists a $b^* \in B$ such that $\hat{x}(b^*) = \sup\{\hat{x}(y^*) : y^* \in K\}$. We shall say B, (I)-generates K, if for every countable cover $\{C_n\}_{n\in\mathbb{N}}$ of B by weak^{*} compact convex subsets of K, the convex hull of $\bigcup_{n\in\mathbb{N}} C_n$ is norm dense in K.

The main theorem relies upon the following prerequisite results.

Lemma 1 Let $0 < \beta$, $0 < \beta'$ and suppose that $\varphi : [0, \beta + \beta'] \to \mathbb{R}$ is a convex function. Then

$$\frac{\varphi(\beta) - \varphi(0)}{\beta} \le \frac{\varphi(\beta + \beta') - \varphi(\beta)}{\beta'}.$$

Proof: The inequality given in the statement of the lemma follows by rearranging the inequality

$$\varphi(\beta) \le \frac{\beta}{\beta + \beta'} \varphi(\beta + \beta') + \frac{\beta'}{\beta + \beta'} \varphi(0).$$
 (\bigcirc)

Lemma 2 Let V be a vector space (over \mathbb{R}) and let $\varphi : V \to \mathbb{R}$ be a convex function. If $(A_n)_{n \in \mathbb{N}}$ is a decreasing sequence of nonempty convex subsets of V, $(\beta_n)_{n \in \mathbb{N}}$ is any sequence of strictly positive numbers, $r \in \mathbb{R}$ and

$$\beta_1 r + \varphi(0) < \inf_{a \in A_1} \varphi(\beta_1 a),$$

then there exists a sequence $(a_n)_{n \in \mathbb{N}}$ in V such that:

- (i) $a_n \in A_n$ and
- (ii) $\varphi(\sum_{i=1}^{n} \beta_i a_i) + \beta_{n+1}r < \varphi(\sum_{i=1}^{n+1} \beta_i a_i) \text{ for all } n \in \mathbb{N}.$

Proof: We proceed in two parts. Firstly we prove that if $u \in V$ and $\beta_n r + \varphi(u) < \inf_{a \in A_n} \varphi(u + \beta_n a)$ for some $n \in \mathbb{N}$, then there exists an $a_n \in A_n$, such that

$$\beta_{n+1}r + \varphi(u+\beta_n a_n) < \inf_{a \in A_n} \varphi(u+\beta_n a_n + \beta_{n+1}a).$$

To see this, suppose that $u \in V$ and that $\beta_n r + \varphi(u) < \inf_{a \in A_n} \varphi(u + \beta_n a)$. Then there exists an $0 < \varepsilon$ such that

$$r + 2\varepsilon < \frac{\inf_{a \in A_n} \varphi(u + \beta_n a) - \varphi(u)}{\beta_n}.$$
 (*)

So choose $a_n \in A_n$ such that $\varphi(u + \beta_n a_n) < \inf_{a \in A_n} \varphi(u + \beta_n a) + \beta_{n+1} \varepsilon$. Let $a \in A_n$. Then $v := (\beta_n a_n + \beta_{n+1} a)/(\beta_n + \beta_{n+1}) \in A_n$ and so,

$$r + 2\varepsilon < \frac{\varphi(u + \beta_n v) - \varphi(u + 0v)}{\beta_n}$$
 by (*) and the fact that $v \in A_n$
$$\leq \frac{\varphi(u + (\beta_n + \beta_{n+1})v) - \varphi(u + \beta_n v)}{\beta_{n+1}}$$
 by Lemma 1.

Rearranging gives $\beta_{n+1}(r+\varepsilon) + [\varphi(u+\beta_n v) + \beta_{n+1}\varepsilon] < \varphi(u+\beta_n a_n + \beta_{n+1}a)$ for all $a \in A_n$. Since $\varphi(u+\beta_n a_n) < [\varphi(u+\beta_n v) + \beta_{n+1}\varepsilon]$, the desired inequality follows.

From this, we may inductively construct a sequence $(a_n)_{n\in\mathbb{N}}$. For the first step, we set u := 0 and then, by the hypothesis, we have that $\beta_1 r + \varphi(0) < \inf_{a\in A_1} \varphi(\beta_1 a) = \inf_{a\in A_1} \varphi(0 + \beta_1 a)$. So, by the above, there exists an $a_1 \in A_1$, such that $\beta_2 r + \varphi(\beta_1 a_1) < \inf_{a\in A_1} \varphi(\beta_1 a_1 + \beta_2 a)$.

For the n^{th} step, set $u := \sum_{i=1}^{n-1} \beta_i a_i$. Since $A_n \subseteq A_{n-1}$ and by the way the a_{n-1} was constructed, we have that $\beta_n r + \varphi(u) < \inf_{a \in A_{n-1}} \varphi(u + \beta_n a) \leq \inf_{a \in A_n} \varphi(u + \beta_n a)$. So, by the first result again, there exists $a_n \in A_n$, such that $\beta_{n+1}r + \varphi(\sum_{i=1}^n \beta_i a_i) < \inf_{a \in A_n} \varphi(\sum_{i=1}^n \beta_i a_i + \beta_{n+1}a)$ which completes the induction. The sequence $(a_n)_{n \in \mathbb{N}}$ has the properties claimed above. \bigcirc

We may now state and prove the main theorem.

Theorem 1 Let K be a weak^{*} compact convex subset of the dual of a Banach space X and let B be a boundary of K. Then B, (I)-generates K.

Proof: After possibly translating K, we may assume that $0 \in B$. Let $\{C_n\}_{n \in \mathbb{N}}$ be weak^{*} compact, convex subsets of K such that $B \subseteq \bigcup_{n \in \mathbb{N}} C_n$ and suppose, for a contradiction, that $\operatorname{co}[\bigcup_{n \in \mathbb{N}} C_n]$ is not norm dense in K. Then there must exist an $0 < \varepsilon$ and $y^* \in K$ such that

$$y^* \in K \setminus (\operatorname{co}[\bigcup_{n \in \mathbb{N}} C_n] + \varepsilon B_{X^*}) \quad \text{where, } B_{X^*} := \{x^* \in X^* : \|x^*\| \le 1\}.$$

Since, for all $n \in \mathbb{N}$, co $[\bigcup_{j=1}^{n} C_j]$ is weak* compact and convex, there exist $(\widehat{x}_n)_{n \in \mathbb{N}}$ in \widehat{X} such that for every $n \in \mathbb{N}$, $\|\widehat{x}_n\| = 1$ and

$$\varepsilon \leq \max\{\widehat{x}_n(x^*) : x^* \in \operatorname{co}[\bigcup_{j=1}^n C_j]\} + \varepsilon = \max\{\widehat{x}_n(x^*) : x^* \in \operatorname{co}[\bigcup_{j=1}^n C_j] + \varepsilon B_{X^*}\} < \widehat{x}_n(y^*).$$
(**)

Now, $(\widehat{x}_n(y^*))_{n\in\mathbb{N}}$ is a bounded sequence of real numbers and thus has a convergent subsequence $(\widehat{x}_{n_k}(y^*))_{k\in\mathbb{N}}$. Let $s := \lim_{k\to\infty} \widehat{x}_{n_k}(y^*)$. Then, $\varepsilon \leq s$ and, after relabelling the sequence $(\widehat{x}_n)_{n\in\mathbb{N}}$ if necessary, we may assume that $|\widehat{x}_n(y^*) - s| < \varepsilon/3$ for all $n \in \mathbb{N}$. Note that this relabelling does not disturb the inequality in (**).

We define $A_n := \operatorname{co}\{\widehat{x}_k : n \leq k\}$ for all $n \in \mathbb{N}$ and note that: (i) $(A_n)_{n \in \mathbb{N}}$ is a decreasing sequence of nonempty convex subsets of \widehat{X} and (ii) if N < n and $b^* \in C_N$ then

$$g(b^*) < [g(y^*) - \varepsilon]$$
 for all $g \in A_n$ (***)

since, $\{\widehat{x}_k : n \leq k\} \subseteq \{\widehat{x} \in \widehat{X} : \widehat{x}(b^* - y^*) < -\varepsilon\}$; which is convex. Next, we define $p : \widehat{X} \to \mathbb{R}$ by,

$$p(\widehat{x}) := \sup_{x^* \in K} \widehat{x}(x^*) \quad \text{ for all } \widehat{x} \in \widehat{X}.$$

Then p defines a convex functional on \widehat{X} such that p(0) = 0. Moreover, for all $g \in A_1$, we have $(s - \varepsilon/3) < g(y^*) \le p(g)$ since $\{\widehat{x}_n\}_{n \in \mathbb{N}} \subseteq \{\widehat{x} \in \widehat{X} : (s - \varepsilon/3) < \widehat{x}(y^*)\}$; which is convex and $y^* \in K$. Let $(\beta_n)_{n \in \mathbb{N}}$ be any sequence of positive numbers such that $\lim_{n \to \infty} \left(\sum_{i=n+1}^{\infty} \beta_i\right) / \beta_n = 0$. Now, $\beta_1(s - \varepsilon/2) + p(0) < \beta_1(s - \varepsilon/3) \le \beta_1[\inf_{g \in A_1} p(g)] = \inf_{g \in A_1} p(\beta_1 g)$.

Therefore, by Lemma 2, there exists a sequence $(g_n)_{n\in\mathbb{N}}$ in X such that $g_n \in A_n$ and

$$p(\sum_{i=1}^{n}\beta_{i}g_{i}) + \beta_{n+1}(s - \varepsilon/2) < p(\sum_{i=1}^{n+1}\beta_{i}g_{i}) \quad \text{for all } n \in \mathbb{N}.$$

Since $||g_n|| \leq 1$ for all $n \in \mathbb{N}$, we have that $\sum_{i=1}^{\infty} ||\beta_i g_i|| \leq \sum_{i=1}^{\infty} \beta_i < \infty$. As X is a Banach space, this implies that $g := \sum_{i=1}^{\infty} \beta_i g_i \in \widehat{X}$ and so there exists a $b^* \in B$ such that $p(g) = g(b^*)$. Then,

$$\beta_n(s - \varepsilon/2) < p(\sum_{i=1}^n \beta_i g_i) - p\left(\sum_{i=1}^{n-1} \beta_i g_i\right) \le p(g) - p\left(\sum_{i=1}^{n-1} \beta_i g_i\right) \\ \le g(b^*) - \sum_{i=1}^{n-1} \beta_i g_i(b^*) = \sum_{i=n}^{\infty} \beta_i g_i(b^*).$$

Since $B \subseteq \bigcup_{n \in \mathbb{N}} C_n$, $b^* \in C_N$ for some $N \in \mathbb{N}$. Thus, if N < n, then

$$(s - \varepsilon/2) < \frac{1}{\beta_n} \left(\sum_{i=n+1}^{\infty} \beta_i g_i(b^*) \right) + g_n(b^*) < \frac{1}{\beta_n} \left(\sum_{i=n+1}^{\infty} \beta_i g_i(b^*) \right) + [g_n(y^*) - \varepsilon] \quad \text{by } (***),$$

since $g_n \in A_n$. By taking the limit as *n* tends to infinity we get that $(s - \varepsilon/2) \leq (s - \varepsilon)$; which is impossible. Therefore, *B*, (*I*)-generates *K*.

Remark 1 If
$$\beta_n := \frac{1}{n!}$$
 for all $n \in \mathbb{N}$ or, $\beta_n := \frac{1}{2^{n^2}}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \frac{\sum_{i=n+1}^{\infty} \beta_i}{\beta_n} = 0$.

We will say that a subset C of a Banach space X is weakly compactly generated if for every $0 < \varepsilon$ there exists a countable family $\{C_n^{\varepsilon}\}_{n \in \mathbb{N}}$ of weakly compact convex subsets of X such that $C \subseteq [\bigcup_{n \in \mathbb{N}} C_n^{\varepsilon}] + \varepsilon B_X$. Here, B_X denotes the closed unit ball in the Banach space X. Our first compactness result is based upon the following observation: For each $\mathscr{F} \in X^{***}$ there exists an $x^* \in X^*$ such that $\mathscr{F}|_{\widehat{X}} = \widehat{x^*}|_{\widehat{X}}$. In this way we see that the relative weak topology on \widehat{X} coincides with the relative weak* topology on \widehat{X} . In particular, each weak* compact subset of \widehat{X} is weakly compact (and of course, vice versa).

Corollary 1 Let C be a closed and bounded convex subset of a Banach space X. If C is weakly compactly generated and every continuous linear functional on X attains its supremum over C, then C is weakly compact.

Proof: Let $K := \overline{\widehat{C}}^{w^*}$. To show that C is weakly compact it is sufficient to show that for every $0 < \varepsilon$, $K \subseteq \widehat{X} + 2\varepsilon B_{X^{**}}$. To this end, fix $0 < \varepsilon$ and let $\{C_n^{\varepsilon}\}_{n\in\mathbb{N}}$ be any countable family of weakly compact convex subsets of X such that $C \subseteq [\bigcup_{n\in\mathbb{N}} C_n^{\varepsilon}] + \varepsilon B_X$. For each $n \in \mathbb{N}$, let $K_n^{\varepsilon} := K \cap [\widehat{C}_n^{\varepsilon} + \varepsilon B_{X^{**}}]$. Then $\{K_n^{\varepsilon}\}_{n\in\mathbb{N}}$ is a cover of \widehat{C} by weak^{*} closed convex subsets of K. Since \widehat{C} is a boundary of $K, K \subseteq \overline{\operatorname{co}} \bigcup_{n\in\mathbb{N}} K_n^{\varepsilon} \subseteq \widehat{X} + 2\varepsilon B_{X^{**}}$. $(\bigcirc$

The author in [6] used Theorem 1 to give a short proof of the following result.

Corollary 2 ([6, Theorem 3]) Let C be a closed and bounded convex subset of a Banach space X. If $(B_{X^*}, weak^*)$ is sequentially compact and every continuous linear functional on X attains its supremum over C, then C is weakly compact.

References

- R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.
- [2] V. Fonf and J. Lindenstrauss, Boundaries and generation of convex sets, Israel J. Math. 136 (2003), 157–172.
- [3] J. Hagler and F. Sullivan, Smoothness and weak* sequential compactness, Proc. Amer. Math. Soc. 78 (1980), 497–503.
- [4] R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140.
- [5] D. Larman and R. R. Phelps, Gateaux differentiability of convex functions on Banach spaces, J. London Math. Soc. 20 (1979), 115–127.
- [6] W. B. Moors, An elementary proof of James' characterisation of weak compactness, Bull. Aust. Math. Soc. 84 (2011), 98-102.
- [7] J. D. Pryce, Weak compactness in locally convex spaces, Proc. Amer. Math. Soc. 17 (1966), 148–155.