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Abstract. Let (X, τ) be a topological space and let ρ be a metric defined on X . We shall say
that (X, τ) is fragmented by ρ if whenever ε > 0 and A is a nonempty subset of X there is a
τ -open set U such that U∩A 6= ∅ and ρ−diam (U∩A) < ε. In this paper we consider the notion
of fragmentability, and its generalisation σ-fragmentability, in the setting of topological groups
and metric-valued function spaces. We show that in the presence of Baireness fragmentabilty of
a topological group is very close to metrizability of that group. We also show that for a compact
Hausdorff space X , σ-fragmentability of (C(X), ‖ · ‖∞) implies that the space Cp(X ; M) of all
continuous functions from X into a metric space M , endowed with the topology of pointwise
convergence on X , is fragmented by a metric whose topology is at least as strong as the uniform
topology on C(X ; M). The primary tool used is that of topological games.
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1 Introduction

Let (X, τ) be a topological space and let ρ be a metric defined on X. We shall say that (X, τ) is
fragmented by ρ if whenever ε > 0 and A is a nonempty subset of X there is a τ -open set U such
that U ∩A 6= ∅ and ρ − diam (U ∩A) < ε. The term “fragment” was coined by Jayne and Rogers
in [13]. However, this notion had already been encountered before in the study of Banach spaces.
In fact, the notion of fragmentability has, and continues to, appear in many guises in different
areas of mathematics. For example in: (i) extensions of the Radon-Nikodým theorem from real-
valued measures to vector-valued measures see, [4, 9, 21, 32]; (ii) the study of the differentiability
properties of continuous convex functions defined on Banach spaces see, [20, 25, 26, 27, 34, 35];
(iii) topological dynamics see, [22, 23]; (iv) selection theorems see, [7, 13]; (v) variational principles
see, [6, 36, 37] and (vi) fixed point theorems see, [8, 33], to name but a few.

Perhaps the appearance of the notion of fragmentability in these different areas can be explained
by the fact that fragmentability enables one to use metric space techniques in places where the
topology is far from being metrizable (e.g. the weak topology on an infinite dimensional Banach
space).

Despite the utility of the notion of fragmentability there are still many situations in which a more
general notion is appropriate. Specifically, if we are given a topological space (X, τ) that is also
endowed with a metric ρ then we say that (X, τ) is σ-fragmented by ρ if for each ε > 0 there exists
a cover {Xε

n : n ∈ N} of X (i.e.,
⋃

n∈N
Xε

n = X) such that for every n ∈ N and every nonempty
subset A of Xε

n there exists a τ -open set U such that U ∩ A 6= ∅ and ρ − diam (U ∩ A) < ε.

This notion was first introduced in [10] and many interesting properties of σ-fragmentability were
investigated in [10, 11, 12], particularly in the case when X is a Banach space, τ is the weak
topology on X and ρ is the natural metric on X induced by the norm on X. It turns out that in
this situation σ-fragmentability is closely related to renorming theory. More precisely, it is related
to Kadec and local uniform rotundity renorming, see [28, 30, 31]. Furthermore, in this setting
it is also related to questions concerning separate and joint continuity of real-valued functions,
[15, 16, 19, 29], and the study of the Namioka property in particular.
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One approach to the study of σ-fragmentability was given in [17, 18], where the authors showed
that fragmentability/σ-fragmentability can be characterised in terms of topological games. In this
paper, we will follow this approach. However, before considering topological games in Section 3,
we will first consider the impact, if any, of the notion of fragmentability/σ-fragmentability in the
setting of groups.

In particular, we shall show that for topological groups that are also Baire spaces, fragmentability
is equivalent to some well-known topological properties. In Section 3 we use the game approach to
fragmentability to prove some results concerning metric-valued function spaces.

Throughout this paper we shall assume that all topological spaces are at least completely regular
and that all Banach spaces are over the real numbers. Further, for a normed linear space (X, ‖ · ‖)
we shall denote by, BX the closed unit ball in X, i.e., BX := {x ∈ X : ‖x‖ ≤ 1}. Finally, for a
compact Hausdorff space X and a metric space (M,d) we shall denote by Cp(X;M) [Cp(X)] the
set of all continuous functions from X into M [the set of all real-valued continuous functions on
X] endowed with the topology of pointwise convergence on X.

2 Fragmentability in topological groups

In this section we will examine the role of fragmentability in the setting of groups.

For our first result we need the notion of “countable separation”. For a completely regular space
X we shall say that X has countable separation if there exists a countable family {Cn : n ∈ N}
of closed subsets of βX - the Stone-Cech compactification of X - such that for each x ∈ X and
y ∈ βX \ X there exists an n ∈ N such that |{x, y} ∩ Cn| = 1.

Proposition 2.1 If T : (X, τ ′) → (Y, τ) is a continuous surjection from a second countable space
(X, τ ′) onto a completely regular space (Y, τ), then Y is fragmented by a metric whose topology is
at least as strong as τ .

Proof: Let B := {Un : n ∈ N} be a base for τ ′. Let

A := {(U, V ) ∈ B × B : there exists a continuous map f : Y → [0, 1] such that

T (U) ⊆ f−1(0) and T (V ) ⊆ f−1(1)}.

Clearly, A is countable. Let {(Un, Vn) : n ∈ N} be an enumeration of A. For each n ∈ N choose
a continuous map fn : Y → [0, 1] such that T (Un) ⊆ f−1

n (0) and T (Vn) ⊆ f−1
n (1). Then define

d : Y × Y → [0, 1] by,

d(x, y) :=

∞∑

n=1

|fn(x) − fn(y)|

2n
.

It is routine to check that d is indeed a metric on Y ; in fact the only non-trivial property to check
is that d separates the points of Y . Moreover, by Weierstrass’ M -test we get that for each y ∈ Y
and 0 < r, {z ∈ Y : d(y, z) < r} ∈ τ . Hence d fragments (Y, τ). Now, by [18, Proposition 4.1] we
have that the continuous image of a second countable space has countable separation. The result
then follows from [18, Proposition 4.2] which says that every fragmentable space with countable
separation is fragmented by a metric whose topology is at least as strong as τ . k��

Proposition 2.2 Suppose that (X, τ) is a second Baire category topological space. If (X, τ) is
fragmented by a metric ρ then X has a Gδ-point with respect to (X, τ). Moreover, if the ρ topology
is at least as strong as τ then there exists a point x ∈ X that has a countable local base.
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Proof: Fix ε > 0 and consider the following open subset of X:

Oε :=
⋃

{U ∈ τ : ρ − diam(U) < ε}.

We shall show that Oε is dense in (X, τ). To this end, let W be a non-empty open subset of X.
Since ρ fragments X there exists a nonempty relatively open (and hence open, since W is open)
subset U of W such that ρ − diam(U) < ε. Then

∅ 6= U ⊆ Oε ∩ W.

Therefore, Oε is dense in (X, τ). Let G :=
⋂

n∈N
O1/n. Since (X, τ) is a second Baire category space,

G 6= ∅. It now only remains to observe that each point of G is a Gδ-point of (X, τ). Moreover, if
the ρ topology is at least as strong as τ then every point of G has a countable local base. k��

By combining the previous two results we immediately obtain the following.

Corollary 2.1 If f : X → Y is a continuous map from a second countable topological space X
onto a completely regular second Baire category space Y , then there exists a point y ∈ Y with a
countable local base.

Proof: This follows directly from Proposition 2.1 and Proposition 2.2. k��

A group (G, ·) endowed with a topology τ is called a semi-topological group if for each g ∈ G, both
mappings x 7→ x · g and x 7→ g · x are continuous on G. Since Ellis’ result [5] that every locally
compact semi-topological group is in fact a topology group, there has been continued interest in
finding topological conditions on (G, τ) that are sufficient to ensure that a semi-topological group
(G, ·, τ) is a topological group (i.e., multiplication and inversion are both continuous). In this
regard, the most relevant result for us is in [14, Theorem 2] where it was shown that each semi-
topological group (G, ·, τ) where (G, τ) is a Baire space with countable separation, is a topological
group.

Corollary 2.2 If f : X → G is a continuous map from a second countable topological space X
onto a completely regular second category semi-topological group (G, ·, τ) then (G, ·, τ) is a metrizable
topological group.

Proof: From [18, Proposition 4.1] G has a countable separation and so by [14, Theorem 2], (G, ·, τ)
a topological group. Furthermore, from Corollary 2.1 we get that G is first countable. Therefore,
by the Birkhoff-Kakutani theorem, (G, ·, τ) is a metrizable topological group. k��

The previous corollary says that any “topologically small” semi-topological group (G, ·, τ) is in fact
a metrizable topological group, provided (G, τ) is a Baire space.

The previous corollary also suggests that there might be a relationship between fragmentability
and metrizability of topological groups.

Theorem 2.1 Let (G, ·, τ) be a topological group that possesses a nonempty Gδ subset H of G. If
H with the relative topology is second category then the following are equivalent:

(i) (G, τ) is fragmentable;

(ii) (H, τ) is fragmentable;

(iii) (H, τ) has a Gδ-point;
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(iv) (G, τ) has a Gδ-point.

Proof: The implication (i) ⇒ (ii) is obvious and the implication (ii) ⇒ (iii) follows from Proposition
2.2. The implication (iii) ⇒ (iv) follows from the easily proven fact that a Gδ subset of a Gδ subset
is, itself, a Gδ subset of the whole space. So the only remaining implication is (iv) ⇒ (i); which
is what we do now. Suppose that (G, ·, τ) has a Gδ-point. Then without loss of generality we can
assume that e - the identity element of G - is a Gδ-point. That is, there exist neighbourhoods
(Un : n ∈ N) of e such that

⋂
n∈N

Un = {e}. By induction we can construct neighbourhoods
(Wn : n ∈ N) of e such that: (i) W−1

n = Wn and (ii) Wn+1 · Wn+1 ⊆ Wn ⊆ Un for all n ∈ N. If we
let Wn := {(x, y) ∈ G×G : xy−1 ∈ Wn} then (Wn : n ∈ N) is a base for a metrizable uniformity on
G. Moreover, if d denotes the metric generating this uniformity then the topology τ is at least as
strong as the topology generated by d. Hence, (G, τ) is fragmented by d. k��

From this theorem, we see that in the presence of Baireness, fragmentability of a topological group
reduces to the existence of a Gδ-point. Likewise, in the presence of Baireness, fragmentability of a
topological group by a metric whose topology is at least as strong as τ is equivalent to metrizability
of (G, τ). Hence, in the presence of Baireness, it does not make sense to consider fragmentability
of groups.

However, in the absence of Baireness, fragmentability may be a strictly weaker property than the
existence of a Gδ-point.

Example 2.1 Let Γ be an uncountable set. Let X := ℓ2(Γ) then (X,+,weak) is an Abelian topo-
logical group. Since (X, ‖ · ‖2) is reflexive, it is σ-fragmentable by the norm and hence fragmentable
by a metric whose topology is at least as strong as the weak topology on X. However, (X,weak) is
not first countable, in fact, (X,weak) does not even posses a Gδ-point.

Proof: By Corollary 6.3.1 in [12] it follows that (X,weak) is σ-fragmented by the norm. It then
follows from Proposition 3.3 that (X,weak) is fragmented by a metric whose topology is at least
as strong as the weak topology on X. On the other hand, if (X,weak) possessed a Gδ-point then
it would follow that every point of X is a Gδ-point with respect to the weak topology on X. In
particular, 0 would be a Gδ-point with respect to (X,weak). This in turn would imply that there
exists a countable set {x∗

n : n ∈ N} ⊆ BX∗ such that
⋂

n∈N
Ker(x∗

n) = {0}. Thus, if we defined
d : BX × BX → [0,∞) by,

d(x, y) :=

∞∑

n=1

|x∗
n(x − y)|

2n
,

then d would be a metric on BX . Moreover the d-topology on BX would coincide with the weak
topology on BX . Thus, (BX , d) and so (BX ,weak) would be separable. Hence there would exist a
countable set {xn : n ∈ N} ⊆ BX such that

BX = {xn : n ∈ N}
weak

⊆ co{xn : n ∈ N} ⊆ BX

(i.e., BX = co{xn : n ∈ N}). Therefore, BX would be norm separable, which would then imply
that Γ is countable. k��

Fragmentability has been extensively studied in the setting of continuous function spaces. How-
ever, we shall briefly show here that fragmentability also has implications for spaces of uniformly
continuous functions as well.

Our first result in this direction involves the notion of a space being “countably determined”.
Suppose that X is a completely regular topological space. Then we says that X is countably
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determined if there exists a countable family {Kn : n ∈ N) of compact subsets of βX such that for
each x ∈ X and y ∈ βX \ X there exists an n ∈ N such that x ∈ Kn and y 6∈ Kn.

For a metric space (M,d) we shall denote by, UC(M) the bounded real-valued uniformly continuous
functions defined on M . We shall denote by, UCp(M) the set UC(M) endowed with the topology
of pointwise convergence on M .

Proposition 2.3 For any metric space (M,d), UCp(M) is countably determined.

Proof: Let (K, ρ) be any metric compactification of (R, | · |). To prove the proposition it will be
sufficient to construct a countable family of compact subsets {Km

n : (m,n) ∈ Z
+ × N} of KM ,

endowed with the product topology, so that if f, g ∈ KM , f ∈ UC(M) and g 6∈ UC(M) then there
exists (m′, n′) ∈ Z

+ × N such that f ∈ Km′

n′ and g 6∈ Km′

n′ . To this end, we shall define for each
(m,n) ∈ N

2,

Km
n := {f ∈ KM : ρ(f(x), f(y)) ≤ 1/m for all x, y ∈ M with d(x, y) < 1/n}

and for each n ∈ N define K0
n := {f ∈ KM : f(x) ∈ [−n, n] for all x ∈ M}. Now suppose that

f, g ∈ KM , f ∈ UC(M) and g 6∈ UC(M). Since f ∈ UC(M), f is bounded so there exists n ∈ N

such that f ∈ K0
n. If g 6∈ K0

n then we are done. So let us suppose that g ∈ K0
n. In particular, g is

real-valued (and bounded). However, since g 6∈ UC(M), g is not uniformly continuous. Therefore,
there exists an m′ ∈ N and sequences (xn : n ∈ N) and (yn : n ∈ N) in M such that:

(i) lim
n→∞

d(xn, yn) = 0 and

(ii) ρ(g(xn), g(yn)) > 1/m′.

On the other hand, since f ∈ UC(M) there exists an n′ ∈ N such that ρ(f(x), f(y)) < 1/m′ for all
x, y ∈ M with d(x, y) < 1/n′. Clearly then, f ∈ Km′

n′ , but g 6∈ Km′

n′ . k��

Corollary 2.3 For any metric space (M,d), if UCp(M) is fragmentable then it is fragmented by
a metric whose topology is at least as strong as the topology of pointwise convergence on M .

Proof: Clearly, every countably determined space has countable separation. Therefore, the result
follows directly from [18, Proposition 4.2] which says that every fragmentable space (X, τ) that has
countable separation is fragmented by a metric whose topology is at least as strong as τ . k��

3 Metric-valued function spaces

The following result is a slight generalisation of [18, Theorem 2.1]. Since its proof is essentially the
same as that given in [18, Theorem 2.1] we will not repeat it here.

Proposition 3.1 [18, Theorem 1.3] Let (Y, ‖·‖) be a Banach space and suppose that τ is a topology
on Y such that (i) for every 0 < r < ∞ and x ∈ Y , B[x; r] := x + rBY is closed in (Y, τ) and (ii)
every bounded sequence in Y that converges with respect to the τ -topology, converges with respect to
the weak topology on Y . Then for any X ⊆ Y , (X, τ) is fragmented by a metric whose topology is
at least as strong as the τ topology if, and only if, (X, τ) is fragmented by a metric whose topology
is at least as strong as the ‖ · ‖-topology on X.
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Let X be a set with two (not necessarily distinct) topologies τ1 and τ2. On X we will consider the
G (X, τ1, τ2)-game played between two players A and B. Player A goes first (always - life is not
always fair) and chooses a nonempty subset A1 of X. Player B must then respond by choosing
a nonempty relatively τ1-open subset B1 of A1. Following this, player A must select another
nonempty set A2 ⊆ B1 ⊆ A1 and in turn player B must again respond by selecting a nonempty
relatively τ1-open subset B2 ⊆ A2 ⊆ B1 ⊆ A1. Continuing this process indefinitely the players A
and B produce a sequence ((An, Bn) : n ∈ N) of pairs of nonempty subsets (with Bn relatively
τ1-open in An) called a play of the G (X, τ1, τ2)-game. We shall declare that player B wins a play
((An, Bn) : n ∈ N) if either (i)

⋂
n∈N

An = ∅ or else (ii)
⋂

n∈N
An = {x} for some x ∈ X and for

every τ2-open neighbourhood U of x there exists an n ∈ N such that An ⊆ U . Otherwise, the
player A is said to have won. By a strategy σ for the player B we mean a “rule” that specifies
each move of the player B in every possible situation that can occur. Since in general the moves
of B may depend upon the previous moves of the player A we shall denote by, σ(A1, A2, . . . , An)
the nth-move of the player B under the strategy σ. We shall call a strategy σ, for the player B, a
winning strategy if he/she wins every play of the G (X, τ1, τ2)-game, in which they play according
to the strategy σ. For a more precise definition of a strategy see [3].

Our game-theoretic approach requires the use of the following three facts, all of which are proven
in [18].

Theorem 3.1 [18, Theorem 1.2] Let τ1, τ2 be two (not necessarily distinct) topologies on a set X.
The space (X, τ1) is fragmentable by a metric whose topology is at least as strong as τ2 if, and only
if, the player B has a winning strategy in the G (X, τ1, τ2)-game played on X.

Proposition 3.2 [18, Proposition 3.1] Let (X, τ) be a topological space that is fragmented by a
metric d whose topology is at least as strong as the topology generated by some other metric ρ
defined on X. Then (X, τ) is σ-fragmented by ρ.

Proposition 3.3 [18, Proposition 3.2] If a regular Hausdorff topological space (X, τ) is σ-fragmented
by a metric ρ whose topology is at least as strong as τ then (X, τ) is fragmented by some metric ρ′

whose topology is at least as strong as τ .

Next we need to describe a simultaneous generalisation of both the pointwise topology and uniform
topology on a C(K)-space.

Let (X, τ) be a topological space and let F ⊆ 2X . We shall say that F is a compact cover collection
or (ccc for short) of X if:

(i) every member of F is a nonempty compact subset of X;

(ii) F is a cover of X, i.e.,
⋃

F∈F F = X;

(iii) F is closed under finite unions, i.e., if F1, F2 ∈ F then F1 ∪ F2 ∈ F .

Given a compact cover collection of a completely regular space X we can define a topology τF on
C(X) by saying that a subset U of C(X) is τF -open if for every f ∈ U there exists a F ∈ F and
ε > 0 such that N(f, F, ε) := {g ∈ C(X) : max{|g(x)−f(x)| : x ∈ F} < ε} ⊆ U . It is easy to check
that this does indeed define a topology on C(X) and that for each f ∈ C(X), F ∈ F and ε > 0,
N(f, F, ε) is τF -open.

Some special extremal cases of this topology on C(X) are well-known. For example, if F comprises
of all the finite subsets of X then τF coincides with τp - the topology of pointwise convergence on
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X. In the other extreme, if X is compact and F = {X} then τF coincides with τu - the topology
of uniform convergence on X. Note that for any ccc F of a compact space X, the τF -topology on
C(X) always lies somewhere between the topology of pointwise convergence on X and the topology
of uniform convergence on X.

Our interest in this simultaneous generalization of both the topology of pointwise convergence and
the topology of uniform convergence comes from considering product spaces. Suppose that X
and Y are completely regular topological spaces and suppose also that F1 is a ccc of X and F2

is a ccc of Y . We may then define F1 × F2 to be the smallest collection of nonempty compact
subsets of X × Y that contains {F1 × F2 : F1 ∈ F1 and F2 ∈ F2} and is closed under finite unions.
Again the extremal cases are of interest. If F1 comprises of all the finite subsets of X and F2

comprises of all the finite subsets of Y then F1 × F2 consists of all the finite subsets of X × Y
and so τF1×F2

= τp. At the other extreme (assuming X and Y are compact), if F1 = {X} and
F2 = {Y } then F1 × F2 = {X × Y } and so τF1×F2

= τu. Of particular interest to us is the case
when F1 consists of all the finite subsets of X and F2 = {Y }.

Suppose that X and Y are compact spaces. Let f ∈ C(X×Y ) and for each x ∈ X, let f(x,·) ∈ C(Y )
be defined by, f(x,·)(y) := f(x, y) for all y ∈ Y . Similarly, for each y ∈ Y , let f(·,y) ∈ C(X) be
defined by, f(·,y)(x) := f(x, y) for all x ∈ X. For a subset A ⊆ C(X × Y ) let us denote by,
A(x,·) := {f(x,·) ∈ C(Y ) : f ∈ A} and A(·,y) := {f(·,y) ∈ C(X) : f ∈ A} for each (x, y) ∈ X × Y .

Further, if we suppose that ∅ 6= Λ1 ⊆ C(X) and ∅ 6= Λ2 ⊆ C(Y ) then we may define:

CΛ1×Λ2(X × Y ) := {f ∈ C(X × Y ) : f(·,y) ∈ Λ1 and f(x,·) ∈ Λ2 for each (x, y) ∈ X × Y }.

Let us now apologize, in advance, for the complicated notation in the following theorem. We hope
that we are eventually vindicated by the subsequent corollaries that require the extra complication.
However, on first reading, it is perhaps better to just consider the case when Λ1 = C(X), Λ2 = C(Y )
and τF1

= τF2
= τp.

A special case of the following theorem was proven in [24] and also independently by N. K. Ribarska.
A proof of this special case was eventually published in [29]. However, we would like to acknowledge
here, that the proof in [24] was completely inspired by the corresponding result for co-Namioka
spaces given in [2].

Theorem 3.2 Let X and Y be compact Hausdorff spaces and suppose that

∅ 6= Λ1 ⊆ C(X) and ∅ 6= Λ2 ⊆ C(Y ).

Suppose also that F1 is a ccc of X and F2 is a ccc of Y . If both (Λ1, τF1
) and (Λ2, τF2

) are
fragmented by metrics whose topologies are at least as strong as the norm topologies on C(X) and
C(Y ) respectively then (CΛ1×Λ2(X × Y ), τF1×F2

) is fragmented by a metric whose topology is at
least as strong as the norm topology on C(X × Y ).

Proof: Let d1 be a fragmenting metric on (Λ1, τF1
) whose topology is at least as strong as the

‖ · ‖∞-topology on Λ1 and let d2 be a fragmenting metric on (Λ2, τF2
) whose topology is at least

as strong as the ‖ · ‖∞-topology on Λ2. We will construct a winning strategy σ for the player B in
the G (CΛ1×Λ2(X × Y ), τF1×F2

, τu)-game played on CΛ1×Λ2(X × Y ).

Suppose that player A chooses a nonempty subset A1 ⊆ CΛ1×Λ2(X × Y ) as their first move of the
game. Note that by, [18, Proposition 2.1] we may assume that A1 is bounded. Player B’s response
to this move is to first arbitrarily choose points x0 ∈ X and y0 ∈ Y and then define

α1 := sup{‖f(x,·) − f(x0,·)‖∞ : f ∈ A1, x ∈ X}.
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He/she then chooses x1 ∈ X and f ∈ A1 so that

‖f(x1,·) − f(x0,·)‖∞ > α1 − 1/3.

Player B then selects a nonempty relatively τF1×F2
-open subset B′

1 of A1 so that

(i) inf{‖f(x1,·) − f(x0,·)‖∞ : f ∈ B′
1} > α1 − 1/2 and

(ii) d2 − diam (B′
1)(xj ,·) < 1/2 for each 0 ≤ j ≤ 1.

Next, he/she defines
β1 := sup{‖f(·,y) − f(·,y0)‖∞ : f ∈ B′

1, y ∈ Y }.

Similarly, to above, player B finds a point y1 ∈ Y and a nonempty relatively τF1×F2
-open subset

B1 of B′
1 so that:

(i) inf{‖f(·,y1) − f(·,y0)‖∞ : f ∈ B1} > β1 − 1/2 and

(ii) d1 − diam (B1)(·,yj) < 1/2 for each 0 ≤ j ≤ 1.

Finally, player B defines σ(A1) := B1.

In general, suppose that the players A and B have chosen nonempty sets

Bn ⊆ An ⊆ Bn−1 ⊆ · · · ⊆ B1 ⊆ A1.

so that {(Aj , Bj) : 1 ≤ j ≤ n} is a partial play of the G (CΛ1×Λ2(X × Y ), τF1×F2
, τu)-game.

In the course of the game, the player B will have also defined:

(i) some real numbers 0 ≤ αn ≤ αn−1 ≤ · · · ≤ α1 and 0 ≤ βn ≤ βn−1 ≤ · · · ≤ β1;

(ii) some points (xj , yj) ∈ X × Y for 0 ≤ j ≤ n and

(iii) some nonempty relatively τF1×F2
-open subsets B′

j of Aj for 1 ≤ j ≤ n

such that for each 1 ≤ k ≤ n:

(a) αk := sup{min0≤j<k ‖f(x,·) − f(xj ,·)‖∞ : f ∈ Ak, x ∈ X};

(b) B′
k is a nonempty relatively τF1×F2

-open subset of Ak chosen so that;

(c) inf{min0≤j<k ‖f(xk,·) − f(xj ,·)‖∞ : f ∈ B′
k} > αk − 1/k and

(d) d2 − diam (B′
k)(xj ,·) < 1/k for each 1 ≤ j ≤ k;

(e) βk := sup{min0≤j<k ‖f(·,y) − f(·,yj)‖∞ : f ∈ B′
k, y ∈ Y };

(f) Bk is a nonempty relatively τF1×F2
-open subset of B′

k chosen so that;

(g) inf{min0≤j<k ‖f(·,yk) − f(·,yj)‖∞ : f ∈ Bk} > βk − 1/k and

(h) d1 − diam (Bk)(·,yj) < 1/k for each 0 ≤ j ≤ k;

(i) σ(A1, A2, . . . , Ak) := Bk.
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Inductive step. Suppose that player A has chosen a nonempty set An+1 ⊆ Bn. Player B responds
to this by defining

αn+1 := sup

{
min

0≤j≤n
‖f(x,·) − f(xj ,·)‖∞ : f ∈ An+1, x ∈ X

}
.

He/she then chooses xn+1 ∈ X and f ∈ An+1 so that:

min
0≤j≤n

‖f(xn+1,·) − f(xj ,·)‖∞ > αn+1 − 1/(2n + 1).

Player B then selects a nonempty relatively τF1×F2
-open subset B′

n+1 of An+1 so that:

(i) inf{min1≤j≤n ‖f(xn+1,·) − f(xj ,·)‖∞ : f ∈ B′
n+1} > αn+1 − 1/(n + 1) and

(ii) d2 − diam (B′
n+1)(xj ,·) < 1/(n + 1) for each 0 ≤ j ≤ (n + 1).

Next, he/she defines

βn+1 := sup

{
min

0≤j≤n
‖f(·,y) − f(·,yj)‖∞ : f ∈ B′

n+1, y ∈ Y

}
.

Similarly, to above, player B finds a point yn+1 ∈ Y and a nonempty relatively τF1×F2
-open subset

Bn+1 of B′
n+1 so that:

(i) inf{min1≤j≤n ‖f(·,yn+1) − f(·,yj)‖∞ : f ∈ Bn+1} > βn+1 − 1/(n + 1) and

(ii) d1 − diam (Bn+1)(·,yj) < 1/(n + 1) for each 0 ≤ j ≤ (n + 1).

Finally, player B defines σ(A1, A2, . . . , An+1) := Bn+1. This completes the definition of σ.

We claim that lim
n→∞

‖ · ‖∞ − diam An = 0 whenever
⋂

n∈N
An 6= ∅. However, to achieve this we

must first show that
lim

n→∞
αn = lim

n→∞
βn = 0

whenever
⋂

n∈N
An 6= ∅. Indeed, let us suppose that there exists an 0 < r so that r < αn for

all n ∈ N. (Recall that αn+1 ≤ αn for all n ∈ N). Let x∞ be any cluster point of (xn : n ∈ N)
and let f ∈

⋂
n∈N

An. Now, by the continuity of f there exists a neighbourhood U of x∞ so
that ‖f(x,·) − f(x∞,·)‖∞ < r/4 whenever x ∈ U . On the other hand, there exist m < n ∈ N with
2/r < m < n so that xm, xn ∈ U . However, this is impossible since,

r

2
=

(
r −

r

2

)
<

(
r −

1

n

)
<

(
αn −

1

n

)
< ‖f(xn,·) − f(xm,·)‖∞

≤ ‖f(xn,·) − f(x∞,·)‖∞ + ‖f(x∞,·) − f(xm,·)‖∞

<
r

4
+

r

4
=

r

2
.

Hence lim
n→∞

αn = 0. The proof that lim
n→∞

βn = 0 is analogous. Now, suppose that
⋂

n∈N
An 6= ∅

and ε > 0 is given. Then we may choose nε ∈ N so that 0 ≤ αnε < ε and 0 ≤ βnε < ε. On the
other hand we may also choose nε < mε ∈ N so that

‖ · ‖∞ − diam (Amε)(xj ,·) < ε and ‖ · ‖∞ − diam (Amε)(·,yj) < ε for each 0 ≤ j ≤ nε.

[Note that this is possible since
⋂

n∈N
(An)(xj ,·) 6= ∅ and

⋂
n∈N

(An)(·,yj) 6= ∅ for each 0 ≤ j ≤ nε.]
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We claim that ‖ ·‖∞−diam Amε ≤ 7ε. Indeed, consider (x, y) ∈ X ×Y and f, g ∈ Amε . Then there
exist i, j ∈ {0, 1, 2, . . . , nε − 1} so that ‖f(·,y) − f(·,yj)‖∞ ≤ βnε < ε and ‖g(x,·) − g(xi,·)‖∞ ≤ αnε < ε
since f, g ∈ Amε ⊆ B′

nε
⊆ Anε . Hence,

|f(x, y) − g(x, y)| ≤ |f(x, y) − f(x, yj)| + |f(x, yj) − g(x, yj)| + |g(x, yj) − g(xi, yj)|

+ |g(xi, yj) − f(xi, yj)| + |f(xi, yj) − f(xi, y)| + |f(xi, y) − g(xi, y)|

+ |g(xi, y) − g(x, y)| < 7ε.

This shows that ‖·‖∞−diam Ak ≤ ‖·‖∞−diam Amε ≤ 7ε for all k ≥ mε. Hence σ is indeed a winning
strategy for the player B in the G (CΛ1×Λ2(X × Y ), τF1×F2

, τu)-game played on CΛ1×Λ2(X × Y ).

The result now follows from Theorem 3.1. k��

Before we can give some of the applications of this result we need to recall two well-known results
from functional analysis.

Proposition 3.4 For every Banach space (Y, ‖ · ‖) there exists a compact Hausdorff space X and
an isometry T : (Y, ‖ · ‖) → (C(X), ‖ · ‖∞) such that T : (Y,weak) → Cp(X) is a topological
embedding.

Proof: Consider X := BY ∗ endowed with the weak∗ topology. By the Banach-Alaoglu theorem
(BY ∗ ,weak∗) is a compact Hausdorff space. For each x ∈ Y define x̂ : BY ∗ → R by, x̂(x∗) := x∗(x)
for all x∗ ∈ BY ∗ . Next, we define T : (Y, ‖ · ‖) → (C(X), ‖ · ‖∞) by, T (x) := x̂. Clearly, T is linear
and from the Hahn-Banach theorem we see that ‖T (x)‖∞ = ‖x̂‖∞ = ‖x‖ for all x ∈ Y . It is also
easy to see that T : (Y,weak) → Cp(X) is a topological embedding. k��

Proposition 3.5 For every metric space (M,d) there exists a compact Hausdorff space X and an
isometry T : (M,d) → (C(X), ‖ · ‖∞).

Proof: In light of Proposition 3.4 it is sufficient to show that there is an isometry S from (M,d)
into some Banach space (Y, ‖·‖). So this is what we do next. Let L (M) be the set of all real-valued
functions on M that vanish at some fixed point x0 ∈ M and satisfy |f(x) − f(y)| ≤ Kd(x, y) for
all x, y ∈ M , for some K (depending on f). Then (L (M), ‖ · ‖) is a Banach space if we define

‖f‖ := sup
x 6=y

|f(x) − f(y)|

d(x, y)
.

For each x ∈ M consider the continuous linear functional δx defined on L (M) by, δx(f) := f(x).
Then the mapping S : (M,d) → (L (M)∗, ‖ · ‖) defined by, S(x) := δx is an isometry. k��

We may now present our first application of Theorem 3.2. The corresponding property for the
Namioka property was established in [28, Theorem A2], but using a completely different argument.

Corollary 3.1 Suppose that X is a compact Hausdorff space and (M,d) is a metric space. If
Cp(X) is σ-fragmented by its norm then Cp(X;M) is fragmented by a metric whose topology is at
least as strong as the D-topology on C(X;M), where D : C(X;M) × C(X;M) → [0,∞) is defined
by, D(F,G) := max

x∈X
d(F (x), G(x)).

Proof: By Proposition 3.3 and Proposition 3.1, Cp(X) is fragmented by a metric whose topology
is at least as strong as the τu-topology on C(X). Now, by Proposition 3.5 there exists a compact
Hausdorff space Y and an isometry T : (M,d) → (C(Y ), ‖ · ‖∞). Clearly, (C(Y ), τu) is fragmented
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by a metric whose topology is at least as strong as the τu-topology. For example, just take ρ :
C(Y ) × C(Y ) → [0,∞) to be, ρ(f, g) := ‖f − g‖∞. So by Theorem 3.2, (C(X × Y ), τF1×F2

) is
fragmented by a metric whose topology is at least as strong as the ‖ · ‖∞-topology on C(X × Y );
where F1 consists of all the finite subsets of X and F2 := {Y }.

Next, consider the mapping S : C(X;M) → C(X × Y ) defined by,

S(F )(x, y) := T (F (x))(y) for all (x, y) ∈ X × Y.

One can check that:

(i) S is well-defined, i.e., for every F ∈ C(X;M), S(F ) ∈ C(X × Y );

(ii) for every F,G ∈ C(X;M), D(F,G) := max
x∈X

d(F (x), G(x)) = ‖S(F ) − S(G)‖∞;

(iii) S is a topological embedding of Cp(X;M) into (C(X × Y ), τF1×F2
).

The result now follows. k��

Corollary 3.2 Let X be a compact Hausdorff space and (M,d) be a metric space. If Cp(X;M)
is fragmented by a metric whose topology is at least as strong as the τp-topology on C(X;M) then
Cp(X;M) is fragmented by a metric whose topology is at least as strong as the D-topology on
C(X;M), where D : C(X;M) × C(X;M) → [0,∞) is defined by, D(F,G) := max

x∈X
d(F (x), G(x)).

Proof: By Proposition 3.5 there exists a compact Hausdorff space Y and an isometry T : (M,d) →
(C(Y ), ‖ · ‖∞). As in Corollary 3.1 we consider the mapping S : C(X;M) → C(X × Y ) defined by,

S(F )(x, y) := T (F (x))(y) for all (x, y) ∈ X × Y

and as in Corollary 3.1 we note that:

(i) S is well-defined, i.e., for every F ∈ C(X;M), S(F ) ∈ C(X × Y );

(ii) for every F,G ∈ C(X;M), D(F,G) := max
x∈X

d(F (x), G(x)) = ‖S(F ) − S(G)‖∞;

(iii) S is a topological embedding of Cp(X;M) into (C(X × Y ), τF1×F2
).

Thus, (S(C(X;M)), τF1×F2
) is fragmented by a metric whose topology is at least as strong as the

τF1×F2
-topology on C(X ×Y ). Therefore, by Proposition 3.1, (S(C(X;M)), τF1×F2

) is fragmented
by a metric whose topology is at least as strong as the ‖ · ‖∞-topology on C(X × Y ). The result
then follows. k��

In order to be able to state our next corollary we need to introduce some more notation.

Given a Banach space (Y, ‖·‖) and a compact Hausdorff space X, we denote by (C(X;Y ), τp(weak))
the set C(X;Y ) endowed with the topology of pointwise convergence on X, when Y is considered
with the weak topology. That is, a net (Fα : α ∈ A) in C(X;Y ) converges to F ∈ C(X;Y ) with
respect to the τp(weak)-topology if for each x ∈ X, lim

α∈A
Fα(x) converges weakly to F (x).

Corollary 3.3 Suppose that X is a compact Hausdorff space and (Y, ‖ · ‖) is a Banach space.
If Cp(X) is σ-fragmented by the ‖ · ‖∞-norm and (Y,weak) is σ-fragmented by its norm then
(C(X;Y ), τp(weak)) is σ-fragmented by the ‖·‖∞-norm on C(X;Y ). In particular, (C(X;Y ),weak)
is σ-fragmented by the ‖ · ‖∞-norm on C(X;Y ).
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Proof: By Proposition 3.4 there exists a compact Hausdorff space Z and an isometry T : (Y, ‖·‖) →
(C(Z), ‖ · ‖∞) such that T : (Y,weak) → Cp(Z) is a topological embedding. Let Λ1 := C(X) and
Λ2 := T (Y ). Then by Proposition 3.3 and Proposition 3.1 (Λ1, τp) is fragmented by a metric whose
topology is at least as strong as the ‖ · ‖∞-topology on C(X) and (Λ2, τp) is also fragmented by
a metric whose topology is at least as strong as the ‖ · ‖∞-topology on C(Z). Hence by Theorem
3.2, (CΛ1×Λ2(X × Z), τp) is fragmented by a metric whose topology is at least as strong as the
‖ · ‖∞-topology on C(X × Z). Now consider the mapping S : C(X;Y ) → C(X × Z) defined by,

S(F )(x, z) := T (F (x))(z) for all (x, z) ∈ X × Z.

Then

(i) S(F ) ∈ CΛ1×Λ2(X × Z) for each F ∈ C(X;Y );

(ii) for every F,G ∈ C(X;Y ), ‖F − G‖∞ = ‖S(F ) − S(G)‖∞;

(iii) S is a topological embedding of (C(X;Y ), τp(weak)) into Cp(X × Z).

It now follows that (C(X;Y ), τp(weak)) is fragmented by a metric whose topology is at least as
strong as the ‖ · ‖∞-topology in C(X;Y ). The fact that (C(X;Y ), τp(weak)) is σ-fragmented by
the ‖ · ‖∞-norm on C(X;Y ) now follows from Proposition 3.2. k��

Remarks 1 If we are given a compact Hausdorff space X and a non-zero Banach space (Y, ‖ · ‖)
then we may consider the following two mappings. R : (Y, ‖ · ‖) → (C(X;Y ), ‖ · ‖∞) defined by,
R(y)(x) := y for all x ∈ X and Q : (C(X), ‖·‖∞) → (C(X;Y ), ‖·‖∞) defined by Q(f)(x) := f(x)y0

for all x ∈ X, where y0 ∈ Y is some fixed element of Y with ‖y0‖ = 1. In this way we can see that if
(C(X;Y ), τp(weak)) is σ-fragmented by the ‖ · ‖∞ - norm on C(X;Y ) then Cp(X) is σ-fragmented
by the ‖ · ‖∞ - norm on C(X) and (Y,weak) is σ-fragmented by the norm on Y .

Our final application is an extension of Theorem 3.2 from finite products of compact Hausdorff
spaces to arbitrary products of compact Hausdorff spaces. As in Theorem 3.2, the proof is modeled
off the corresponding result for co-Namioka spaces given in [1].

Theorem 3.3 Let {Ti : i ∈ I} be an infinite family of nonempty compact Hausdorff spaces. If
each (C(Ti), τp) is σ-fragmentable by the ‖ · ‖∞-norm then so is (C(

∏
i∈I Ti), τp).

Proof: In order to expedite the latter part of this proof we shall take this opportunity to introduce
a slew of definitions and notation. Firstly, let T :=

∏
i∈I Ti and let t be any fixed element of T .

For each ∅ 6= J ⊆ I we define:

(i) TJ :=
∏

j∈J Tj ;

(ii) xJ ∈ T , by xJ(i) :=

{
x(i) if i ∈ J
t(i) if i 6∈ J

for each x ∈ T ;

(iii) σJ : TJ → T by, σJ(x)(i) :=

{
x(i) if i ∈ J
t(i) if i 6∈ J .

(iv) SJ : Cp(T ) → C(TJ) by, SJ(f) := f ◦ σJ .
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Clearly, SJ is continuous with respect to the τp-topology on both C(T ) and C(TJ). Furthermore,
for each finite subset ∅ 6= J ⊆ I we let dJ be a fragmenting metric on Cp(TJ) whose topology is at
least as strong as the ‖ · ‖∞-topology on C(TJ). Of course such a fragmenting metric is guaranteed
by Theorem 3.2.

We will construct a winning strategy σ for the player B in the G (T, τp, τu)-game played on C(T ).

Suppose that the player A chooses a nonempty subset A1 of C(T ) as their first move of the game.
Note that by, [18, Proposition 2.1] we may assume that A1 is bounded. Player B’s response to this
move is to first define

J0 := ∅ and s1 := sup{|f(x) − f(y)| : f ∈ A1, x, y ∈ T}

and then choose (x1, y1) ∈ T × T and f ∈ A1 so that:

(i) |f(x1) − f(y1)| > s1 − 1/3 and

(ii) J1 := {i ∈ I : x1(i) 6= y1(i)} is finite.

Next, player B selects a nonempty relatively τp-open subset B1 of A1 so that:

(i) inf{|f(x1) − f(y1)| : f ∈ B1} > s1 − 1 and

(ii) dJ1
− diam SJ1

(B1) < 1.

Finally, player B defines σ(A1) := B1.

In general, suppose that the players A and B have chosen nonempty sets

Bn ⊆ An ⊆ Bn−1 ⊆ · · · ⊆ B1 ⊆ A1

so that {(Aj , Bj) : 1 ≤ j ≤ n} is a partial play of the G (C(T ), τp, τu)-game. In the course of the
game, the player B will have also defined:

(i) some real numbers 0 ≤ sn ≤ sn−1 ≤ · · · ≤ s1;

(ii) some points (xj , yj) ∈ T × T for 1 ≤ j ≤ n;

(iii) some finite sets J1 ⊆ J2 ⊆ · · · ⊆ Jn ⊆ I

such that for each 1 ≤ k ≤ n:

(a) sk := sup{|f(x) − f(y)| : f ∈ Ak, x, y ∈ T and x(j) = y(j) for all j ∈ Jk−1};

(b) (xk, yk) ∈ T × T is chosen so that xk(j) = yk(j) for all j ∈ Jk−1 and

(c) Jk := {i ∈ I : xk(i) 6= yk(i)} ∪ Jk−1 is finite;

(d) Bk is a nonempty relatively τp-open subset of Ak chosen so that;

(e) inf{|f(xk) − f(yk)| : f ∈ Bk} > sk − 1/k and

(f) dJj
− diam SJj

(Bk) < 1/k for all 1 ≤ j ≤ k;

(g) σ(A1, A2, . . . , Ak) := Bk.
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Inductive step. Suppose that player A has chosen a nonempty set An+1 ⊆ Bn. Player B responds
to this by defining

sn+1 := sup{|f(x) − f(y)| : f ∈ An+1, x, y ∈ T and x(j) = y(j) for all j ∈ Jn}.

He/she then chooses (xn+1, yn+1) ∈ T × T and f ∈ An+1 so that:

(i) xn+1(j) = yn+1(j) for all j ∈ Jn, |f(xn+1) − f(yn+1)| > sn+1 − 1/(2n + 1) and

(ii) Jn+1 := {i ∈ I : xn+1(i) 6= yn+1(i)} ∪ Jn is finite.

Next, player B selects a nonempty relatively τp-open subset Bn+1 of An+1 so that:

(i) inf{|f(xn+1) − f(yn+1)| : f ∈ Bn+1} > sn+1 − 1/(n + 1) and

(ii) dJj
− diam SJj

(Bn+1) < 1/(n + 1) for each 1 ≤ j ≤ n + 1.

Finally, player B defines σ(A1, A2, . . . , An+1) := Bn+1.

We claim that lim
n→∞

‖ · ‖∞ − diam An = 0 whenever
⋂

n∈N
An 6= ∅. However first we show that

lim
n→∞

sn = 0 whenever,
⋂

n∈N
An 6= ∅. To this end, let us suppose that there exists an 0 < r

so that r < sn for all n ∈ N and let J :=
⋃

n∈N
Jn ⊆ I. Let (x∞, y∞) be any cluster point of

((xn, yn) : n ∈ N). Now for any i ∈ I \ J , xn(i) = yn(i) for all n ∈ N and so x∞(i) = y∞(i).
Furthermore, for each j ∈ J there exists an n0 ∈ N so that j ∈ Jn0

and so xn(j) = yn(j) for all
n > n0. Therefore, x∞(j) = y∞(j) and hence x∞ = y∞. Select any f ∈

⋂
n∈N

An, then

|f(xn) − f(yn)| > sn − 1/n > r − 1/n for all n ∈ N;

which contradicts the continuity of the function, (x, y) 7→ |f(x) − f(y)| at (x∞, y∞) = (x∞, x∞).
Hence, lim

n→∞
sn = 0. Now suppose that

⋂
n∈N

An 6= ∅ and ε > 0 is given. Then we may choose nε ∈

N so that snε < ε. On the other hand we may select nε < mε ∈ N so that ‖·‖∞−diam SJnε
(Amε) < ε.

[Note that this is possible since
⋂

n∈N
SJnε

(An) 6= ∅].

We claim that ‖ · ‖∞ − diam Amε < 3ε. To see this, consider any x ∈ T and f, g ∈ Amε . Then,

|f(x) − g(x)| ≤ |f(x) − f(xJnε
)| + |(f − g)(xJnε

)| + |g(xJnε
) − g(x)|

≤ snε + ‖SJnε
(f − g)‖∞ + snε < 3ε.

This shows that ‖ · ‖∞ − diam Ak ≤ ‖ · ‖∞ − diam Amε < 3ε for all k ≥ mε. Hence σ is indeed
a winning strategy for the player B in the G (C(T ), τp, τu)-game played on C(T ). The result now
follows from Theorem 3.1 and Proposition 3.2. k��
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